mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-26 01:50:36 +00:00
893 lines
23 KiB
C++
893 lines
23 KiB
C++
// Hyperbolic Rogue -- hyperbolic graphics
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
namespace hr {
|
|
|
|
ld ghx, ghy, ghgx, ghgy;
|
|
hyperpoint ghpm = C0;
|
|
|
|
void ghcheck(hyperpoint &ret, const hyperpoint &H) {
|
|
if(hypot(ret[0]-ghx, ret[1]-ghy) < hypot(ghgx-ghx, ghgy-ghy)) {
|
|
ghpm = H; ghgx = ret[0]; ghgy = ret[1];
|
|
}
|
|
}
|
|
|
|
void camrotate(ld& hx, ld& hy) {
|
|
ld cam = vid.camera_angle * M_PI / 180;
|
|
GLfloat cc = cos(cam);
|
|
GLfloat ss = sin(cam);
|
|
ld ux = hx, uy = hy * cc + ss, uz = cc - ss * hy;
|
|
hx = ux / uz, hy = uy / uz;
|
|
}
|
|
|
|
hyperpoint gethyper(ld x, ld y) {
|
|
|
|
ld hx = (x - vid.xcenter) / vid.radius;
|
|
ld hy = (y - vid.ycenter) / vid.radius;
|
|
|
|
if(pmodel) {
|
|
ghx = hx, ghy = hy;
|
|
return ghpm;
|
|
}
|
|
|
|
if(vid.camera_angle) camrotate(hx, hy);
|
|
|
|
if(euclid)
|
|
return hpxy(hx * (1 + vid.alpha), hy * (1 + vid.alpha));
|
|
|
|
ld hr = hx*hx+hy*hy;
|
|
|
|
if(hr > .9999 && !sphere) return Hypc;
|
|
|
|
// hz*hz-(hx/(hz+alpha))^2 - (hy/(hz+alpha))^2 =
|
|
|
|
// hz*hz-hr*(hz+alpha)^2 == 1
|
|
// hz*hz - hr*hr*hz*Hz
|
|
|
|
|
|
ld A, B, C;
|
|
|
|
ld curv = sphere ? 1 : -1;
|
|
|
|
A = 1+curv*hr;
|
|
B = 2*hr*vid.alpha*-curv;
|
|
C = 1 - curv*hr*vid.alpha*vid.alpha;
|
|
|
|
// Az^2 - Bz = C
|
|
B /= A; C /= A;
|
|
|
|
// z^2 - Bz = C
|
|
// z^2 - Bz + (B^2/4) = C + (B^2/4)
|
|
// z = (B/2) + sqrt(C + B^2/4)
|
|
|
|
ld rootsign = 1;
|
|
if(sphere && vid.alpha > 1) rootsign = -1;
|
|
|
|
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
|
|
|
|
hyperpoint H;
|
|
H[0] = hx * (hz+vid.alpha);
|
|
H[1] = hy * (hz+vid.alpha);
|
|
H[2] = hz;
|
|
|
|
return H;
|
|
}
|
|
|
|
void ballmodel(hyperpoint& ret, double alpha, double d, double zl) {
|
|
hyperpoint H = ypush(geom3::camera) * xpush(d) * ypush(zl) * C0;
|
|
ld tzh = vid.ballproj + H[2];
|
|
ld ax = H[0] / tzh;
|
|
ld ay = H[1] / tzh;
|
|
ld ball = vid.ballangle * M_PI / 180;
|
|
|
|
ld ca = cos(alpha), sa = sin(alpha);
|
|
ld cb = cos(ball), sb = sin(ball);
|
|
|
|
ret[0] = ax * ca;
|
|
ret[1] = ay * cb + ax * sa * sb;
|
|
ret[2] = ax * sa * cb - ay * sb;
|
|
}
|
|
|
|
void apply_depth(hyperpoint &f, ld z) {
|
|
if(vid.usingGL)
|
|
f[2] = z;
|
|
else {
|
|
z = z * vid.radius;
|
|
ld mul = stereo::scrdist / (stereo::scrdist + z);
|
|
f[0] = f[0] * mul;
|
|
f[1] = f[1] * mul;
|
|
f[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius + stereo::ipd * mul / 2;
|
|
}
|
|
}
|
|
|
|
bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf, ld &z) {
|
|
if(!zlev_used) {
|
|
df = 1; zf = 0;
|
|
return false;
|
|
}
|
|
else {
|
|
// (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z)
|
|
ld z = geom3::factor_to_lev(zlev);
|
|
ld tz = sin_auto(z);
|
|
ld td = sin_auto(abs(d)) * cos_auto(z);
|
|
ld h = hypot(td, tz);
|
|
if(d > 0)
|
|
d = hypot_auto(d, z);
|
|
else
|
|
d = -hypot_auto(d, z);
|
|
zf = tz / h, df = td / h;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf) {
|
|
ld z;
|
|
return hypot_zlev(zlev_used, d, zlev, df, zf, z);
|
|
}
|
|
|
|
int twopoint_sphere_flips;
|
|
bool twopoint_do_flips;
|
|
|
|
void applymodel(hyperpoint H, hyperpoint& ret) {
|
|
|
|
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2];
|
|
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
|
|
|
|
if(pmodel == mdUnchanged) {
|
|
for(int i=0; i<3; i++) ret[i] = H[i] / vid.radius;
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdBall) {
|
|
ld zlev = zlevel(H);
|
|
using namespace hyperpoint_vec;
|
|
H = H / zlev;
|
|
|
|
ld zl = geom3::depth-geom3::factor_to_lev(zlev);
|
|
double alpha = atan2(H[1], H[0]);
|
|
double d = hdist0(H);
|
|
|
|
ballmodel(ret, alpha, d, zl);
|
|
ghcheck(ret,H);
|
|
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdHemisphere) {
|
|
ld ball = vid.ballangle * M_PI / 180;
|
|
using namespace hyperpoint_vec;
|
|
|
|
switch(cgclass) {
|
|
case gcHyperbolic: {
|
|
ld zl = zlevel(H);
|
|
ret = H / H[2];
|
|
ret[2] = sqrt(1 - sqhypot2(ret));
|
|
ret = ret * (1 + (zl - 1) * ret[2]);
|
|
break;
|
|
}
|
|
|
|
case gcEuclid: {
|
|
// stereographic projection to a sphere
|
|
auto hd = hdist0(H) / vid.euclid_to_sphere;
|
|
if(hd == 0) ret = hpxyz(0, 0, -1);
|
|
else {
|
|
ld x = 2 * hd / (1 + hd * hd);
|
|
ld y = x / hd;
|
|
ret = H * x / hd / vid.euclid_to_sphere;
|
|
ret[2] = (1 - y);
|
|
ret = ret * (1 + (H[2]-1) * y / vid.euclid_to_sphere);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case gcSphere: {
|
|
ret = H;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = rotmatrix(M_PI/2 + ball, 1, 2) * ret;
|
|
|
|
ghcheck(ret, H);
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdHyperboloid) {
|
|
|
|
ld ball = -vid.ballangle * M_PI / 180;
|
|
ld cb = cos(ball), sb = sin(ball);
|
|
|
|
ret[0] = H[0] / 3;
|
|
ret[1] = (1 - H[2]) / 3 * cb - H[1] / 3 * sb;
|
|
ret[2] = -(-H[1] / 3 * cb - (1 - H[2]) / 3 * sb);
|
|
|
|
ghcheck(ret,H);
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdDisk) {
|
|
|
|
if(!vid.camera_angle) {
|
|
ret[0] = H[0] / tz;
|
|
ret[1] = H[1] / tz;
|
|
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / tz / 2;
|
|
}
|
|
else {
|
|
ld tx = H[0];
|
|
ld ty = H[1];
|
|
ld cam = vid.camera_angle * M_PI / 180;
|
|
GLfloat cc = cos(cam);
|
|
GLfloat ss = sin(cam);
|
|
ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty;
|
|
ret[0] = ux / uz;
|
|
ret[1] = uy / uz;
|
|
ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / uz / 2;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdFisheye) {
|
|
ret[0] = H[0] / tz;
|
|
ret[1] = H[1] / tz;
|
|
ld hypot = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]);
|
|
ret[0] /= hypot;
|
|
ret[1] /= hypot;
|
|
ghcheck(ret, H);
|
|
return;
|
|
}
|
|
|
|
ld zlev = 1;
|
|
bool zlev_used = false;
|
|
|
|
if(wmspatial || mmspatial) {
|
|
zlev = zlevel(H);
|
|
using namespace hyperpoint_vec;
|
|
zlev_used = !((zlev > 1-1e-6 && zlev < 1+1e-6));
|
|
if(zlev_used) H /= zlev;
|
|
}
|
|
|
|
if(pmodel == mdTwoPoint || mdBandAny() || pmodel == mdSinusoidal) {
|
|
// map to plane
|
|
if(false) {
|
|
auto p = vid.twopoint_param;
|
|
ld dleft = hdist(H, xpush(-p) * C0);
|
|
ld dright = hdist(H, xpush(p) * C0);
|
|
ld yf = 1, zf = 0;
|
|
if(zlev_used) {
|
|
ld y_orig = asin_auto(H[1]);
|
|
ld z;
|
|
hypot_zlev(true, y_orig, zlev, yf, zf, z);
|
|
dleft = hypot_auto(dleft, z);
|
|
dright = hypot_auto(dright, z);
|
|
}
|
|
ld x = (dright*dright-dleft*dleft) / 4 / p;
|
|
ld y = sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
|
|
x = -x;
|
|
ret = hpxyz(x/M_PI, y*(H[1]<0?-1:1)*yf/M_PI, 0);
|
|
if(zlev_used && stereo::active())
|
|
apply_depth(ret, y * zf / M_PI);
|
|
}
|
|
else {
|
|
ld x, y, yf, zf;
|
|
y = asin_auto(H[1]);
|
|
x = asin_auto_clamp(H[0] / cos_auto(y));
|
|
if(sphere) {
|
|
if(H[2] < 0 && x > 0) x = M_PI - x;
|
|
else if(H[2] < 0 && x <= 0) x = -M_PI - x;
|
|
}
|
|
hypot_zlev(zlev_used, y, zlev, yf, zf);
|
|
|
|
switch(pmodel) {
|
|
case mdTwoPoint: {
|
|
auto p = vid.twopoint_param;
|
|
ld dleft = hypot_auto(x-p, y);
|
|
ld dright = hypot_auto(x+p, y);
|
|
if(sphere) {
|
|
int tss = twopoint_sphere_flips;
|
|
if(tss&1) { tss--;
|
|
dleft = 2*M_PI - 2*p - dleft;
|
|
dright = 2*M_PI - 2*p - dright;
|
|
swap(dleft, dright);
|
|
y = -y;
|
|
}
|
|
while(tss) { tss -= 2;
|
|
dleft = 2*M_PI - 4*p + dleft;
|
|
dright = 2*M_PI - 4*p + dright;
|
|
}
|
|
}
|
|
x = (dright*dright-dleft*dleft) / 4 / p;
|
|
y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
|
|
break;
|
|
}
|
|
case mdBand: {
|
|
switch(cgclass) {
|
|
case gcSphere:
|
|
y = atanh(sin(y));
|
|
x *= 2; y *= 2;
|
|
break;
|
|
case gcHyperbolic:
|
|
y = 2 * atan(tanh(y/2));
|
|
x *= 2; y *= 2;
|
|
break;
|
|
case gcEuclid:
|
|
// y = y;
|
|
y *= 2; x *= 2;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case mdBandEquiarea: {
|
|
y = sin_auto(y);
|
|
break;
|
|
}
|
|
case mdSinusoidal: {
|
|
x *= cos_auto(y);
|
|
break;
|
|
}
|
|
case mdBandEquidistant: {
|
|
break;
|
|
}
|
|
default: {
|
|
printf("unknown model\n");
|
|
}
|
|
}
|
|
ret = hpxyz(x / M_PI, y * yf / M_PI, 0);
|
|
if(zlev_used && stereo::active())
|
|
apply_depth(ret, y * zf / M_PI);
|
|
}
|
|
ghcheck(ret, H);
|
|
return;
|
|
}
|
|
|
|
if(mdAzimuthalEqui()) {
|
|
ld rad = sqrt(H[0] * H[0] + H[1] * H[1]);
|
|
if(rad == 0) rad = 1;
|
|
ld d = hdist0(H);
|
|
ld yf, zf;
|
|
hypot_zlev(zlev_used, d, zlev, yf, zf);
|
|
|
|
// 4 pi / 2pi = M_PI
|
|
|
|
if(pmodel == 6 && sphere)
|
|
d = sqrt(2*(1 - cos(d))) * M_PI / 2;
|
|
else if(pmodel == 6 && !euclid)
|
|
d = sqrt(2*(cosh(d) - 1)) / 1.5;
|
|
ret[0] = d * yf * H[0] / rad / M_PI;
|
|
ret[1] = d * yf * H[1] / rad / M_PI;
|
|
ret[2] = 0;
|
|
if(zlev_used && stereo::active())
|
|
apply_depth(ret, d * zf / M_PI);
|
|
ghcheck(ret,H);
|
|
|
|
return;
|
|
}
|
|
|
|
tz = H[2]+vid.alpha;
|
|
|
|
if(pmodel == mdPolygonal || pmodel == mdPolynomial) {
|
|
pair<long double, long double> p = polygonal::compute(H[0]/tz, H[1]/tz);
|
|
ret[0] = p.first;
|
|
ret[1] = p.second;
|
|
ret[2] = 0;
|
|
ghcheck(ret,H);
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdHalfplane) {
|
|
// Poincare to half-plane
|
|
|
|
ld x0, y0;
|
|
x0 = H[0] / tz;
|
|
y0 = H[1] / tz;
|
|
if(conformal::lower_halfplane) x0 = -x0, y0 = -y0;
|
|
y0 += 1;
|
|
double rad = x0*x0 + y0*y0;
|
|
y0 /= rad;
|
|
x0 /= rad;
|
|
y0 -= .5;
|
|
|
|
if(conformal::lower_halfplane) x0 = -x0, y0 = -y0;
|
|
|
|
ret[0] = x0;
|
|
if(wmspatial || mmspatial) {
|
|
if(conformal::lower_halfplane) y0 /= zlev;
|
|
else y0 *= zlev;
|
|
}
|
|
ret[1] = (conformal::lower_halfplane?-1:1) - y0;
|
|
ret[2] = 0;
|
|
if(zlev != 1 && stereo::active())
|
|
apply_depth(ret, -y0 * geom3::factor_to_lev(zlev));
|
|
ghcheck(ret,H);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// game-related graphics
|
|
|
|
transmatrix View; // current rotation, relative to viewctr
|
|
transmatrix cwtV = Id; // player-relative view
|
|
transmatrix sphereflip; // on the sphere, flip
|
|
heptspin viewctr; // heptagon and rotation where the view is centered at
|
|
bool playerfound; // has player been found in the last drawing?
|
|
|
|
#define eurad crossf
|
|
|
|
double q3 = sqrt(double(3));
|
|
|
|
bool outofmap(hyperpoint h) {
|
|
if(euclid)
|
|
return h[2] < .5; // false; // h[0] * h[0] + h[1] * h[1] > 15 * eurad;
|
|
else if(sphere)
|
|
return h[2] < .1 && h[2] > -.1 && h[1] > -.1 && h[1] < .1 && h[0] > -.1 && h[0] < .1;
|
|
else
|
|
return h[2] < .5;
|
|
}
|
|
|
|
hyperpoint mirrorif(const hyperpoint& V, bool b) {
|
|
if(b) return Mirror*V;
|
|
else return V;
|
|
}
|
|
|
|
transmatrix mirrorif(const transmatrix& V, bool b) {
|
|
if(b) return V*Mirror;
|
|
else return V;
|
|
}
|
|
|
|
// -1 if away, 0 if not away
|
|
int away(const transmatrix& V2) {
|
|
return (intval(C0, V2 * xpush0(.1)) > intval(C0, tC0(V2))) ? -1 : 0;
|
|
}
|
|
|
|
/* double zgrad(double f1, double f2, int nom, int den) {
|
|
using namespace geom3;
|
|
ld fo1 = factor_to_lev(f1);
|
|
ld fo2 = factor_to_lev(f2);
|
|
return lev_to_factor(fo1 + (fo2-fo1) * nom / den);
|
|
} */
|
|
|
|
double zgrad0(double l1, double l2, int nom, int den) {
|
|
using namespace geom3;
|
|
return lev_to_factor(l1 + (l2-l1) * nom / den);
|
|
}
|
|
|
|
bool behindsphere(const hyperpoint& h) {
|
|
if(!sphere) return false;
|
|
|
|
if(mdBandAny()) return false;
|
|
|
|
if(vid.alpha > 1) {
|
|
if(h[2] > -1/vid.alpha) return true;
|
|
}
|
|
|
|
if(vid.alpha <= 1) {
|
|
if(h[2] < .2-vid.alpha) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ld to01(ld a0, ld a1, ld x) {
|
|
if(x < a0) return 0;
|
|
if(x > a1) return 1;
|
|
return (x-a0) / (a1-a0);
|
|
}
|
|
|
|
ld spherity(const hyperpoint& h) {
|
|
if(!sphere) return 1;
|
|
|
|
if(vid.alpha > 1) {
|
|
return to01(1/vid.alpha, 1, -h[2]);
|
|
}
|
|
|
|
if(vid.alpha <= 1) {
|
|
return to01(-1.5, 1, h[2]);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool behindsphere(const transmatrix& V) {
|
|
return behindsphere(tC0(V));
|
|
}
|
|
|
|
ld spherity(const transmatrix& V) {
|
|
return spherity(tC0(V));
|
|
}
|
|
|
|
bool confusingGeometry() {
|
|
return elliptic || quotient || torus;
|
|
}
|
|
|
|
ld master_to_c7_angle() {
|
|
return nonbitrunc ? M_PI + gp::alpha : 0;
|
|
}
|
|
|
|
transmatrix actualV(const heptspin& hs, const transmatrix& V) {
|
|
if(irr::on)
|
|
return V * spin(M_PI + 2 * M_PI / S7 * (hs.spin + irr::periodmap[hs.h].base.spin));
|
|
return (hs.spin || nonbitrunc) ? V * spin(hs.spin*2*M_PI/S7 + master_to_c7_angle()) : V;
|
|
}
|
|
|
|
transmatrix applyspin(const heptspin& hs, const transmatrix& V) {
|
|
return hs.spin ? V * spin(hs.spin*2*M_PI/S7) : V;
|
|
}
|
|
|
|
// in hyperbolic quotient geometries, relying on pathdist is not sufficient
|
|
bool in_qrange(const transmatrix& V) {
|
|
if(!quotient || !hyperbolic) return true;
|
|
return V[2][2] < cosh(crossf * get_sightrange_ambush());
|
|
}
|
|
|
|
namespace gp {
|
|
|
|
/*
|
|
void drawrec(cell *c, const transmatrix& V) {
|
|
if(dodrawcell(c))
|
|
drawcell(c, V, 0, false);
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(!c2) continue;
|
|
if(c2->mov[0] != c) continue;
|
|
if(c2 == c2->master->c7) continue;
|
|
transmatrix V1 = V * ddspin(c, i) * xpush(crossf) * iddspin(c2, 0) * spin(M_PI);
|
|
drawrec(c2, V1);
|
|
}
|
|
} */
|
|
|
|
gp::local_info draw_li;
|
|
|
|
void drawrec(cell *c, const transmatrix& V, gp::loc at, int dir, int maindir) {
|
|
if(dodrawcell(c)) {
|
|
/* auto li = get_local_info(c);
|
|
if(fix6(dir) != fix6(li.total_dir)) printf("totaldir %d/%d\n", dir, li.total_dir);
|
|
if(at != li.relative) printf("at %s/%s\n", disp(at), disp(li.relative));
|
|
if(maindir != li.last_dir) printf("ld %d/%d\n", maindir, li.last_dir); */
|
|
draw_li.relative = at;
|
|
draw_li.total_dir = fixg6(dir);
|
|
transmatrix V1 = V * Tf[draw_li.last_dir][at.first&31][at.second&31][fixg6(dir)];
|
|
if(in_qrange(V1))
|
|
drawcell(c, V1, 0, false);
|
|
}
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(!c2) continue;
|
|
if(c2->mov[0] != c) continue;
|
|
if(c2 == c2->master->c7) continue;
|
|
drawrec(c2, V, at + eudir(dir+i), dir + i + SG3, maindir);
|
|
}
|
|
}
|
|
|
|
void drawrec(cell *c, const transmatrix& V) {
|
|
draw_li.relative = loc(0,0);
|
|
draw_li.total_dir = 0;
|
|
draw_li.last_dir = -1;
|
|
if(dodrawcell(c))
|
|
drawcell(c, V, 0, false);
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(!c2) continue;
|
|
if(c2->mov[0] != c) continue;
|
|
if(c2 == c2->master->c7) continue;
|
|
draw_li.last_dir = i;
|
|
drawrec(c2, V, gp::loc(1,0), SG3, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void drawrec(const heptspin& hs, hstate s, const transmatrix& V) {
|
|
|
|
// shmup::calc_relative_matrix(cwt.c, hs.h);
|
|
|
|
cell *c = hs.h->c7;
|
|
|
|
transmatrix V10;
|
|
const transmatrix& V1 = hs.mirrored ? (V10 = V * Mirror) : V;
|
|
|
|
bool draw = c->pathdist < PINFD;
|
|
|
|
if(gp::on) {
|
|
gp::drawrec(c, actualV(hs, V1));
|
|
}
|
|
|
|
else if(irr::on) {
|
|
auto& hi = irr::periodmap[hs.h];
|
|
transmatrix V0 = actualV(hs, V1);
|
|
auto& vc = irr::cells_of_heptagon[hi.base.h];
|
|
for(int i=0; i<isize(vc); i++)
|
|
if(dodrawcell(hi.subcells[i]) && in_qrange(V0 * irr::cells[vc[i]].pusher))
|
|
draw = true,
|
|
drawcell(hi.subcells[i], V0 * irr::cells[vc[i]].pusher, 0, false);
|
|
}
|
|
|
|
else {
|
|
if(dodrawcell(c)) {
|
|
transmatrix V2 = actualV(hs, V1);
|
|
drawcell(c, V2, 0, hs.mirrored);
|
|
}
|
|
|
|
if(!nonbitrunc) for(int d=0; d<S7; d++) {
|
|
int ds = fixrot(hs.spin + d);
|
|
// createMov(c, ds);
|
|
if(c->mov[ds] && c->spn(ds) == 0 && dodrawcell(c->mov[ds])) {
|
|
transmatrix V2 = V1 * hexmove[d];
|
|
if(in_qrange(V2))
|
|
drawcell(c->mov[ds], V2, 0, hs.mirrored ^ c->mirror(ds));
|
|
}
|
|
}
|
|
}
|
|
|
|
if(draw && in_qrange(V)) for(int d=0; d<S7; d++) {
|
|
hstate s2 = transition(s, d);
|
|
if(s2 == hsError) continue;
|
|
heptspin hs2 = hs + d + wstep;
|
|
drawrec(hs2, s2, V * heptmove[d]);
|
|
}
|
|
|
|
}
|
|
|
|
int mindx=-7, mindy=-7, maxdx=7, maxdy=7;
|
|
|
|
transmatrix eumove(ld x, ld y) {
|
|
transmatrix Mat = Id;
|
|
Mat[2][2] = 1;
|
|
|
|
if(a4) {
|
|
Mat[0][2] += x * eurad;
|
|
Mat[1][2] += y * eurad;
|
|
}
|
|
else {
|
|
Mat[0][2] += (x + y * .5) * eurad;
|
|
// Mat[2][0] += (x + y * .5) * eurad;
|
|
Mat[1][2] += y * q3 /2 * eurad;
|
|
// Mat[2][1] += y * q3 /2 * eurad;
|
|
}
|
|
|
|
ld v = a4 ? 1 : q3;
|
|
|
|
while(Mat[0][2] <= -16384 * eurad) Mat[0][2] += 32768 * eurad;
|
|
while(Mat[0][2] >= 16384 * eurad) Mat[0][2] -= 32768 * eurad;
|
|
while(Mat[1][2] <= -16384 * v * eurad) Mat[1][2] += 32768 * v * eurad;
|
|
while(Mat[1][2] >= 16384 * v * eurad) Mat[1][2] -= 32768 * v * eurad;
|
|
return Mat;
|
|
}
|
|
|
|
transmatrix eumove(int vec) {
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(vec);
|
|
return eumove(x, y);
|
|
}
|
|
|
|
transmatrix eumovedir(int d) {
|
|
if(a4) {
|
|
d = d & 3;
|
|
switch(d) {
|
|
case 0: return eumove(1,0);
|
|
case 1: return eumove(0,1);
|
|
case 2: return eumove(-1,0);
|
|
case 3: return eumove(0,-1);
|
|
}
|
|
}
|
|
else {
|
|
d = fix6(d);
|
|
switch(d) {
|
|
case 0: return eumove(1,0);
|
|
case 1: return eumove(0,1);
|
|
case 2: return eumove(-1,1);
|
|
case 3: return eumove(-1,0);
|
|
case 4: return eumove(0,-1);
|
|
case 5: return eumove(1,-1);
|
|
}
|
|
}
|
|
return eumove(0,0);
|
|
}
|
|
|
|
ld matrixnorm(const transmatrix& Mat) {
|
|
return Mat[0][2] * Mat[0][2] + Mat[1][2] * Mat[1][2];
|
|
}
|
|
|
|
void drawEuclidean() {
|
|
DEBB(DF_GRAPH, (debugfile,"drawEuclidean\n"));
|
|
sphereflip = Id;
|
|
if(!centerover.c) centerover = cwt;
|
|
// printf("centerover = %p player = %p [%d,%d]-[%d,%d]\n", lcenterover, cwt.c,
|
|
// mindx, mindy, maxdx, maxdy);
|
|
int pvec = cellwalker_to_vec(centerover);
|
|
|
|
int minsx = mindx-1, maxsx=maxdx+1, minsy=mindy-1, maxsy=maxdy+1;
|
|
mindx=maxdx=mindy=maxdy=0;
|
|
|
|
transmatrix View0 = View;
|
|
|
|
ld cellrad = vid.radius / (1 + vid.alpha);
|
|
|
|
ld centerd = matrixnorm(View0);
|
|
|
|
for(int dx=minsx; dx<=maxsx; dx++)
|
|
for(int dy=minsy; dy<=maxsy; dy++) {
|
|
torusconfig::torus_cx = dx;
|
|
torusconfig::torus_cy = dy;
|
|
cellwalker cw = vec_to_cellwalker(pvec + euclid_getvec(dx, dy));
|
|
transmatrix Mat = eumove(dx,dy);
|
|
|
|
if(!cw.c) continue;
|
|
|
|
Mat = View0 * Mat;
|
|
|
|
if(true) {
|
|
ld locald = matrixnorm(Mat);
|
|
if(locald < centerd) centerd = locald, centerover = cw, View = View0 * eumove(dx, dy);
|
|
}
|
|
|
|
// Mat[0][0] = -1;
|
|
// Mat[1][1] = -1;
|
|
|
|
// Mat[2][0] = x*x/10;
|
|
// Mat[2][1] = y*y/10;
|
|
// Mat = Mat * xpush(x-30) * ypush(y-30);
|
|
|
|
int cx, cy, shift;
|
|
getcoord0(tC0(Mat), cx, cy, shift);
|
|
if(cx >= 0 && cy >= 0 && cx < vid.xres && cy < vid.yres) {
|
|
if(dx < mindx) mindx = dx;
|
|
if(dy < mindy) mindy = dy;
|
|
if(dx > maxdx) maxdx = dx;
|
|
if(dy > maxdy) maxdy = dy;
|
|
}
|
|
if(cx >= -cellrad && cy >= -cellrad && cx < vid.xres+cellrad && cy < vid.yres+cellrad)
|
|
if(dodrawcell(cw.c)) {
|
|
drawcell(cw.c, cw.mirrored ? Mat * Mirror : Mat, cw.spin, cw.mirrored);
|
|
}
|
|
}
|
|
}
|
|
|
|
void spinEdge(ld aspd) {
|
|
if(downspin > aspd) downspin = aspd;
|
|
if(downspin < -aspd) downspin = -aspd;
|
|
View = spin(downspin) * View;
|
|
}
|
|
|
|
void centerpc(ld aspd) {
|
|
if(ors::mode == 2 && vid.sspeed < 5) return;
|
|
if(vid.sspeed >= 4.99) aspd = 1000;
|
|
DEBB(DF_GRAPH, (debugfile,"center pc\n"));
|
|
|
|
ors::unrotate(cwtV); ors::unrotate(View);
|
|
|
|
hyperpoint H = ypush(-vid.yshift) * sphereflip * tC0(cwtV);
|
|
ld R = H[0] == 0 && H[1] == 0 ? 0 : hdist0(H); // = sqrt(H[0] * H[0] + H[1] * H[1]);
|
|
if(R < 1e-9) {
|
|
// either already centered or direction unknown
|
|
/* if(playerfoundL && playerfoundR) {
|
|
|
|
} */
|
|
spinEdge(aspd);
|
|
fixmatrix(View);
|
|
ors::rerotate(cwtV); ors::rerotate(View);
|
|
return;
|
|
}
|
|
|
|
if(euclid) {
|
|
// Euclidean
|
|
aspd *= (2+3*R*R);
|
|
if(aspd > R) aspd = R;
|
|
|
|
View[0][2] -= cwtV[0][2] * aspd / R;
|
|
View[1][2] -= cwtV[1][2] * aspd / R;
|
|
|
|
}
|
|
|
|
else {
|
|
aspd *= (1+R+(shmup::on?1:0));
|
|
|
|
if(R < aspd) {
|
|
View = gpushxto0(H) * View;
|
|
}
|
|
else
|
|
View = rspintox(H) * xpush(-aspd) * spintox(H) * View;
|
|
|
|
fixmatrix(View);
|
|
spinEdge(aspd);
|
|
}
|
|
|
|
ors::rerotate(cwtV); ors::rerotate(View);
|
|
}
|
|
|
|
void optimizeview() {
|
|
|
|
DEBB(DF_GRAPH, (debugfile,"optimize view\n"));
|
|
int turn = 0;
|
|
ld best = INF;
|
|
|
|
transmatrix TB = Id;
|
|
|
|
for(int i=-1; i<S7; i++) {
|
|
|
|
ld trot = -i * M_PI * 2 / (S7+.0);
|
|
transmatrix T = i < 0 ? Id : spin(trot) * xpush(tessf) * pispin;
|
|
hyperpoint H = View * tC0(T);
|
|
if(H[2] < best) best = H[2], turn = i, TB = T;
|
|
}
|
|
|
|
if(turn >= 0) {
|
|
View = View * TB;
|
|
fixmatrix(View);
|
|
viewctr = viewctr + turn + wstep;
|
|
}
|
|
}
|
|
|
|
void addball(ld a, ld b, ld c) {
|
|
hyperpoint h;
|
|
ballmodel(h, a, b, c);
|
|
for(int i=0; i<3; i++) h[i] *= vid.radius;
|
|
curvepoint(h);
|
|
}
|
|
|
|
void ballgeometry() {
|
|
queuereset(vid.usingGL ? mdDisk : mdUnchanged, PPR_CIRCLE);
|
|
for(int i=0; i<60; i++)
|
|
addball(i * M_PI/30, 10, 0);
|
|
for(double d=10; d>=-10; d-=.2)
|
|
addball(0, d, 0);
|
|
for(double d=-10; d<=10; d+=.2)
|
|
addball(0, d, geom3::depth);
|
|
addball(0, 0, -geom3::camera);
|
|
addball(0, 0, geom3::depth);
|
|
addball(0, 0, -geom3::camera);
|
|
addball(0, -10, 0);
|
|
addball(0, 0, -geom3::camera);
|
|
queuecurve(darkena(0xFF, 0, 0x80), 0, PPR_CIRCLE);
|
|
queuereset(pmodel, PPR_CIRCLE);
|
|
}
|
|
|
|
void resetview() {
|
|
DEBB(DF_GRAPH, (debugfile,"reset view\n"));
|
|
View = Id;
|
|
// EUCLIDEAN
|
|
if(!euclid)
|
|
viewctr.h = cwt.c->master,
|
|
viewctr.spin = cwt.spin;
|
|
else centerover = cwt;
|
|
cwtV = Id;
|
|
// SDL_LockSurface(s);
|
|
// SDL_UnlockSurface(s);
|
|
}
|
|
|
|
|
|
void panning(hyperpoint hf, hyperpoint ht) {
|
|
View =
|
|
rgpushxto0(hf) * rgpushxto0(gpushxto0(hf) * ht) * gpushxto0(hf) * View;
|
|
playermoved = false;
|
|
}
|
|
|
|
void fullcenter() {
|
|
if(playerfound && false) centerpc(INF);
|
|
else {
|
|
bfs();
|
|
resetview();
|
|
drawthemap();
|
|
centerpc(INF);
|
|
}
|
|
playermoved = true;
|
|
}
|
|
|
|
transmatrix screenpos(ld x, ld y) {
|
|
transmatrix V = Id;
|
|
V[0][2] += (x - vid.xcenter) / vid.radius * (1+vid.alpha);
|
|
V[1][2] += (y - vid.ycenter) / vid.radius * (1+vid.alpha);
|
|
return V;
|
|
}
|
|
|
|
transmatrix atscreenpos(ld x, ld y, ld size) {
|
|
transmatrix V = Id;
|
|
|
|
V[0][2] += (x - vid.xcenter);
|
|
V[1][2] += (y - vid.ycenter);
|
|
V[0][0] = size * 2 * hcrossf / crossf;
|
|
V[1][1] = size * 2 * hcrossf / crossf;
|
|
V[2][2] = stereo::scrdist;
|
|
|
|
return V;
|
|
}
|
|
|
|
}
|