1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-24 17:10:36 +00:00
hyperrogue/geometry.cpp
Eryk Kopczyński 3237ff455e Updated to 8.3j
2016-08-26 11:58:03 +02:00

143 lines
3.7 KiB
C++

// Hyperbolic Rogue
// geometrical constants
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
ld tessf, crossf, hexf, hcrossf;
// tessf: distance from heptagon center to another heptagon center
// hexf: distance from heptagon center to heptagon vertex
// crossf: distance from heptagon center to adjacent hexagon center
#define ALPHA (M_PI*2/7)
hyperpoint Crad[42];
transmatrix heptmove[7], hexmove[7];
transmatrix invheptmove[7], invhexmove[7];
// the results are:
// hexf = 0.378077 hcrossf = 0.620672 tessf = 1.090550
void precalc() {
DEBB(DF_INIT, (debugfile,"precalc\n"));
if(euclid) return;
ld fmin = 1, fmax = 2;
for(int p=0; p<100; p++) {
ld f = (fmin+fmax) / 2;
hyperpoint H = xpush(f) * C0;
ld v1 = intval(H, C0), v2 = intval(H, spin(2*M_PI/7)*H);
if(v1 > v2) fmin = f; else fmax = f;
}
tessf = fmin;
fmin = 0, fmax = 2;
for(int p=0; p<100; p++) {
ld f = (fmin+fmax) / 2;
hyperpoint H = spin(M_PI/7) * xpush(f) * C0;
ld v1 = intval(H, C0), v2 = intval(H, xpush(tessf) * C0);
if(v1 < v2) fmin = f; else fmax = f;
}
hcrossf = fmin;
crossf = purehepta ? tessf : hcrossf;
fmin = 0, fmax = tessf;
for(int p=0; p<100; p++) {
ld f = (fmin+fmax) / 2;
hyperpoint H = xpush(f) * C0;
hyperpoint H1 = spin(2*M_PI/7) * H;
hyperpoint H2 = xpush(tessf-f) * C0;
ld v1 = intval(H, H1), v2 = intval(H, H2);
if(v1 < v2) fmin = f; else fmax = f;
}
hexf = fmin;
// printf("hexf = %.6Lf cross = %.6Lf tessf = %.6Lf\n", hexf, crossf, tessf);
for(int i=0; i<42; i++)
Crad[i] = spin(2*M_PI*i/42) * xpush(.4) * C0;
for(int d=0; d<7; d++)
heptmove[d] = spin(-d * ALPHA) * xpush(tessf) * spin(M_PI);
for(int d=0; d<7; d++)
hexmove[d] = spin(-d * ALPHA) * xpush(-crossf)* spin(M_PI);
for(int d=0; d<7; d++) invheptmove[d] = inverse(heptmove[d]);
for(int d=0; d<7; d++) invhexmove[d] = inverse(hexmove[d]);
}
transmatrix ddi(ld dir, ld dist) {
// EUCLIDEAN
if(euclid)
return eupush(cos(M_PI*dir/42) * dist, -sin(M_PI*dir/42) * dist);
else
return spin(M_PI*dir/42) * xpush(dist) * spin(-M_PI*dir/42);
}
// tesselation drawing
#define NUMFACE 500
transmatrix tess[NUMFACE];
void genTesselation() {
int N = 1;
tess[0] = Id;
for(int i=0; i<N; i++) {
for(int t=0; t<7; t++) {
ld trot = (t % 8) * M_PI * 2 / 7.0;
transmatrix T = spin(trot) * xpush(tessf) * /*spin(-trot) */ spin(M_PI) * tess[i];
for(int j=0; j<N; j++) if(intval(T*C0, tess[j]*C0) < 0.1) goto nextt;
// printf("%d:%d -> %d\n", i,t, N);
tess[N] = T; N++;
if(N == NUMFACE) return;
nextt: ;
}
}
}
struct ltd {
hyperpoint P1;
hyperpoint P2;
int col;
};
vector<ltd> lines;
void addline(hyperpoint P1, hyperpoint P2, int col) {
ltd L;
L.P1 = P1; L.P2 = P2; L.col = col;
lines.push_back(L);
}
void addlines() {
// change the if(0) conditions to see the underlying structure
if(0) for(int t =0; t<NUMFACE; t++) for(int u=1; u<8; u++) {
addline(View * tess[t] * C0, View * tess[t] * tess[u] * C0, u==1 ? 0xA000 : 0x4000);
}
if(0) for(int t =0; t<NUMFACE; t++) for(int r=0; r<7; r++) {
addline(
View * tess[t] * spin((2*r+1)*M_PI/7) * xpush(crossf) * C0,
View * tess[t] * spin((2*r+3)*M_PI/7) * xpush(crossf) * C0,
0x808080);
}
if(1) for(int t =0; t<NUMFACE; t++) for(int r=0; r<7; r++) {
addline(tess[t] * spin(M_PI*2*(r+1)/7) * xpush(hexf) * C0, tess[t] * spin(M_PI*2*r/7) * xpush(hexf) * C0, 0x404040);
addline(tess[t] * spin(M_PI*2*r/7) * xpush(hexf) * C0, tess[t] * spin(M_PI*2*r/7) * xpush(tessf/2) * C0, 0x404040);
}
}
void initgeo() {
precalc();
genTesselation();
addlines();
}