mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-18 03:04:48 +00:00
690 lines
19 KiB
C++
690 lines
19 KiB
C++
// HyperRogue patterns: compute codes for actual cells
|
|
|
|
// Copyright (C) 2011-2017 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
int eupattern(cell *c) {
|
|
if(torus) return (decodeId(c->master)*2) % 3;
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
short z = (short(y+2*x))%3;
|
|
z %= 3;
|
|
if(z<0) z += 3;
|
|
return z;
|
|
}
|
|
|
|
bool ishept(cell *c) {
|
|
// EUCLIDEAN
|
|
if(euclid) return eupattern(c) == 0;
|
|
else return c->type != S6;
|
|
}
|
|
|
|
bool ishex1(cell *c) {
|
|
// EUCLIDEAN
|
|
if(euclid) return eupattern(c) == 1;
|
|
else return c->type != S6;
|
|
}
|
|
|
|
int val46(cell *c) {
|
|
return ctof(c) ? c->master->emeraldval :
|
|
((c->master->emeraldval & 1) ^ ((c->master->emeraldval & 2)>>1) ^ (c->spin(0)&1)) ? 8 : 4;
|
|
}
|
|
|
|
int emeraldval(cell *c) {
|
|
if(euclid) return eupattern(c);
|
|
if(a46) return val46(c);
|
|
if(sphere) return 0;
|
|
if(ctof(c))
|
|
return c->master->emeraldval >> 3;
|
|
else {
|
|
return emerald_hexagon(
|
|
emeraldval(createMov(c,0)),
|
|
emeraldval(createMov(c,2)),
|
|
emeraldval(createMov(c,4))
|
|
);
|
|
}
|
|
}
|
|
|
|
// === FIFTYVALS ===
|
|
|
|
unsigned bitmajority(unsigned a, unsigned b, unsigned c) {
|
|
return (a&b) | ((a^b)&c);
|
|
}
|
|
|
|
int eufifty(cell *c) {
|
|
eucoord x, y;
|
|
if(torus) {
|
|
if(c->land == laWildWest) return decodeId(c->master) % 37;
|
|
else return decodeId(c->master) % 27;
|
|
}
|
|
decodeMaster(c->master, x, y);
|
|
int ix = short(x) + 99999 + short(y);
|
|
int iy = short(y) + 99999;
|
|
if(c->land == laWildWest)
|
|
return (ix + iy * 26 + 28) % 37;
|
|
else {
|
|
ix += (iy/3) * 3;
|
|
iy %= 3; ix %= 9;
|
|
return iy * 9 + ix;
|
|
}
|
|
}
|
|
|
|
int val38(cell *c) {
|
|
if(ctof(c)) return (c->master->fiftyval >> 1) & 3;
|
|
else return 4 ^ (c->master->fiftyval & 1) ^ (c->spin(0) & 1);
|
|
}
|
|
|
|
int fiftyval(cell *c) {
|
|
if(a38) return val38(c);
|
|
if(euclid) return eufifty(c) * 32;
|
|
if(sphere || S7>7 || S6>6) return 0;
|
|
if(ctof(c))
|
|
return c->master->fiftyval;
|
|
else {
|
|
return bitmajority(
|
|
fiftyval(createMov(c,0)),
|
|
fiftyval(createMov(c,2)),
|
|
fiftyval(createMov(c,4))) + 512;
|
|
}
|
|
}
|
|
|
|
int cdist50(cell *c) {
|
|
if(sphere || S7>7 || S6>6) return 0;
|
|
if(euclid) {
|
|
if(c->land == laWildWest)
|
|
return "0123333332112332223322233211233333322"[eufifty(c)] - '0';
|
|
else return "012333321112322232222321123"[eufifty(c)] - '0';
|
|
}
|
|
if(c->type != 6) return cdist50(fiftyval(c));
|
|
int a0 = cdist50(createMov(c,0));
|
|
int a1 = cdist50(createMov(c,2));
|
|
int a2 = cdist50(createMov(c,4));
|
|
if(a0 == 0 || a1 == 0 || a2 == 0) return 1;
|
|
return a0+a1+a2-5;
|
|
}
|
|
|
|
int land50(cell *c) {
|
|
if(c->type != 6) return land50(fiftyval(c));
|
|
else if(sphere || euclid) return 0;
|
|
else {
|
|
if(cdist50(createMov(c,0)) < 3) return land50(createMov(c,0));
|
|
if(cdist50(createMov(c,2)) < 3) return land50(createMov(c,2));
|
|
if(cdist50(createMov(c,4)) < 3) return land50(createMov(c,4));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int polara50(cell *c) {
|
|
if(c->type != 6) return polara50(fiftyval(c));
|
|
else if(sphere || euclid || S7>7 || S6>6) return 0;
|
|
else {
|
|
if(cdist50(createMov(c,0)) < 3) return polara50(createMov(c,0));
|
|
if(cdist50(createMov(c,2)) < 3) return polara50(createMov(c,2));
|
|
if(cdist50(createMov(c,4)) < 3) return polara50(createMov(c,4));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int polarb50(cell *c) {
|
|
if(euclid) return true;
|
|
if(c->type != 6) return polarb50(fiftyval(c));
|
|
else if(sphere || euclid || S7>7 || S6>6) return true;
|
|
else {
|
|
if(cdist50(createMov(c,0)) < 3) return polarb50(createMov(c,0));
|
|
if(cdist50(createMov(c,2)) < 3) return polarb50(createMov(c,2));
|
|
if(cdist50(createMov(c,4)) < 3) return polarb50(createMov(c,4));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int elhextable[28][3] = {
|
|
{0,1,2}, {1,2,9}, {1,9,-1}, {1,8,-1}, {1,-1,-1}
|
|
};
|
|
|
|
int fiftyval049(cell *c) {
|
|
if(c->type != 6 || euclid) return fiftyval(c) / 32;
|
|
else if(sphere) return 0;
|
|
else {
|
|
int a[3], qa=0;
|
|
int pa = polara50(c), pb = polarb50(c);
|
|
for(int i=0; i<6; i+=2) {
|
|
cell *c2 = c->mov[i];
|
|
if(polara50(c2) == pa && polarb50(c2) == pb)
|
|
a[qa++] = fiftyval049(c2);
|
|
}
|
|
// 0-1-2
|
|
sort(a, a+qa);
|
|
if(qa == 1) return 43+a[0]-1;
|
|
if(qa == 2 && a[1] == a[0]+7) return 36+a[0]-1;
|
|
if(qa == 2 && a[1] != a[0]+7) return 29+a[0]-1;
|
|
if(a[1] == 1 && a[2] == 7)
|
|
return 15 + 6;
|
|
if(a[2] >= 1 && a[2] <= 7)
|
|
return 15 + a[1]-1;
|
|
if(a[0] == 1 && a[1] == 7 && a[2] == 8)
|
|
return 22;
|
|
if(a[1] <= 7 && a[2] >= 8)
|
|
return 22 + a[1]-1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
{0,1,2} 15+0..15+6
|
|
{1,2,9},22+0..22+6
|
|
{1,9} 29+0..29+6
|
|
{1,8} 36+0..36+6
|
|
{1} 43+0..43+6
|
|
*/
|
|
|
|
// zebraval
|
|
|
|
int dir_truncated457(cell *c) {
|
|
int wset = 0;
|
|
for(int i=0; i<4; i++)
|
|
if(zebra40(createMov(c, i*2))&2) wset |= (1<<i);
|
|
if(wset == 0) return -8;
|
|
if(wset == 15) return -10;
|
|
if(wset == 3) return 1;
|
|
if(wset == 6) return 3;
|
|
if(wset == 12) return 5;
|
|
if(wset == 9) return 7;
|
|
return 0;
|
|
}
|
|
|
|
int zebra40(cell *c) {
|
|
if(euclid) return eupattern(c);
|
|
else if(a46) return val46(c);
|
|
else if(ctof(c)) return (c->master->zebraval/10);
|
|
else if(a4) {
|
|
int ws = dir_truncated457(c);
|
|
if(ws < 0) return -ws;
|
|
return 16 + (ws/2);
|
|
}
|
|
else if(sphere) return 0;
|
|
else if(euclid) return eupattern(c);
|
|
else if(S3 == 4 && S7 == 6) {
|
|
return 8 + ((c->master->zebraval / 10 + c->spin(0))%2) * 2;
|
|
}
|
|
else {
|
|
int ii[3], z;
|
|
ii[0] = (c->mov[0]->master->zebraval/10);
|
|
ii[1] = (c->mov[2]->master->zebraval/10);
|
|
ii[2] = (c->mov[4]->master->zebraval/10);
|
|
for(int r=0; r<2; r++)
|
|
if(ii[1] < ii[0] || ii[2] < ii[0])
|
|
z = ii[0], ii[0] = ii[1], ii[1] = ii[2], ii[2] = z;
|
|
for(int i=0; i<28; i++)
|
|
if(zebratable6[i][0] == ii[0] && zebratable6[i][1] == ii[1] &&
|
|
zebratable6[i][2] == ii[2]) {
|
|
int ans = 16+i;
|
|
// if(ans >= 40) ans ^= 2;
|
|
// if(ans >= 4 && ans < 16) ans ^= 2;
|
|
return ans;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int zebra3(cell *c) {
|
|
if(c->type != 6) return (c->master->zebraval/10)/4;
|
|
else if(sphere || S7>7 || S6>6) return 0;
|
|
else {
|
|
int ii[3];
|
|
ii[0] = (c->mov[0]->master->zebraval/10)/4;
|
|
ii[1] = (c->mov[2]->master->zebraval/10)/4;
|
|
ii[2] = (c->mov[4]->master->zebraval/10)/4;
|
|
if(ii[0] == ii[1]) return ii[0];
|
|
if(ii[1] == ii[2]) return ii[1];
|
|
if(ii[2] == ii[0]) return ii[2];
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
namespace fieldpattern {
|
|
|
|
pair<int, bool> fieldval(cell *c) {
|
|
if(ctof(c)) return make_pair(c->master->fieldval, false);
|
|
else return make_pair(btspin(c->master->fieldval, c->spin(0)), true);
|
|
}
|
|
|
|
int fieldval_uniq(cell *c) {
|
|
if(sphere) {
|
|
if(ctof(c)) return c->master->fieldval;
|
|
else return createMov(c, 0)->master->fieldval + 256 * createMov(c,2)->master->fieldval + (1<<16) * createMov(c,4)->master->fieldval;
|
|
}
|
|
else if(torus) {
|
|
return decodeId(c->master);
|
|
}
|
|
else if(euclid) {
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
int i = (short int)(x) * torusconfig::dx + (short int)(y) * torusconfig::dy;
|
|
i %= torusconfig::qty;
|
|
if(i<0) i += torusconfig::qty;
|
|
return i;
|
|
}
|
|
if(ctof(c)) return c->master->fieldval/S7;
|
|
else {
|
|
int z = 0;
|
|
for(int u=0; u<S6; u+=2)
|
|
z = max(z, btspin(createMov(c, u)->master->fieldval, c->spin(u)));
|
|
return -1-z;
|
|
}
|
|
}
|
|
|
|
int fieldval_uniq_rand(cell *c, int randval) {
|
|
if(sphere || torus || euclid)
|
|
// we do not care in these cases
|
|
return fieldval_uniq(c);
|
|
if(ctof(c)) return currfp.gmul(c->master->fieldval, randval)/7;
|
|
else {
|
|
int z = 0;
|
|
for(int u=0; u<6; u+=2)
|
|
z = max(z, btspin(currfp.gmul(createMov(c, u)->master->fieldval, randval), c->spin(u)));
|
|
return -1-z;
|
|
}
|
|
}
|
|
|
|
int subpathid = currfp.matcode[currfp.strtomatrix("RRRPRRRRRPRRRP")];
|
|
int subpathorder = currfp.order(currfp.matrices[subpathid]);
|
|
|
|
pair<int, int> subval(cell *c, int _subpathid = subpathid, int _subpathorder = subpathorder) {
|
|
if(!ctof(c)) {
|
|
auto m = subval(createMov(c, 0));
|
|
for(int u=2; u<S6; u+=2)
|
|
m = min(m, subval(createMov(c, u)));
|
|
return m;
|
|
}
|
|
else {
|
|
pair<int, int> pbest, pcur;
|
|
pcur.first = c->master->fieldval;
|
|
pcur.second = 0;
|
|
pbest = pcur;
|
|
for(int i=0; i<_subpathorder; i++) {
|
|
pcur.first = currfp.gmul(pcur.first, _subpathid);
|
|
pcur.second++;
|
|
if(pcur < pbest) pbest = pcur;
|
|
}
|
|
return pbest;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
int getHemisphere(cell *c, int which) {
|
|
if(torus) return 0;
|
|
if(ctof(c)) {
|
|
int id = c->master->fiftyval;
|
|
if(S7 == 5) {
|
|
int hemitable[3][12] = {
|
|
{ 6, 3, 3, 3, 3, 3,-6,-3,-3,-3,-3,-3},
|
|
{ 6, 3, 6, 3, 0, 0,-6,-3,-6,-3, 0, 0},
|
|
{-3, 0, 3, 0,-6,-6, 3, 0,-3, 0, 6, 6}
|
|
};
|
|
return hemitable[which][id];
|
|
}
|
|
else if(S7 == 4) {
|
|
int hemitable[3][6] = {
|
|
{ 2, 2, 2,-1,-1,-1},
|
|
{ 2,-1, 2, 2,-1,-1},
|
|
{ 2,-1,-1, 2, 2,-1},
|
|
};
|
|
return hemitable[which][id];
|
|
}
|
|
else if(S7 == 3) {
|
|
int hemitable[3][4] = {
|
|
{ 2, 2,-1,-1},
|
|
{ 2,-1, 2,-1},
|
|
{ 2,-1,-1, 2},
|
|
};
|
|
return hemitable[which][id];
|
|
}
|
|
else return 0;
|
|
}
|
|
else {
|
|
int score = 0;
|
|
for(int i=0; i<6; i+=2)
|
|
score += getHemisphere(c->mov[i], which) * (c->mirror(i) ? -1 : 1);
|
|
return score/3;
|
|
}
|
|
}
|
|
|
|
struct sphereinfo {
|
|
int id;
|
|
int dir;
|
|
bool reflect;
|
|
};
|
|
|
|
sphereinfo valsphere(cell *c) {
|
|
sphereinfo si;
|
|
if(ctof(c)) {
|
|
int d = c->master->fieldval;
|
|
si.id = (d < siblings[d]) ? 0 : 1;
|
|
for(int i=0; i<S7; i++) {
|
|
int di = c->master->move[i]->fieldval;
|
|
if(di == siblings[d]) si.dir = i;
|
|
}
|
|
si.reflect = false;
|
|
}
|
|
else {
|
|
int ids = 0, tids = 0, td = 0;
|
|
for(int i=0; i<S3; i++) {
|
|
int d = c->mov[i*2]->master->fieldval;
|
|
ids |= (1<<d); tids += d;
|
|
}
|
|
for(int i=0; i<S3; i++) {
|
|
int d = c->mov[i*2]->master->fieldval;
|
|
if(ids & (1<<siblings[d])) td += d;
|
|
}
|
|
if(td) {
|
|
si.id = 4;
|
|
for(int i=0; i<S3; i++) {
|
|
int d = c->mov[i*2]->master->fieldval;
|
|
if(!(ids & (1<<siblings[d]))) si.dir = 2*i;
|
|
}
|
|
si.reflect = false;
|
|
}
|
|
else {
|
|
si.id = 8;
|
|
si.dir = 0; // whatever
|
|
sphereinfo si2 = valsphere(c->mov[0]);
|
|
int di = si2.dir - c->spin(0);
|
|
di %= S7;
|
|
if(di<0) di += S7;
|
|
si.reflect = di > S7/2;
|
|
}
|
|
}
|
|
return si;
|
|
}
|
|
|
|
namespace mapeditor {
|
|
|
|
int nopattern(cell *c) {
|
|
if(isWarped(c) && !euclid) {
|
|
int u = ishept(c)?1:0;
|
|
int qhex = 0;
|
|
for(int v=0; v<c->type; v++) if(c->mov[v] && !isWarped(c->mov[v])) {
|
|
u += 2;
|
|
if(!ishept(c->mov[v])) qhex++;
|
|
}
|
|
if(u == 8 && qhex == 2) return 12;
|
|
if(u == 2 && qhex == 1) return 8;
|
|
if(u == 6 && qhex == 2) return 10;
|
|
return u;
|
|
}
|
|
return ishept(c) ? 1 : ishex1(c) ? 2 : 0; // 0 to 1
|
|
}
|
|
|
|
int downdir(cell *c, cellfunction *cf = coastvalEdge) {
|
|
cell *c2 = chosenDown(c, 1, 1, cf);
|
|
if(!c2) return 0;
|
|
return neighborId(c, c2);
|
|
}
|
|
|
|
int realpattern(cell *c, char code) {
|
|
switch(code) {
|
|
case 'z':
|
|
return zebra40(c); // 4 to 43
|
|
case 'f':
|
|
return emeraldval(c); // 44 to 99
|
|
case 'p': {
|
|
if(a46) return val46(c);
|
|
if(a38) return val38(c);
|
|
if(sphere) return valsphere(c).id;
|
|
int i = fiftyval049(c);
|
|
i *= 4;
|
|
if(polara50(c)) i|=1;
|
|
if(polarb50(c)) i|=2;
|
|
return i;
|
|
}
|
|
case 'H':
|
|
return towerval(c);
|
|
case 'F': {
|
|
if(euclid)
|
|
// use the torus ID
|
|
return fieldpattern::fieldval_uniq(c);
|
|
else if(nontruncated)
|
|
// use the actual field codes
|
|
return fieldpattern::fieldval(c).first;
|
|
else
|
|
// use the small numbers from windmap
|
|
return windmap::getId(c);
|
|
}
|
|
}
|
|
return nopattern(c);
|
|
}
|
|
|
|
int patterndir46(cell *c, int bits) {
|
|
if(ctof(c)) {
|
|
int b = c->master->emeraldval & bits;
|
|
return (b&1) ^ (b & 2 ? 1 : 0);
|
|
}
|
|
else
|
|
return ((c->mov[0]->master->emeraldval + c->spin(0)) & 1) ? 2 : 0;
|
|
}
|
|
|
|
int patterndir38(cell *c) {
|
|
if(ctof(c)) return c->master->fiftyval | (c->master->fiftyval & 8 ? 0 : 2);
|
|
return 0;
|
|
}
|
|
|
|
int patterndir457(cell *c) {
|
|
if(!ctof(c)) {
|
|
int d = dir_truncated457(c);
|
|
if(d >= 0) return d;
|
|
return 0;
|
|
}
|
|
for(int i=0; i<c->type; i++)
|
|
if((zebra40(createStep(c->master, i + S7/2)->c7)&2) == (zebra40(createStep(c->master, i + 1 + S7/2)->c7)&2))
|
|
return i;
|
|
return 0;
|
|
}
|
|
|
|
bool reflectPatternAt(cell *c, char p) {
|
|
if(p == 'p' && sphere) return valsphere(c).reflect;
|
|
if(p == 'p' && polarb50(c)) return true;
|
|
if(p == 0) {
|
|
int np = nopattern(c);
|
|
if(np == 4) {
|
|
int d = patterndir(c);
|
|
return !isWarped(createMov(c, (d+1)%6));
|
|
}
|
|
if(np == 12) {
|
|
int d = patterndir(c);
|
|
return !isWarped(createMov(c, (d+1)%6));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int patterndir(cell *c, char w) {
|
|
if(w != 'H') {
|
|
if(a46) return patterndir46(c, w == 'z' ? 3 : w == 'p' ? 2 : 1);
|
|
if(a4) return patterndir457(c);
|
|
if(a38) return patterndir38(c);
|
|
if(sphere) return valsphere(c).dir;
|
|
}
|
|
switch(w) {
|
|
case 'z': {
|
|
int t = zebra40(c);
|
|
|
|
if(euclid) return (t*4) % 6;
|
|
|
|
int t4 = t>>2, tcdir = 0;
|
|
|
|
if(nontruncated) tcdir = t^1;
|
|
|
|
else if(t4 == 10) tcdir = t-20;
|
|
else if(t4 >= 4 && t4 < 7) tcdir = 40 + (t&3);
|
|
else if(t4 >= 1 && t4 < 4) tcdir = t+12;
|
|
else if(t4 >= 7 && t4 < 10) tcdir = t-24;
|
|
|
|
for(int i=0; i<c->type; i++) if(c->mov[i] && zebra40(c->mov[i]) == tcdir)
|
|
return i;
|
|
|
|
// printf("fail to fintd %d -> %d\n", t, tcdir);
|
|
|
|
return 0;
|
|
}
|
|
|
|
case 'f': {
|
|
int t = emeraldval(c);
|
|
if(euclid) return 0;
|
|
int tcdir = 0, tbest = (t&3);
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(c2) {
|
|
int t2 = emeraldval(c2);
|
|
if((t&3) == (t2&3) && t2 > tbest)
|
|
tbest = t2, tcdir = i;
|
|
}
|
|
}
|
|
return tcdir;
|
|
}
|
|
|
|
case 'p': {
|
|
int tcdir = -1, tbest = -1;
|
|
int pa = polara50(c);
|
|
int pb = polarb50(c);
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(c2 && polara50(c2) == pa && polarb50(c2) == pb) {
|
|
int t2 = fiftyval049(c2);
|
|
if(t2 > tbest) tbest = t2, tcdir = i;
|
|
}
|
|
}
|
|
return tcdir;
|
|
}
|
|
|
|
case 'H':
|
|
return downdir(c);
|
|
|
|
case 0: {
|
|
if(euclid) return 0;
|
|
int u = nopattern(c);
|
|
|
|
if(u == 6) {
|
|
for(int i=1; i<c->type; i+=2) if(!isWarped(createMov(c,i)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 2 || u == 3 || u == 8) {
|
|
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,i)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 4 || u == 10) {
|
|
for(int i=0; i<c->type; i+=2) if(!isWarped(createMov(c,i)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 6) {
|
|
for(int i=1; i<c->type; i+=2) if(!isWarped(createMov(c,i)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 5) {
|
|
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,(i+3)%7)) && !isWarped(createMov(c,(i+4)%7)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 9) {
|
|
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,(i+2)%7)) && !isWarped(createMov(c,(i+5)%7)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 11) {
|
|
for(int i=0; i<c->type; i++) if(isWarped(createMov(c,(i)%7)) && isWarped(createMov(c,(i+1)%7)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 12) {
|
|
for(int i=0; i<c->type; i+=2) if(isWarped(createMov(c,i)))
|
|
return i;
|
|
}
|
|
|
|
else if(u == 7) {
|
|
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,(i+1)%7)) && !isWarped(createMov(c,(i+6)%7)))
|
|
return i;
|
|
}
|
|
|
|
else if(u < 2) return 0;
|
|
|
|
#if LOCAL
|
|
printf("unhandled: u=%d\n", u);
|
|
#endif
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
int geosupport_threecolor() {
|
|
if(!nontruncated) {
|
|
if(S7 % 2) return 1;
|
|
return 2;
|
|
}
|
|
if((S7 % 2 == 0) && (S3 == 3))
|
|
return 2;
|
|
return 0;
|
|
}
|
|
|
|
int geosupport_graveyard() {
|
|
// always works in truncated geometries
|
|
if(!nontruncated) return 2;
|
|
|
|
// always works in patterns supporting three-color
|
|
return geosupport_threecolor();
|
|
}
|
|
|
|
int pattern_threecolor(cell *c) {
|
|
if(a38) {
|
|
int i = val38(c);
|
|
if(nontruncated) return i;
|
|
else return i < 4 ? 0 : (1+(i&1));
|
|
}
|
|
if(a46 && !nontruncated) {
|
|
int i = val46(c);
|
|
return i >> 2;
|
|
}
|
|
if(S7 == 4) {
|
|
int codesN[6] = {0,1,2,1,2,0};
|
|
if(nontruncated)
|
|
return codesN[c->master->fiftyval];
|
|
if(ctof(c))
|
|
return 0;
|
|
else for(int i=0; i<3; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(c2->master->fiftyval == 0)
|
|
return 1 + (c->spin(i)&1);
|
|
if(c2->master->fiftyval == 5)
|
|
return 2 - (c->spin(i)&1);
|
|
}
|
|
}
|
|
if(stdhyperbolic && nontruncated) {
|
|
int z = zebra40(c);
|
|
if(z == 5 || z == 8 || z == 15) return 0;
|
|
if(z == 10 || z == 12 || z == 7) return 2;
|
|
if(z == 6 || z == 9) return 3;
|
|
if(z == 14 || z == 11) return 4;
|
|
return 1;
|
|
}
|
|
if(S7 == 5 && nontruncated) {
|
|
const int codes[12] = {1, 2, 0, 3, 2, 0, 0, 1, 3, 1, 2, 3};
|
|
return codes[c->master->fiftyval];
|
|
}
|
|
if(S7 == 3 && nontruncated)
|
|
return c->master->fiftyval;
|
|
if(euclid) return eupattern(c);
|
|
return ishept(c);
|
|
}
|
|
|
|
// returns ishept in the normal tiling;
|
|
// in the 'pure heptagonal' tiling, returns true for a set of cells
|
|
// which roughly corresponds to the heptagons in the normal tiling
|
|
bool pseudohept(cell *c) {
|
|
return pattern_threecolor(c) == 0;
|
|
}
|
|
|