mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-25 00:16:59 +00:00
590 lines
18 KiB
C++
590 lines
18 KiB
C++
#include "rogueviz.h"
|
|
|
|
// Impossible Triangle visualization
|
|
|
|
// used in: https://www.youtube.com/watch?v=YmFDd49WsrY
|
|
|
|
// settings:
|
|
// ./mymake -O3 rogueviz/triangle
|
|
// ./hyper -geo Nil -canvas x -tstep 8 -nilperiod 3 3 3
|
|
|
|
// also used in: https://youtu.be/RPL4-Ydviug
|
|
|
|
// ./hyper -geo Nil -nilwidth .9 -canvas x -tstep 1 -nilperiod 1 10 1 -triset 32 31 992
|
|
|
|
// network of triangles:
|
|
|
|
// ./hyper -geo Nil -canvas x -tri-net
|
|
|
|
namespace rogueviz {
|
|
namespace itri {
|
|
|
|
bool on = false;
|
|
|
|
bool net = false;
|
|
|
|
hyperpoint operator+(hyperpoint x) { return x; }
|
|
|
|
// do not change this
|
|
int shape = 1;
|
|
|
|
// how many cubes to subdivide edges to
|
|
int how = 8;
|
|
|
|
// how many cubes to draw (should be smaller than how because they are not really cubes and thus they get into each other)
|
|
int how1 = how - 1;
|
|
|
|
// precision: number of substeps to simulate (best if divisible by how and how1)
|
|
int isteps = 4 * 1024;
|
|
|
|
/* the generators correspond to: */
|
|
|
|
nilv::mvec a(1,0,0);
|
|
nilv::mvec b(0,1,0);
|
|
nilv::mvec c = (a * b).inverse();
|
|
|
|
vector<nilv::mvec> gens = { a, b, c, a.inverse(), b.inverse(), c.inverse() };
|
|
|
|
struct triangledata {
|
|
hyperpoint at;
|
|
bool computed;
|
|
int tcolor;
|
|
int id;
|
|
// each color group (i.e., each face direction) is a different hpcshape
|
|
triangledata(hyperpoint h) : at(h), computed(false) { tcolor = 0; id = 0; }
|
|
};
|
|
|
|
struct trianglemaker {
|
|
|
|
geometry_information *icgi;
|
|
|
|
map<cell*, vector<triangledata> > tds;
|
|
|
|
array<hpcshape, 6> ptriangle;
|
|
|
|
array<hpcshape, 6> pcube;
|
|
|
|
hyperpoint ds[4], uds[4], dmoves[6];
|
|
|
|
ld scale;
|
|
|
|
void init() {
|
|
|
|
icgi = &cgi;
|
|
|
|
ld rest = sqrt(8/9.);
|
|
ld rex = sqrt(1 - 1/9. - pow(rest/2., 2));
|
|
|
|
ds[0] = point3(rex, -rest/2, -1/3.);
|
|
ds[1] = point3(0, rest, -1/3.);
|
|
ds[2] = point3(-rex, -rest/2, -1/3.);
|
|
ds[3] = point3(0, 0, +1);
|
|
|
|
hyperpoint start = point31(0, 0, 0);
|
|
|
|
double ca;
|
|
|
|
// compute how to scale this in Nil so that everything fits
|
|
|
|
ld amin = 0, amax = 1;
|
|
|
|
for(int it=0; it<100; it++) {
|
|
ld a = (amin + amax) / 2;
|
|
ca = a;
|
|
hyperpoint at = start;
|
|
for(int d=0; d<3; d++) {
|
|
for(int i=0; i<isteps; i++) {
|
|
at = nisot::translate(at) * (start + ds[d] * a);
|
|
}
|
|
}
|
|
|
|
println(hlog, "at = ", at, " for a = ", a, " sq = ", at[2] / a / a);
|
|
if(at[2] > 0) {
|
|
amax = a;
|
|
}
|
|
else {
|
|
amin = a;
|
|
}
|
|
}
|
|
|
|
// compute the shift between the cubes
|
|
|
|
for(int d=0; d<3; d++) {
|
|
hyperpoint at = start;
|
|
for(int i=0; i<isteps/how; i++) {
|
|
at = nisot::translate(at) * (start + ds[d] * ca);
|
|
}
|
|
uds[d] = (at - start) / 2.;
|
|
}
|
|
|
|
// println(hlog, "uds = ", uds);
|
|
|
|
for(int a=0; a<3; a++) println(hlog, sqhypot_d(3, inverse_exp(shiftless(start + ds[a] * ca))));
|
|
|
|
for(int a=0; a<3; a++) println(hlog, sqhypot_d(3, inverse_exp(shiftless(uds[a]))));
|
|
|
|
// compute cube vertices
|
|
|
|
hyperpoint verts[8];
|
|
for(int a=0; a<8; a++) {
|
|
verts[a] = start;
|
|
for(int k=0; k<3; k++)
|
|
verts[a] += (a&(1<<k)) ? uds[k] : -uds[k];
|
|
}
|
|
|
|
// since Nil does not really have cubes, we need to move the vertices a bit so that it looks nicer
|
|
|
|
// ugliness of the current vertices
|
|
|
|
auto errf = [&] {
|
|
ld res = 0;
|
|
for(int s=0; s<8; s++)
|
|
for(int t=0; t<3; t++) {
|
|
if((s & (1<<t)) == 0) {
|
|
int s1 = s | (1<<t);
|
|
ld dix = sqhypot_d(3, inverse(nisot::translate(nisot::translate(start + 2*uds[t]) * verts[s])) * verts[s1]);
|
|
// println(hlog, tie(s, t), "di = ", dix);
|
|
res += dix * dix;
|
|
}
|
|
}
|
|
return res;
|
|
};
|
|
|
|
// minimize the ugliness
|
|
|
|
ld curerr = errf();
|
|
println(hlog, "curerr = ", curerr);
|
|
int att = 0;
|
|
if(1) while(true) {
|
|
int id = rand() % 8;
|
|
int j = rand() % 3;
|
|
ld eps = (rand() % 100 - rand() % 100) / 100000.;
|
|
verts[id][j] += eps;
|
|
ld nerr = errf();
|
|
if(nerr < curerr) {
|
|
curerr = nerr;
|
|
println(hlog, "curerr = ", curerr, " # ", att);
|
|
att = 0;
|
|
}
|
|
else {
|
|
verts[id][j] -= eps;
|
|
}
|
|
att++;
|
|
if(att > 50000) break;
|
|
}
|
|
|
|
for(int s=0; s<8; s++)
|
|
for(int t=0; t<3; t++) {
|
|
if((s & (1<<t)) == 0) {
|
|
int s1 = s | (1<<t);
|
|
ld dix = sqhypot_d(3, inverse(nisot::translate(nisot::translate(start + 2*uds[t]) * verts[s])) * verts[s1]);
|
|
println(hlog, tie(s, t), "di = ", dix);
|
|
}
|
|
}
|
|
|
|
scale = 1;
|
|
|
|
for(int si=0; si<6; si++) {
|
|
auto textured_square = [&] (auto f) {
|
|
texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 + iy/2, .5 + ix/2 - iy/2); });
|
|
texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 - iy/2, .5 - ix/2 + iy/2); });
|
|
texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 - iy/2, .5 - ix/2 - iy/2); });
|
|
texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 + iy/2, .5 + ix/2 + iy/2); });
|
|
};
|
|
|
|
auto cube_at = [&] (hyperpoint online) {
|
|
|
|
auto sidesquare1 = [&] (hyperpoint a00, hyperpoint a01, hyperpoint a10, hyperpoint a11) {
|
|
textured_square( [&] (ld ix, ld iy) {
|
|
hyperpoint shf = lerp(lerp(a00, a01, ix), lerp(a10, a11, ix), iy);
|
|
if(scale) shf = shf * scale - start * (scale-1);
|
|
cgi.hpcpush(nisot::translate(online) * (shf));
|
|
});
|
|
};
|
|
|
|
if(si == 0) sidesquare1(verts[0], verts[2], verts[4], verts[6]);
|
|
if(si == 1) sidesquare1(verts[1], verts[3], verts[5], verts[7]);
|
|
if(si == 2) sidesquare1(verts[0], verts[1], verts[4], verts[5]);
|
|
if(si == 3) sidesquare1(verts[2], verts[3], verts[6], verts[7]);
|
|
if(si == 4) sidesquare1(verts[0], verts[1], verts[2], verts[3]);
|
|
if(si == 5) sidesquare1(verts[4], verts[5], verts[6], verts[7]);
|
|
};
|
|
|
|
scale = 2;
|
|
cgi.bshape(pcube[si], PPR::WALL);
|
|
cube_at(start);
|
|
cgi.last->flags |= POLY_TRIANGLES;
|
|
cgi.last->tinf = &floor_texture_vertices[0];
|
|
cgi.last->texture_offset = 0;
|
|
|
|
scale = 1;
|
|
|
|
cgi.bshape(ptriangle[si], PPR::WALL);
|
|
hyperpoint at = start;
|
|
|
|
vector<hyperpoint> atx = {start};
|
|
|
|
cube_at(start);
|
|
|
|
for(int dx: {0, 1, 2}) {
|
|
int d = dx;
|
|
if(net) at = start;
|
|
else cube_at(at);
|
|
int d1 = (d+1) % 3;
|
|
int d2 = (d+2) % 3;
|
|
|
|
vector<hyperpoint> path(isteps+1);
|
|
for(int i=0; i<isteps; i++) {
|
|
path[i] = at;
|
|
at = nisot::translate(at) * (start + ds[d] * ca * (dx >= 3 ? -1 : 1));
|
|
}
|
|
path[isteps] = at;
|
|
|
|
auto &u = uds[d];
|
|
auto &v = uds[d1];
|
|
auto &w = uds[d2];
|
|
|
|
auto sidewall = [&] (hyperpoint wide, hyperpoint shift) {
|
|
textured_square( [&] (ld ix, ld iy) {
|
|
hyperpoint online = path[int(ix * isteps + .1)];
|
|
hyperpoint shf = lerp(u, -u, ix) + lerp(-wide, wide, iy) + shift;
|
|
shf *= scale;
|
|
cgi.hpcpush(nisot::translate(online) * (start + shf));
|
|
});
|
|
};
|
|
|
|
auto sidesquare = [&] (hyperpoint wx, hyperpoint wy, hyperpoint shift, ld p) {
|
|
textured_square( [&] (ld ix, ld iy) {
|
|
hyperpoint online = path[int(p * isteps + .1)];
|
|
hyperpoint shf = lerp(wx, -wx, ix) + lerp(wy, -wy, iy) + shift;
|
|
shf *= scale;
|
|
cgi.hpcpush(nisot::translate(online) * (start + shf));
|
|
});
|
|
};
|
|
|
|
if(shape == 0) {
|
|
if(si == d2*2) sidewall(v, w);
|
|
if(si == d1*2) sidewall(w, v);
|
|
if(si == d2*2+1) sidewall(v, -w);
|
|
if(si == d1*2+1) sidewall(w, -v);
|
|
|
|
if(si == d2*2) sidesquare(u, v, w, 0);
|
|
if(si == d1*2) sidesquare(w, u, v, 0);
|
|
if(si == d1*2+1) sidesquare(u, w, -v, 0);
|
|
if(si == d*2+1) sidesquare(w, v, -u, 0);
|
|
}
|
|
|
|
if(shape == 1) for(int a=1; a<how1; a++) {
|
|
ld c = a * 1. / how1;
|
|
|
|
cube_at(path[int(c * isteps + .1)]);
|
|
}
|
|
|
|
dmoves[d] = at;
|
|
}
|
|
|
|
cgi.last->flags |= POLY_TRIANGLES;
|
|
cgi.last->tinf = &floor_texture_vertices[0];
|
|
cgi.last->texture_offset = 0;
|
|
cgi.finishshape();
|
|
cgi.extra_vertices();
|
|
}
|
|
|
|
tds[cwt.at].emplace_back(start);
|
|
dmoves[3] = inverse(nisot::translate(dmoves[0])) * C0;
|
|
dmoves[4] = inverse(nisot::translate(dmoves[1])) * C0;
|
|
dmoves[5] = inverse(nisot::translate(dmoves[2])) * C0;
|
|
}
|
|
|
|
void compute(triangledata &td, cell *c) {
|
|
if(td.computed) return;
|
|
td.computed = true;
|
|
if(!net) return;
|
|
|
|
hyperpoint at;
|
|
|
|
for(int d=0; d<6; d++) {
|
|
hyperpoint at = nisot::translate(td.at) * dmoves[d];
|
|
cell *c0 = c;
|
|
virtualRebase(c0, at);
|
|
|
|
bool newat = true;
|
|
for(auto& td: tds[c0]) {
|
|
ld d = sqhypot_d(3, at - td.at);
|
|
if(d < .01) {
|
|
if(d>1e-5) println(hlog, "d = ", d);
|
|
newat = false;
|
|
}
|
|
}
|
|
|
|
if(newat) {
|
|
triangledata ntd = at;
|
|
ntd.id = td.id + 1;
|
|
tds[c0].push_back(ntd);
|
|
tds[c0].back().tcolor = (td.tcolor + (d < 3 ? 1 : 2)) % 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
trianglemaker *mkr;
|
|
|
|
void reset() {
|
|
if(mkr) delete mkr;
|
|
mkr = nullptr;
|
|
}
|
|
|
|
// Magic Cube (aka Rubik Cube) colors
|
|
|
|
color_t magiccolors[6] = { 0xFFFF00FF, 0xFFFFFFFF, 0x0000FFFF, 0x00FF00FF, 0xFF0000FF, 0xFF8000FF};
|
|
|
|
#define CTO (isize(cnts))
|
|
|
|
vector<int> cnts;
|
|
vector<ld> coef;
|
|
int valid_from;
|
|
int tested_to;
|
|
int coefficients_known;
|
|
|
|
bool verify(int id) {
|
|
if(id < isize(coef)) return false;
|
|
ld res = 0;
|
|
for(int t=0; t<isize(coef); t++)
|
|
res += coef[t] * cnts[id-t-1];
|
|
return abs(res - cnts[id]) < .5;
|
|
}
|
|
|
|
|
|
int valid(int v, int step) {
|
|
if(step < 0) return 0;
|
|
if(step+v+v+5 >= CTO) return 0;
|
|
ld matrix[100][128];
|
|
for(int i=0; i<v; i++)
|
|
for(int j=0; j<v+1; j++)
|
|
matrix[i][j] = cnts[step+i+j];
|
|
|
|
for(int k=0; k<v; k++) {
|
|
int nextrow = k;
|
|
while(nextrow < v && std::abs(matrix[nextrow][k]) < 1e-6)
|
|
nextrow++;
|
|
if(nextrow == v) return 1;
|
|
if(nextrow != k) {
|
|
// printf("swap %d %d\n", k, nextrow);
|
|
for(int l=0; l<=v; l++) swap(matrix[k][l], matrix[nextrow][l]);
|
|
// display();
|
|
}
|
|
ld divv = 1. / matrix[k][k];
|
|
for(int k1=k; k1<=v; k1++) matrix[k][k1] *= divv;
|
|
// printf("divide %d\n", k);
|
|
// display();
|
|
for(int k1=k+1; k1<v; k1++) if(matrix[k1][k] != 0) {
|
|
ld coef = -matrix[k1][k];
|
|
for(int k2=k; k2<=v; k2++) matrix[k1][k2] += matrix[k][k2] * coef;
|
|
}
|
|
// printf("zeros below %d\n", k);
|
|
// display();
|
|
}
|
|
|
|
for(int k=v-1; k>=0; k--)
|
|
for(int l=k-1; l>=0; l--)
|
|
if(matrix[l][k]) matrix[l][v] -= matrix[l][k] * matrix[k][v];
|
|
|
|
coef.resize(v);
|
|
for(int i=0; i<v; i++) coef[i] = matrix[v-1-i][v];
|
|
|
|
println(hlog, "coef = ", coef);
|
|
for(int t=step+v; t<step+v+v+5; t++) {
|
|
println(hlog, "verify(", t, ") = ", verify(t));
|
|
if(!verify(t)) return 2;
|
|
}
|
|
println(hlog, "got here");
|
|
tested_to = step+v+v+5;
|
|
while(tested_to < CTO) {
|
|
if(!verify(tested_to)) return 2;
|
|
tested_to++;
|
|
}
|
|
|
|
valid_from = step+v;
|
|
return 3;
|
|
}
|
|
|
|
void find_coefficients() {
|
|
if(coefficients_known) return;
|
|
for(int v=1; v<25; v++)
|
|
for(int step=0; step<1000; step++) {
|
|
int val = valid(v, step);
|
|
if(val == 0) break;
|
|
println(hlog, "v=", v, "step=", step, " val=", val);
|
|
if(val == 3) { coefficients_known = 2; return; }
|
|
}
|
|
coefficients_known = 1;
|
|
}
|
|
|
|
void growthrate() {
|
|
|
|
cnts.resize(20);
|
|
|
|
for(int a=0; a<CTO; a++) {
|
|
int cnt = 0;
|
|
map<cell*, int> howmany;
|
|
for(auto& p: mkr->tds) cnt += (howmany[p.first] = isize(p.second));
|
|
for(auto& p: howmany) for(int i=0; i<p.second; i++) {
|
|
// println(hlog, p.first, mkr->tds[p.first][i].at, mkr->tds[p.first][i].computed);
|
|
mkr->compute(mkr->tds[p.first][i], p.first);
|
|
}
|
|
println(hlog, "cnt = ", cnt, " / ", cnt / pow(1+a, 4));
|
|
cnts[a] = cnt;
|
|
if(a >= 4) println(hlog, "D4 = ", cnts[a-4] - 4 * cnts[a-3] + 6 * cnts[a-2] - 4 * cnts[a-1] + cnts[a]);
|
|
println(hlog, "cnts = ", cnts);
|
|
}
|
|
|
|
auto cnt2 = cnts;
|
|
for(int i=isize(cnt2)-1; i>=1; i--) cnt2[i] -= cnt2[i-1];
|
|
println(hlog, "cnts dif = ", cnt2);
|
|
|
|
// this was computed on integers, not using the program above
|
|
|
|
cnts =
|
|
{1,6,24,80,186,368,644,1046,1574,2260,3128,4198,5482,7006,8788,10860,13228,15918,18948,22350,26130,30314,34926,39986,45506,51518,58034,65086,72680,80842,89596,98968,108964,119610,130930,142950,155676,169140,183354,198350,214140,230744,248186,266492,285668,305746,326744,348688,371584,395464,420346,446256,473206,501216,530310,560520,591846,624320,657960,692792,728828,766094,804608,844396,885470,927856,971572,1016650,1063090,1110924,1160176,1210866,1263006,1316622,1371732,1428368,1486536,1546262,1607564,1670474,1734998,1801162,1868990,1938502,2009710,2082646,2157322,2233770,2311996,2392026,2473884,2557596,2643168,2730626,2819994,2911298,3004544,3099764,3196970,3296194,3397448,3500752,3606130,3713608,3823192};
|
|
|
|
println(hlog, "coefficients_known = ", coefficients_known);
|
|
if(coefficients_known == 2) {
|
|
string fmt = "a(d+" + its(isize(coef)) + ") = ";
|
|
bool first = true;
|
|
for(int i=0; i<isize(coef); i++) if(kz(coef[i])) {
|
|
if(first && !kz(coef[i]-1)) ;
|
|
else if(first) fmt += fts(coef[i]);
|
|
else if(!kz(coef[i]-1)) fmt += " + ";
|
|
else if(!kz(coef[i]+1)) fmt += " - ";
|
|
else if(coef[i] > 0) fmt += " + " + fts(coef[i]);
|
|
else if(coef[i] < 0) fmt += " - " + fts(-coef[i]);
|
|
fmt += "a(d";
|
|
if(i != isize(coef) - 1)
|
|
fmt += "+" + its(isize(coef) - 1 - i);
|
|
fmt += ")";
|
|
first = false;
|
|
}
|
|
fmt += " (d>" + its(valid_from-1) + ")";
|
|
println(hlog, fmt);
|
|
}
|
|
}
|
|
|
|
color_t tcolors[3] = { 0xFF0000FF, 0x00FF00FF, 0x0000FFFF };
|
|
|
|
|
|
bool draw_ptriangle(cell *c, const shiftmatrix& V) {
|
|
|
|
if(!on) return false;
|
|
|
|
if(mkr && mkr->icgi != &cgi) reset();
|
|
|
|
if(!mkr) { mkr = new trianglemaker; mkr->init();
|
|
// growthrate();
|
|
}
|
|
|
|
for(auto& td: mkr->tds[c]) {
|
|
mkr->compute(td, c);
|
|
for(int side=0; side<6; side++) {
|
|
auto &s = queuepoly(V * nisot::translate(td.at), mkr->ptriangle[side], magiccolors[side]);
|
|
ensure_vertex_number(*s.tinf, s.cnt);
|
|
|
|
/* auto& s1 = queuepoly(V * nisot::translate(td.at), mkr->pcube[side], gradient(tcolors[td.tcolor], magiccolors[side], 0, .2, 1));
|
|
ensure_vertex_number(*s1.tinf, s1.cnt); */
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void slide_itri(tour::presmode mode, int id) {
|
|
using namespace tour;
|
|
setCanvas(mode, '0');
|
|
|
|
if(mode == pmStart) {
|
|
stop_game();
|
|
set_geometry(gNil);
|
|
tour::slide_backup(on, true);
|
|
tour::slide_backup(net, id == 2 ? true : false);
|
|
tour::on_restore(nilv::set_flags);
|
|
if(id == 0)
|
|
tour::slide_backup(nilv::nilperiod, make_array(3, 3, 3));
|
|
if(id == 1) {
|
|
tour::slide_backup(nilv::nilperiod, make_array(1, 10, 1));
|
|
tour::slide_backup(nilv::nilwidth, .9);
|
|
tour::slide_backup(how, 32);
|
|
tour::slide_backup(how1, 31);
|
|
tour::slide_backup(isteps, 992);
|
|
}
|
|
nilv::set_flags();
|
|
/* do nothing for id == 2 */
|
|
start_game();
|
|
playermoved = false;
|
|
tour::on_restore(reset);
|
|
}
|
|
rogueviz::pres::non_game_slide_scroll(mode);
|
|
}
|
|
|
|
string cap = "Impossible architecture in Nil/";
|
|
|
|
auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle)
|
|
|
|
+ addHook(hooks_args, 100, [] {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-triset")) {
|
|
shift(); how = argi();
|
|
shift(); how1 = argi();
|
|
shift(); isteps = argi();
|
|
}
|
|
else if(argis("-tri-net")) {
|
|
on = true; net = true;
|
|
}
|
|
else if(argis("-tri-one")) {
|
|
on = true; net = false;
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
})
|
|
|
|
+ addHook_rvslides(166, [] (string s, vector<tour::slide>& v) {
|
|
using namespace tour;
|
|
if(s != "noniso") return;
|
|
|
|
v.push_back(
|
|
tour::slide{cap+"impossible triangle", 18, LEGAL::NONE | QUICKGEO,
|
|
"This form of impossible triangle was first created by Oscar Reutersvärd. "
|
|
"It was later independently discovered by Lionel Penrose and Roger Penrose, and popularized by M. C. Escher.\n\n"
|
|
"Move with mouse/arrows/PgUpDn. Press '5' to enable animation, 'o' to change ring size.",
|
|
|
|
[] (presmode mode) {
|
|
|
|
slide_itri(mode, 0);
|
|
}});
|
|
|
|
v.push_back(
|
|
tour::slide{cap+"impossible triangle chainmail", 18, LEGAL::NONE | QUICKGEO,
|
|
"Here we try to link the impossible triangles into a construction reminiscent of a chainmail.",
|
|
|
|
[] (presmode mode) {
|
|
|
|
slide_itri(mode, 1);
|
|
}});
|
|
|
|
v.push_back(
|
|
tour::slide{cap+"impossible triangle network", 18, LEGAL::NONE | QUICKGEO,
|
|
"It is not possible to reconstruct Escher's Waterfall in Nil geometry, because one of the three triangles there "
|
|
"has opposite orientation. For this reason, that one triangle would not connect correctly. Penrose triangles "
|
|
"in Nil would not create a planar structure, but rather a three-dimensional one. This slide shows the picture. "
|
|
"Note that, while the structure is three-dimensional, the number of nodes connected in d steps grows as the "
|
|
"fourth power of d.",
|
|
|
|
[] (presmode mode) {
|
|
|
|
slide_itri(mode, 2);
|
|
}});
|
|
});
|
|
|
|
}
|
|
} |