mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-18 03:04:48 +00:00
1370 lines
45 KiB
C++
1370 lines
45 KiB
C++
// Hyperbolic Rogue -- nonisotropic spaces (Solv and Nil)
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file nonisotropic.cpp
|
|
* \brief nonisotropic spaces (Solv and Nil)
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
EX namespace nisot {
|
|
#if HDR
|
|
typedef array<float, 3> ptlow;
|
|
#endif
|
|
|
|
EX transmatrix local_perspective;
|
|
#if HDR
|
|
inline bool local_perspective_used() { return nonisotropic || prod; }
|
|
#endif
|
|
|
|
EX bool geodesic_movement = true;
|
|
|
|
EX transmatrix translate(hyperpoint h) {
|
|
if(sl2)
|
|
return slr::translate(h);
|
|
transmatrix T = Id;
|
|
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i];
|
|
if(sol) {
|
|
T[0][0] = exp(-h[2]);
|
|
T[1][1] = exp(+h[2]);
|
|
}
|
|
if(nil)
|
|
T[2][1] = h[0];
|
|
return T;
|
|
}
|
|
|
|
EX }
|
|
|
|
EX namespace solv {
|
|
|
|
EX int PRECX, PRECY, PRECZ;
|
|
|
|
EX vector<nisot::ptlow> inverse_exp_table;
|
|
|
|
EX bool table_loaded;
|
|
|
|
EX string solfname = "solv-geodesics.dat";
|
|
|
|
EX void load_table() {
|
|
if(table_loaded) return;
|
|
FILE *f = fopen(solfname.c_str(), "rb");
|
|
// if(!f) f = fopen("/usr/lib/soltable.dat", "rb");
|
|
if(!f) { addMessage(XLAT("geodesic table missing")); pmodel = mdPerspective; return; }
|
|
fread(&PRECX, 4, 1, f);
|
|
fread(&PRECY, 4, 1, f);
|
|
fread(&PRECZ, 4, 1, f);
|
|
inverse_exp_table.resize(PRECX * PRECY * PRECZ);
|
|
fread(&inverse_exp_table[0], sizeof(nisot::ptlow) * PRECX * PRECY * PRECZ, 1, f);
|
|
fclose(f);
|
|
table_loaded = true;
|
|
}
|
|
|
|
hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) {
|
|
return hpxyz3(
|
|
-velocity[2] * transported[0] - velocity[0] * transported[2],
|
|
velocity[2] * transported[1] + velocity[1] * transported[2],
|
|
velocity[0] * transported[0] * exp(2*at[2]) - velocity[1] * transported[1] * exp(-2*at[2]),
|
|
0
|
|
);
|
|
}
|
|
|
|
ld x_to_ix(ld u) {
|
|
if(u == 0.) return 0.;
|
|
ld diag = u*u/2.;
|
|
|
|
ld x = diag;
|
|
ld y = u;
|
|
ld z = diag+1.;
|
|
|
|
x /= (1.+z);
|
|
y /= (1.+z);
|
|
|
|
return 0.5 - atan((0.5-x) / y) / M_PI;
|
|
}
|
|
|
|
EX hyperpoint get_inverse_exp(hyperpoint h, bool lazy, bool just_direction) {
|
|
load_table();
|
|
|
|
ld ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);
|
|
ld iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);
|
|
ld iz = tanh(h[2]);
|
|
|
|
if(h[2] < 0.) { iz = -iz; swap(ix, iy); }
|
|
|
|
ix *= PRECX-1;
|
|
iy *= PRECY-1;
|
|
iz *= PRECZ-1;
|
|
|
|
hyperpoint res = C0;
|
|
|
|
if(lazy) {
|
|
auto r = inverse_exp_table[(int(iz)*PRECY+int(iy))*PRECX+int(ix)];
|
|
for(int i=0; i<3; i++) res[i] = r[i];
|
|
}
|
|
|
|
else {
|
|
|
|
if(ix >= PRECX-1) ix = PRECX-2;
|
|
if(iy >= PRECX-1) iy = PRECX-2;
|
|
if(iz >= PRECZ-1) iz = PRECZ-2;
|
|
|
|
int ax = ix, bx = ax+1;
|
|
int ay = iy, by = ay+1;
|
|
int az = iz, bz = az+1;
|
|
|
|
#define S0(x,y,z) inverse_exp_table[(z*PRECY+y)*PRECX+x][t]
|
|
#define S1(x,y) (S0(x,y,az) * (bz-iz) + S0(x,y,bz) * (iz-az))
|
|
#define S2(x) (S1(x,ay) * (by-iy) + S1(x,by) * (iy-ay))
|
|
|
|
for(int t=0; t<3; t++)
|
|
res[t] = S2(ax) * (bx-ix) + S2(bx) * (ix-ax);
|
|
}
|
|
|
|
if(h[2] < 0.) { swap(res[0], res[1]); res[2] = -res[2]; }
|
|
if(h[0] < 0.) res[0] = -res[0];
|
|
if(h[1] < 0.) res[1] = -res[1];
|
|
|
|
if(!just_direction) {
|
|
ld r = hypot_d(3, res);
|
|
if(r == 0.) return res;
|
|
return res * atanh(r) / r;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
struct hrmap_sol : hrmap {
|
|
hrmap *binary_map;
|
|
unordered_map<pair<heptagon*, heptagon*>, heptagon*> at;
|
|
unordered_map<heptagon*, pair<heptagon*, heptagon*>> coords;
|
|
|
|
heptagon *origin;
|
|
|
|
heptagon *getOrigin() override { return origin; }
|
|
|
|
heptagon *get_at(heptagon *x, heptagon *y) {
|
|
auto& h = at[make_pair(x, y)];
|
|
if(h) return h;
|
|
h = tailored_alloc<heptagon> (S7);
|
|
h->c7 = newCell(S7, h);
|
|
coords[h] = make_pair(x, y);
|
|
h->distance = x->distance;
|
|
h->dm4 = 0;
|
|
h->zebraval = x->emeraldval;
|
|
h->emeraldval = y->emeraldval;
|
|
h->fieldval = 0;
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
return h;
|
|
}
|
|
|
|
hrmap_sol() {
|
|
|
|
heptagon *alt;
|
|
|
|
if(true) {
|
|
dynamicval<eGeometry> g(geometry, gBinary4);
|
|
alt = tailored_alloc<heptagon> (S7);
|
|
alt->s = hsOrigin;
|
|
alt->alt = alt;
|
|
alt->cdata = NULL;
|
|
alt->c7 = NULL;
|
|
alt->zebraval = 0;
|
|
alt->distance = 0;
|
|
alt->emeraldval = 0;
|
|
binary_map = binary::new_alt_map(alt);
|
|
}
|
|
|
|
origin = get_at(alt, alt);
|
|
}
|
|
|
|
heptagon *altstep(heptagon *h, int d) {
|
|
dynamicval<eGeometry> g(geometry, gBinary4);
|
|
dynamicval<hrmap*> cm(currentmap, binary_map);
|
|
return h->cmove(d);
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
auto p = coords[parent];
|
|
auto pf = p.first, ps = p.second;
|
|
auto rule = [&] (heptagon *c1, heptagon *c2, int d1) {
|
|
auto g = get_at(c1, c2);
|
|
parent->c.connect(d, g, d1, false);
|
|
return g;
|
|
};
|
|
|
|
switch(d) {
|
|
case 0: // right
|
|
return rule(altstep(pf, 2), ps, 4);
|
|
case 1: // up
|
|
return rule(pf, altstep(ps, 2), 5);
|
|
case 2: // front left
|
|
return rule(altstep(pf, 0), altstep(ps, 3), ps->zebraval ? 7 : 6);
|
|
case 3: // front right
|
|
return rule(altstep(pf, 1), altstep(ps, 3), ps->zebraval ? 7 : 6);
|
|
case 4: // left
|
|
return rule(altstep(pf, 4), ps, 0);
|
|
case 5: // down
|
|
return rule(pf, altstep(ps, 4), 1);
|
|
case 6: // back down
|
|
return rule(altstep(pf, 3), altstep(ps, 0), pf->zebraval ? 3 : 2);
|
|
case 7: // back up
|
|
return rule(altstep(pf, 3), altstep(ps, 1), pf->zebraval ? 3 : 2);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
~hrmap_sol() {
|
|
delete binary_map;
|
|
for(auto& p: at) clear_heptagon(p.second);
|
|
}
|
|
|
|
transmatrix adjmatrix(int i, int j) {
|
|
ld z = log(2);
|
|
ld bw = vid.binary_width * z;
|
|
ld bwh = bw / 4;
|
|
switch(i) {
|
|
case 0: return xpush(+bw);
|
|
case 1: return ypush(+bw);
|
|
case 2: return xpush(-bwh) * zpush(+z) * ypush(j == 6 ? +bwh : -bwh);
|
|
case 3: return xpush(+bwh) * zpush(+z) * ypush(j == 6 ? +bwh : -bwh);
|
|
case 4: return xpush(-bw);
|
|
case 5: return ypush(-bw);
|
|
case 6: return ypush(-bwh) * zpush(-z) * xpush(j == 2 ? +bwh : -bwh);
|
|
case 7: return ypush(+bwh) * zpush(-z) * xpush(j == 2 ? +bwh : -bwh);
|
|
default:return Id;
|
|
}
|
|
}
|
|
|
|
virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override {
|
|
for(int i=0; i<h1->type; i++) if(h1->move(i) == h2) return adjmatrix(i, h1->c.spin(i));
|
|
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
|
|
return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7];
|
|
return Id; // not implemented yet
|
|
}
|
|
|
|
void draw() override {
|
|
dq::visited.clear();
|
|
|
|
dq::enqueue(viewctr.at, cview());
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = get<0>(p);
|
|
transmatrix V = get<1>(p);
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V, 0, false);
|
|
|
|
for(int i=0; i<S7; i++) {
|
|
// note: need do cmove before c.spin
|
|
heptagon *h1 = h->cmove(i);
|
|
dq::enqueue(h1, V * adjmatrix(i, h->c.spin(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
EX pair<heptagon*,heptagon*> getcoord(heptagon *h) {
|
|
return ((hrmap_sol*)currentmap)->coords[h];
|
|
}
|
|
|
|
EX heptagon *get_at(heptagon *h1, heptagon *h2, bool gen) {
|
|
auto m = ((hrmap_sol*)currentmap);
|
|
if(!gen && !m->at.count(make_pair(h1, h2))) return nullptr;
|
|
return m->get_at(h1, h2);
|
|
}
|
|
|
|
EX ld solrange_xy = 15;
|
|
EX ld solrange_z = 4;
|
|
|
|
EX ld glitch_xy = 2;
|
|
EX ld glitch_z = 0.6;
|
|
|
|
EX bool in_table_range(hyperpoint h) {
|
|
if(abs(h[0]) > glitch_xy && abs(h[1]) > glitch_xy && abs(h[2]) < glitch_z) return false;
|
|
return abs(h[0]) < solrange_xy && abs(h[1]) < solrange_xy && abs(h[2]) < solrange_z;
|
|
}
|
|
|
|
EX int approx_distance(heptagon *h1, heptagon *h2) {
|
|
auto m = (hrmap_sol*) currentmap;
|
|
dynamicval<eGeometry> g(geometry, gBinary4);
|
|
dynamicval<hrmap*> cm(currentmap, m->binary_map);
|
|
int d1 = binary::celldistance3_approx(m->coords[h1].first, m->coords[h2].first);
|
|
int d2 = binary::celldistance3_approx(m->coords[h1].second, m->coords[h2].second);
|
|
return d1 + d2 - abs(h1->distance - h2->distance);
|
|
}
|
|
|
|
EX string solshader =
|
|
"uniform mediump sampler3D tInvExpTable;"
|
|
"uniform mediump float PRECX, PRECY, PRECZ;"
|
|
|
|
"float x_to_ix(float u) {"
|
|
" if(u < 1e-6) return 0.;"
|
|
" float diag = u*u/2.;"
|
|
|
|
" float x = diag;"
|
|
" float y = u;"
|
|
" float z = diag+1.;"
|
|
|
|
" x /= (1.+z);"
|
|
" y /= (1.+z);"
|
|
|
|
" return 0.5 - atan((0.5-x) / y) / 3.1415926535897932384626433832795;"
|
|
" }"
|
|
|
|
|
|
"vec4 inverse_exp(vec4 h) {"
|
|
|
|
"float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);"
|
|
"float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);"
|
|
"float iz = tanh(h[2]);"
|
|
|
|
"if(h[2] < 1e-6) { iz = -iz; float s = ix; ix = iy; iy = s; }"
|
|
"if(iz < 0.) iz = 0.;"
|
|
|
|
"vec4 res = texture3D(tInvExpTable, vec3(ix*(1.-1./PRECX) + 0.5/PRECX, iy*(1.-1./PRECY) + .5/PRECY, iz*(1.-1./PRECZ) + .5/PRECZ));"
|
|
|
|
"if(h[2] < 1e-6) { res.xy = res.yx; res[2] = -res[2]; }"
|
|
"if(h[0] < 0.) res[0] = -res[0];"
|
|
"if(h[1] < 0.) res[1] = -res[1];"
|
|
|
|
"return res;"
|
|
"}";
|
|
EX }
|
|
|
|
EX namespace nilv {
|
|
|
|
hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) {
|
|
ld x = Position[0];
|
|
return point3(
|
|
x * Velocity[1] * Transported[1] - 0.5 * (Velocity[1] * Transported[2] + Velocity[2] * Transported[1]),
|
|
-.5 * x * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2]),
|
|
-.5 * (x*x-1) * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * x * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2])
|
|
);
|
|
}
|
|
|
|
EX hyperpoint formula_exp(hyperpoint v) {
|
|
// copying Modelling Nil-geometry in Euclidean Space with Software Presentation
|
|
// v[0] = c cos alpha
|
|
// v[1] = c sin alpha
|
|
// v[2] = w
|
|
|
|
if(v[0] == 0 && v[1] == 0) return point31(v[0], v[1], v[2]);
|
|
|
|
if(v[2] == 0) return point31(v[0], v[1], v[0] * v[1] / 2);
|
|
|
|
ld alpha = atan2(v[1], v[0]);
|
|
ld w = v[2];
|
|
ld c = hypot(v[0], v[1]) / v[2];
|
|
|
|
return point31(
|
|
2 * c * sin(w/2) * cos(w/2 + alpha),
|
|
2 * c * sin(w/2) * sin(w/2 + alpha),
|
|
w * (1 + (c*c/2) * ((1 - sin(w)/w) + (1-cos(w))/w * sin(w + 2 * alpha)))
|
|
);
|
|
}
|
|
|
|
EX hyperpoint get_inverse_exp(hyperpoint h, int iterations) {
|
|
ld wmin, wmax;
|
|
|
|
ld side = h[2] - h[0] * h[1] / 2;
|
|
|
|
if(hypot_d(2, h) < 1e-6) return point3(h[0], h[1], h[2]);
|
|
else if(side > 1e-6) {
|
|
wmin = 0, wmax = 2 * M_PI;
|
|
}
|
|
else if(side < -1e-6) {
|
|
wmin = - 2 * M_PI, wmax = 0;
|
|
}
|
|
else return point3(h[0], h[1], 0);
|
|
|
|
ld alpha_total = h[0] ? atan(h[1] / h[0]) : M_PI/2;
|
|
|
|
ld b;
|
|
if(abs(h[0]) > abs(h[1]))
|
|
b = h[0] / 2 / cos(alpha_total);
|
|
else
|
|
b = h[1] / 2 / sin(alpha_total);
|
|
|
|
ld s = sin(2 * alpha_total);
|
|
|
|
for(int it=0;; it++) {
|
|
ld w = (wmin + wmax) / 2;
|
|
ld z = b * b * (s + (sin(w) - w)/(cos(w) - 1)) + w;
|
|
|
|
if(it == iterations) {
|
|
ld alpha = alpha_total - w/2;
|
|
ld c = b / sin(w/2);
|
|
return point3(c * w * cos(alpha), c * w * sin(alpha), w);
|
|
}
|
|
if(h[2] > z) wmin = w;
|
|
else wmax = w;
|
|
}
|
|
}
|
|
|
|
EX string nilshader =
|
|
"vec4 inverse_exp(vec4 h) {"
|
|
"float wmin, wmax;"
|
|
"float side = h[2] - h[0] * h[1] / 2.;"
|
|
"if(h[0]*h[0] + h[1]*h[1] < 1e-12) return vec4(h[0], h[1], h[2], 1);"
|
|
"if(side > 1e-6) { wmin = 0.; wmax = 2.*PI; }"
|
|
"else if(side < -1e-6) { wmin = -2.*PI; wmax = 0.; }"
|
|
"else return vec4(h[0], h[1], 0., 1.);"
|
|
"float at = h[0] != 0. ? atan(h[1] / h[0]) : PI/2.;"
|
|
"float b = abs(h[0]) > abs(h[1]) ? h[0] / 2. / cos(at) : h[1] / 2. / sin(at);"
|
|
"float s = sin(2. * at);"
|
|
|
|
"for(int it=0; it<50; it++) {"
|
|
"float w = (wmin + wmax) / 2.;"
|
|
// the formula after ':' produces visible numerical artifacts for w~0
|
|
"float z = b * b * (s + (abs(w) < .1 ? w/3. + w*w*w/90. + w*w*w*w*w/2520.: (sin(w) - w)/(cos(w) - 1.))) + w;"
|
|
"if(h[2] > z) wmin = w;"
|
|
"else wmax = w;"
|
|
"}"
|
|
|
|
"float w = (wmin + wmax) / 2.;"
|
|
"float alpha = at - w/2.;"
|
|
"float c = b / sin(w/2.);"
|
|
"return vec4(c*w*cos(alpha), c*w*sin(alpha), w, 1.);"
|
|
"}";
|
|
|
|
struct mvec : array<int, 3> {
|
|
|
|
mvec() { }
|
|
|
|
mvec(int x, int y, int z) {
|
|
auto& a = *this;
|
|
a[0] = x; a[1] = y; a[2] = z;
|
|
}
|
|
mvec inverse() {
|
|
auto& a = *this;
|
|
return mvec(-a[0], -a[1], -a[2]+a[1] * a[0]);
|
|
}
|
|
mvec operator * (const mvec b) {
|
|
auto& a = *this;
|
|
return mvec(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1]);
|
|
}
|
|
};
|
|
|
|
static const mvec mvec_zero = mvec(0, 0, 0);
|
|
|
|
hyperpoint mvec_to_point(mvec m) { return hpxy3(m[0], m[1], m[2]); }
|
|
|
|
#if HDR
|
|
static const int nilv_S7 = 6;
|
|
#endif
|
|
|
|
/*
|
|
array<mvec, nilv_S7> movevectors = {{ mvec(-1,0,0), mvec(-1,0,1), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(1,0,-1), mvec(0,1,0), mvec(0,0,1) }};
|
|
|
|
EX array<vector<hyperpoint>, nilv_S7> facevertices = {{
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(-0.5,0.5,-0.25), },
|
|
{ point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), },
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,-0.5,-0.75), },
|
|
{ point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), },
|
|
{ point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), },
|
|
}};
|
|
*/
|
|
|
|
array<mvec, nilv_S7> movevectors = {{ mvec(-1,0,0), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(0,1,0), mvec(0,0,1) }};
|
|
|
|
EX array<vector<hyperpoint>, nilv_S7> facevertices = {{
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.25), point31(-0.5,0.5,-0.75), },
|
|
{ point31(0.5,-0.5,-0.5), point31(0.5,-0.5,0.5), point31(-0.5,-0.5,0.5), point31(-0.5,-0.5,-0.5), },
|
|
{ point31(0,0,-0.5), point31(-0.5,0.5,-0.75), point31(-0.5,-0.5,-0.25), point31(0,0,-0.5), point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,-0.5), point31(0,0,-0.5), point31(-0.5,-0.5,-0.5), point31(0.5,-0.5,-0.5), point31(0,0,-0.5), point31(0.5,-0.5,-0.5), point31(0.5,-0.5,-0.75), point31(0,0,-0.5), point31(0.5,-0.5,-0.75), point31(0.5,0.5,-0.25), point31(0,0,-0.5), point31(0.5,0.5,-0.25), point31(0.5,0.5,-0.5), point31(0,0,-0.5), point31(0.5,0.5,-0.5), point31(-0.5,0.5,-0.5), point31(0,0,-0.5), point31(-0.5,0.5,-0.5), point31(-0.5,0.5,-0.75), },
|
|
{ point31(0.5,0.5,-0.25), point31(0.5,0.5,0.75), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(-0.5,0.5,-0.5), point31(-0.5,0.5,0.5), point31(0.5,0.5,0.5), point31(0.5,0.5,-0.5), },
|
|
{ point31(0,0,0.5), point31(-0.5,0.5,0.25), point31(-0.5,-0.5,0.75), point31(0,0,0.5), point31(-0.5,-0.5,0.75), point31(-0.5,-0.5,0.5), point31(0,0,0.5), point31(-0.5,-0.5,0.5), point31(0.5,-0.5,0.5), point31(0,0,0.5), point31(0.5,-0.5,0.5), point31(0.5,-0.5,0.25), point31(0,0,0.5), point31(0.5,-0.5,0.25), point31(0.5,0.5,0.75), point31(0,0,0.5), point31(0.5,0.5,0.75), point31(0.5,0.5,0.5), point31(0,0,0.5), point31(0.5,0.5,0.5), point31(-0.5,0.5,0.5), point31(0,0,0.5), point31(-0.5,0.5,0.5), point31(-0.5,0.5,0.25), },
|
|
}};
|
|
|
|
|
|
struct hrmap_nil : hrmap {
|
|
unordered_map<mvec, heptagon*> at;
|
|
unordered_map<heptagon*, mvec> coords;
|
|
|
|
heptagon *getOrigin() override { return get_at(mvec_zero); }
|
|
|
|
~hrmap_nil() {
|
|
for(auto& p: at) clear_heptagon(p.second);
|
|
}
|
|
|
|
heptagon *get_at(mvec c) {
|
|
auto& h = at[c];
|
|
if(h) return h;
|
|
h = tailored_alloc<heptagon> (S7);
|
|
h->c7 = newCell(S7, h);
|
|
coords[h] = c;
|
|
h->dm4 = 0;
|
|
h->zebraval = c[0];
|
|
h->emeraldval = c[1];
|
|
h->fieldval = c[2];
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
return h;
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
auto p = coords[parent];
|
|
auto q = p * movevectors[d];
|
|
auto child = get_at(q);
|
|
parent->c.connect(d, child, (d + nilv_S7/2) % nilv_S7, false);
|
|
return child;
|
|
}
|
|
|
|
transmatrix adjmatrix(int i) {
|
|
return nisot::translate(mvec_to_point(movevectors[i]));
|
|
}
|
|
|
|
virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override {
|
|
return nisot::translate(mvec_to_point(coords[h1].inverse() * coords[h2]));
|
|
}
|
|
|
|
void draw() override {
|
|
dq::visited.clear();
|
|
|
|
dq::enqueue(viewctr.at, cview());
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = get<0>(p);
|
|
transmatrix V = get<1>(p);
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V, 0, false);
|
|
|
|
if(0) for(int t=0; t<c->type; t++) {
|
|
if(!c->move(t)) continue;
|
|
dynamicval<color_t> g(poly_outline, darkena((0x142968*t) & 0xFFFFFF, 0, 255) );
|
|
queuepoly(V, cgi.shWireframe3D[t], 0);
|
|
}
|
|
|
|
for(int i=0; i<S7; i++) {
|
|
// note: need do cmove before c.spin
|
|
heptagon *h1 = h->cmove(i);
|
|
dq::enqueue(h1, V * adjmatrix(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
EX hyperpoint on_geodesic(hyperpoint s0, hyperpoint s1, ld x) {
|
|
hyperpoint local = inverse(nisot::translate(s0)) * s1;
|
|
hyperpoint h = get_inverse_exp(local, 100);
|
|
return nisot::translate(s0) * formula_exp(h * x);
|
|
}
|
|
EX }
|
|
|
|
EX namespace hybrid {
|
|
|
|
EX int current_view_level;
|
|
EX eGeometry underlying;
|
|
EX geometry_information *underlying_cgip;
|
|
|
|
EX void configure(eGeometry g) {
|
|
if(vid.always3) { vid.always3 = false; geom3::apply_always3(); }
|
|
check_cgi();
|
|
cgi.prepare_basics();
|
|
underlying = geometry;
|
|
underlying_cgip = cgip;
|
|
bool sph = sphere;
|
|
geometry = g;
|
|
auto keep = ginf[g].menu_displayed_name;
|
|
ginf[g] = ginf[underlying];
|
|
ginf[g].menu_displayed_name = keep;
|
|
if(g == gRotSpace) {
|
|
ginf[g].g = sph ? giSphere3 : giSL2;
|
|
ginf[g].tiling_name = "Iso(" + ginf[g].tiling_name + ")";
|
|
string& qn = ginf[g].quotient_name;
|
|
string qplus = sph ? "elliptic" : qn;
|
|
if(qn == "none" || qn == "elliptic") qn = qplus;
|
|
else qn = qn + "/" + qplus;
|
|
if(sph) ginf[g].flags |= qELLIPTIC;
|
|
}
|
|
else {
|
|
ginf[g].cclass = g == gRotSpace ? gcSL2 : gcProduct;
|
|
ginf[g].g.gameplay_dimension++;
|
|
ginf[g].g.graphical_dimension++;
|
|
ginf[g].tiling_name += "xZ";
|
|
}
|
|
ginf[g].flags |= qHYBRID;
|
|
}
|
|
|
|
EX hrmap *pmap;
|
|
geometry_information *pcgip;
|
|
EX eGeometry actual_geometry;
|
|
|
|
template<class T> auto in_actual(const T& t) -> decltype(t()) {
|
|
dynamicval<eGeometry> g(geometry, actual_geometry);
|
|
dynamicval<geometry_information*> gc(cgip, pcgip);
|
|
dynamicval<hrmap*> gu(currentmap, pmap);
|
|
dynamicval<hrmap*> gup(pmap, NULL);
|
|
return t();
|
|
}
|
|
|
|
struct hrmap_hybrid : hrmap {
|
|
|
|
hrmap *underlying_map;
|
|
|
|
map<pair<cell*, int>, cell*> at;
|
|
map<cell*, pair<cell*, int>> where;
|
|
|
|
heptagon *getOrigin() override { return underlying_map->getOrigin(); }
|
|
|
|
template<class T> auto in_underlying(const T& t) -> decltype(t()) {
|
|
pcgip = cgip;
|
|
dynamicval<hrmap*> gpm(pmap, this);
|
|
dynamicval<eGeometry> gag(actual_geometry, geometry);
|
|
dynamicval<eGeometry> g(geometry, underlying);
|
|
dynamicval<geometry_information*> gc(cgip, underlying_cgip);
|
|
dynamicval<hrmap*> gu(currentmap, underlying_map);
|
|
return t();
|
|
}
|
|
|
|
cell *getCell(cell *u, int h) {
|
|
if(cgi.steps) h = gmod(h, cgi.steps);
|
|
cell*& c = at[make_pair(u, h)];
|
|
if(!c) { c = newCell(u->type+2, u->master); where[c] = {u, h}; }
|
|
return c;
|
|
}
|
|
|
|
cell* gamestart() override { return getCell(underlying_map->gamestart(), 0); }
|
|
|
|
hrmap_hybrid() {
|
|
in_underlying([this] { initcells(); underlying_map = currentmap; });
|
|
for(hrmap*& m: allmaps) if(m == underlying_map) m = NULL;
|
|
}
|
|
|
|
~hrmap_hybrid() {
|
|
in_underlying([this] { delete currentmap; });
|
|
for(auto& p: at) tailored_delete(p.second);
|
|
}
|
|
|
|
};
|
|
|
|
hrmap_hybrid* hmap() { return (hrmap_hybrid*) currentmap; }
|
|
|
|
EX cell *get_at(cell *base, int level) {
|
|
return hmap()->getCell(base, level);
|
|
}
|
|
|
|
EX pair<cell*, int> get_where(cell *c) { return hmap()->where[c]; }
|
|
|
|
EX void find_cell_connection(cell *c, int d) {
|
|
auto m = hmap();
|
|
if(d >= c->type - 2) {
|
|
int s = cgi.single_step;
|
|
cell *c1 = get_at(m->where[c].first, m->where[c].second + (d == c->type-1 ? s : -s));
|
|
c->c.connect(d, c1, c1->type - 3 + c->type - d, false);
|
|
}
|
|
else {
|
|
auto cu = m->where[c].first;
|
|
auto cu1 = m->in_underlying([&] { return cu->cmove(d); });
|
|
int d1 = cu->c.spin(d);
|
|
int s = cgi.steps ? d*cgi.steps / cu->type - d1*cgi.steps / cu1->type + cgi.steps/2 : 0;
|
|
cell *c1 = get_at(cu1, m->where[c].second + s);
|
|
c->c.connect(d, c1, d1, cu->c.mirror(d));
|
|
}
|
|
}
|
|
|
|
EX void in_underlying_map(const reaction_t& f) {
|
|
if(!hybri) f();
|
|
else hmap()->in_underlying(f);
|
|
}
|
|
|
|
#if HDR
|
|
template<class T> auto in_underlying_geometry(const T& f) -> decltype(f()) {
|
|
if(!hybri) return f();
|
|
dynamicval<eGeometry> g(geometry, underlying);
|
|
dynamicval<geometry_information*> gc(cgip, underlying_cgip);
|
|
return f();
|
|
}
|
|
|
|
#define PIU(x) hr::hybrid::in_underlying_geometry([&] { return (x); })
|
|
#endif
|
|
|
|
EX hyperpoint get_corner(cell *c, int i, int next, ld z) {
|
|
ld lev = cgi.plevel * z / 2;
|
|
if(prod) {
|
|
dynamicval<eGeometry> g(geometry, hybrid::underlying);
|
|
dynamicval<geometry_information*> gc(cgip, hybrid::underlying_cgip);
|
|
return mscale(get_corner_position(c, i+next), exp(lev));
|
|
}
|
|
else {
|
|
ld tf, he, alpha;
|
|
in_underlying_map([&] {
|
|
hyperpoint h1 = get_corner_position(c, i);
|
|
hyperpoint h2 = get_corner_position(c, i+1);
|
|
hyperpoint hm = mid(h1, h2);
|
|
tf = hdist0(hm)/2;
|
|
he = hdist(hm, h2)/2;
|
|
alpha = atan2(hm[1], hm[0]);
|
|
});
|
|
return spin(alpha) * rots::uxpush(tf) * rots::uypush(next?he:-he) * rots::uzpush(lev) * C0;
|
|
}
|
|
}
|
|
|
|
EX int wall_offset(cell *c) {
|
|
int id = hybrid::underlying == gArchimedean ? arcm::id_of(c->master) + 20 * arcm::parent_index_of(c->master) : shvid(c);
|
|
if(isize(cgi.walloffsets) <= id) cgi.walloffsets.resize(id+1, -1);
|
|
int &wo = cgi.walloffsets[id];
|
|
if(wo == -1) {
|
|
cell *c1 = hybrid::get_where(c).first;
|
|
wo = isize(cgi.shWall3D);
|
|
int won = wo + c->type;
|
|
cgi.reserve_wall3d(won);
|
|
|
|
if(prod) for(int i=0; i<c1->type; i++) {
|
|
hyperpoint w;
|
|
hybrid::in_underlying_geometry([&] {
|
|
/* mirror image of C0 in the axis h1-h2 */
|
|
hyperpoint h1 = get_corner_position(c1, i);
|
|
hyperpoint h2 = get_corner_position(c1, i+1);
|
|
transmatrix T = gpushxto0(h1);
|
|
T = spintox(T * h2) * T;
|
|
w = T * C0;
|
|
w[1] = -w[1];
|
|
w = inverse(T) * w;
|
|
});
|
|
cgi.walltester[wo + i] = w;
|
|
}
|
|
|
|
for(int i=0; i<c1->type; i++)
|
|
cgi.make_wall(wo + i, {hybrid::get_corner(c1, i, 0, -1), hybrid::get_corner(c1, i, 0, +1), hybrid::get_corner(c1, i, 1, +1), hybrid::get_corner(c1, i, 1, -1)});
|
|
|
|
for(int a: {0,1}) {
|
|
vector<hyperpoint> l;
|
|
int z = a ? 1 : -1;
|
|
hyperpoint ctr = zpush0(z * cgi.plevel/2);
|
|
for(int i=0; i<c1->type; i++)
|
|
if(prod)
|
|
l.push_back(hybrid::get_corner(c1, i, 0, z));
|
|
else {
|
|
l.push_back(ctr);
|
|
l.push_back(hybrid::get_corner(c1, i, 0, z));
|
|
l.push_back(hybrid::get_corner(c1, i+1, 1, z));
|
|
l.push_back(ctr);
|
|
l.push_back(hybrid::get_corner(c1, i, 1, z));
|
|
l.push_back(hybrid::get_corner(c1, i, 0, z));
|
|
}
|
|
if(a == 0) std::reverse(l.begin()+1, l.end());
|
|
cgi.make_wall(won-2+a, l);
|
|
}
|
|
|
|
cgi.compute_cornerbonus();
|
|
cgi.extra_vertices();
|
|
}
|
|
return wo;
|
|
}
|
|
|
|
EX }
|
|
|
|
EX namespace product {
|
|
|
|
struct hrmap_product : hybrid::hrmap_hybrid {
|
|
transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) override {
|
|
return in_underlying([&] { return calc_relative_matrix(where[c2].first, where[c1].first, point_hint); }) * mscale(Id, cgi.plevel * (where[c2].second - where[c1].second));
|
|
}
|
|
|
|
void draw() override {
|
|
actual_view_level = hybrid::current_view_level - floor(zlevel(tC0(cview())) / cgi.plevel + .5);
|
|
in_underlying([this] { currentmap->draw(); });
|
|
}
|
|
};
|
|
|
|
EX int cwall_offset, cwall_mask, actual_view_level;
|
|
|
|
void drawcell_stack(cell *c, transmatrix V, int spinv, bool mirrored) {
|
|
if(sphere) gmatrix[c] = V; /* some computations need gmatrix0 for underlying geometry */
|
|
bool s = sphere;
|
|
hybrid::in_actual([&] {
|
|
cell *c0 = hybrid::get_at(c, hybrid::current_view_level);
|
|
cwall_offset = hybrid::wall_offset(c0);
|
|
if(s) cwall_mask = (1<<c->type) - 1;
|
|
else {
|
|
cwall_mask = 0;
|
|
ld d = V[2][2];
|
|
for(int i=0; i<c->type; i++) {
|
|
ld d1 = (V * cgi.walltester[cwall_offset + i])[2];
|
|
if(d1 < d - 1e-6) cwall_mask |= (1<<i);
|
|
}
|
|
}
|
|
cwall_mask |= (2<<c->type);
|
|
int flat_distance = hdist0(product_decompose(tC0(V)).second);
|
|
int max_z = flat_distance > sightranges[gProduct] ? 0 : sqrt(sightranges[gProduct] * sightranges[gProduct] - flat_distance * flat_distance) + 1;
|
|
for(int z=-max_z; z<=max_z; z++) {
|
|
if(z == 0) cwall_mask ^= (2<<c->type);
|
|
if(z == 1) cwall_mask ^= (1<<c->type);
|
|
cell *c1 = hybrid::get_at(c, actual_view_level+z);
|
|
setdist(c1, 7, NULL);
|
|
drawcell(c1, V * mscale(Id, cgi.plevel * (z+actual_view_level - hybrid::current_view_level)), spinv, mirrored);
|
|
}
|
|
});
|
|
}
|
|
|
|
EX bool product_sphere() { return ginf[hybrid::underlying].cclass == gcSphere; }
|
|
|
|
EX hyperpoint inverse_exp(hyperpoint h) {
|
|
hyperpoint res;
|
|
res[2] = zlevel(h);
|
|
h = zshift(h, -res[2]);
|
|
ld r = hypot_d(2, h);
|
|
if(r < 1e-6) {
|
|
res[0] = h[0];
|
|
res[1] = h[1];
|
|
}
|
|
else {
|
|
auto c = acos_auto_clamp(h[2]);
|
|
r = c / r;
|
|
res[0] = h[0] * r;
|
|
res[1] = h[1] * r;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
EX hyperpoint direct_exp(hyperpoint h) {
|
|
hyperpoint res;
|
|
ld d = hypot_d(2, h);
|
|
ld cd = d == 0 ? 0 : sinh(d) / d;
|
|
res[0] = h[0] * cd;
|
|
res[1] = h[1] * cd;
|
|
res[2] = cos_auto(d);
|
|
return zshift(res, h[2]);
|
|
}
|
|
|
|
EX }
|
|
|
|
EX namespace slr {
|
|
|
|
/* This implementation is based on:
|
|
// https://pdfs.semanticscholar.org/bf46/824df892593a1b6d1c84a5f99e90eece7c54.pdf
|
|
// However, to make it consistent with the conventions in HyperRogue,
|
|
// coordinates 0<->2 and 1<->3 are swapped,
|
|
// then coordinates 2<->3 are swapped
|
|
*/
|
|
|
|
EX ld range_xy = 2;
|
|
EX int steps = 15;
|
|
|
|
EX hyperpoint from_phigans(hyperpoint h) {
|
|
ld r = asinh(hypot_d(2, h));
|
|
ld x = h[0];
|
|
ld y = h[1];
|
|
ld z = h[2];
|
|
return hyperpoint(x * cos(z) + y * sin(z), y * cos(z) - x * sin(z), cosh(r) * sin(z), cosh(r) * cos(z));
|
|
}
|
|
|
|
EX hyperpoint to_phigans(hyperpoint h) {
|
|
ld z = atan2(h[2], h[3]);
|
|
ld x = h[0];
|
|
ld y = h[1];
|
|
return point31(x * cos(z) - y * sin(z), y * cos(z) + x * sin(z), z);
|
|
}
|
|
|
|
/** in the 'phigans' model */
|
|
hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) {
|
|
ld x = Position[0];
|
|
ld y = Position[1];
|
|
ld s = x*x + y*y + 1;
|
|
ld x2 = x * x;
|
|
ld y2 = y * y;
|
|
ld x4 = x2 * x2;
|
|
ld y4 = y2 * y2;
|
|
return point3(
|
|
+ Velocity[ 0 ] * Transported[ 0 ] * (x*(4*x2*y2 + 4*y4 + 9*y2 + 1))
|
|
+ Velocity[ 0 ] * Transported[ 1 ] * (-y*(4*x4 + 4*x2*y2 + 9*x2 + 2))
|
|
+ Velocity[ 0 ] * Transported[ 2 ] * (-x*y*(x2 + y2 + 2))
|
|
+ Velocity[ 1 ] * Transported[ 0 ] * (-y*(4*x4 + 4*x2*y2 + 9*x2 + 2))
|
|
+ Velocity[ 1 ] * Transported[ 1 ] * (x*(4*x4 + 4*x2*y2 + 9*x2 + 5))
|
|
+ Velocity[ 1 ] * Transported[ 2 ] * (x4 + x2*y2 + 2*x2 + 1)
|
|
+ Velocity[ 2 ] * Transported[ 0 ] * (-x*y*(x2 + y2 + 2))
|
|
+ Velocity[ 2 ] * Transported[ 1 ] * (x4 + x2*y2 + 2*x2 + 1),
|
|
|
|
+ Velocity[ 0 ] * Transported[ 0 ] * (y*(4*x2*y2 + 4*y4 + 9*y2 + 5))
|
|
+ Velocity[ 0 ] * Transported[ 1 ] * (-x*(4*x2*y2 + 4*y4 + 9*y2 + 2))
|
|
+ Velocity[ 0 ] * Transported[ 2 ] * (-x2*y2 - y4 - 2*y2 - 1)
|
|
+ Velocity[ 1 ] * Transported[ 0 ] * (-x*(4*x2*y2 + 4*y4 + 9*y2 + 2))
|
|
+ Velocity[ 1 ] * Transported[ 1 ] * (y*(4*x4 + 4*x2*y2 + 9*x2 + 1))
|
|
+ Velocity[ 1 ] * Transported[ 2 ] * (x*y*(x2 + y2 + 2))
|
|
+ Velocity[ 2 ] * Transported[ 0 ] * (-x2*y2 - y4 - 2*y2 - 1)
|
|
+ Velocity[ 2 ] * Transported[ 1 ] * (x*y*(x2 + y2 + 2)),
|
|
|
|
+ Velocity[ 0 ] * Transported[ 0 ] * (-4*x*y)
|
|
+ Velocity[ 0 ] * Transported[ 1 ] * (2*x2 - 2*y2)
|
|
+ Velocity[ 0 ] * Transported[ 2 ] * x
|
|
+ Velocity[ 1 ] * Transported[ 0 ] * (2*x2 - 2*y2)
|
|
+ Velocity[ 1 ] * Transported[ 1 ] * 4*x*y
|
|
+ Velocity[ 1 ] * Transported[ 2 ] * y
|
|
+ Velocity[ 2 ] * Transported[ 0 ] * x
|
|
+ Velocity[ 2 ] * Transported[ 1 ] * y
|
|
) / s;
|
|
}
|
|
|
|
EX transmatrix translate(hyperpoint h) {
|
|
return matrix4(
|
|
h[3], -h[2], h[1], h[0],
|
|
h[2], h[3], -h[0], h[1],
|
|
h[1], -h[0], h[3], h[2],
|
|
h[0], h[1], -h[2], h[3]
|
|
);
|
|
}
|
|
|
|
EX hyperpoint polar(ld r, ld theta, ld phi) {
|
|
return hyperpoint(sinh(r) * cos(theta-phi), sinh(r) * sin(theta-phi), cosh(r) * sin(phi), cosh(r) * cos(phi));
|
|
}
|
|
|
|
EX hyperpoint xyz_point(ld x, ld y, ld z) {
|
|
ld r = hypot(x, y);
|
|
ld f = r ? sinh(r) / r : 1;
|
|
return hyperpoint(x * f * cos(z) + y * f * sin(z), y * f * cos(z) - x * f * sin(z), cosh(r) * sin(z), cosh(r) * cos(z));
|
|
}
|
|
|
|
ld rootsin(ld square, ld s) {
|
|
if(square > 0) return sinh(sqrt(square) * s) / sqrt(square);
|
|
else if(square < 0) return sin(sqrt(-square) * s) / sqrt(-square);
|
|
else return s;
|
|
}
|
|
|
|
/** it==0 is standard asin, it==1 is the next solution (PI-asin) */
|
|
ld asin_it(ld z, int it) {
|
|
auto ans = asin(z);
|
|
if(it & 1) ans = M_PI - ans;
|
|
return ans;
|
|
}
|
|
|
|
ld arootsin(ld square, ld v, int it) {
|
|
if(square > 0) return asinh(v * sqrt(square)) / sqrt(square);
|
|
else if(square < 0) return asin_it(v * sqrt(-square), it) / sqrt(-square);
|
|
else return v;
|
|
}
|
|
|
|
ld roottan(ld square, ld s) {
|
|
if(square > 0) return tanh(sqrt(square) * s) / sqrt(square);
|
|
else if(square < 0) return tan(sqrt(-square) * s) / sqrt(-square);
|
|
else return s;
|
|
}
|
|
|
|
hyperpoint geodesic_polar(ld alpha, ld beta, ld s) {
|
|
auto c = cos(2*alpha);
|
|
|
|
ld t;
|
|
if(c > 0)
|
|
t = atan(sin(alpha) * tanh(sqrt(c) * s) / sqrt(c));
|
|
else if(c < 0) {
|
|
/* the formula in the paper is roughly atan(k*tan(s))
|
|
* however, atan is not always to be taken in [-PI/2,PI/2]:
|
|
* if s is in [kPI-PI/2, kPI+PI/2], we should also increase the result by kPI
|
|
*/
|
|
ld x = sqrt(-c) * s;
|
|
ld steps = floor(x/M_PI + 0.5);
|
|
t = atan(sin(alpha) * tan(sqrt(-c) * s) / sqrt(-c)) + M_PI * steps;
|
|
}
|
|
else t = atan(sin(alpha) * s);
|
|
|
|
return polar(
|
|
asinh(cos(alpha) * rootsin(c, s)),
|
|
beta - t,
|
|
2*sin(alpha)*s - t
|
|
);
|
|
}
|
|
|
|
EX hyperpoint formula_exp(hyperpoint h) {
|
|
ld s = hypot_d(3, h);
|
|
ld beta = atan2(h[1], h[0]);
|
|
ld alpha = asin(h[2] / s);
|
|
return geodesic_polar(alpha, beta, s);
|
|
}
|
|
|
|
void find_alpha(ld phi, ld r, ld theta, ld &alpha, ld &s, ld &beta) {
|
|
if(phi < 0) { find_alpha(-phi, r, -theta, alpha, s, beta); alpha = -alpha; beta = -beta; return; }
|
|
ld mina = 0, maxa = M_PI/2;
|
|
|
|
bool next_nan = true;
|
|
ld c;
|
|
|
|
for(int it=0; it<40; it++) {
|
|
alpha = (mina + maxa) / 2;
|
|
|
|
c = cos(2 * alpha);
|
|
s = arootsin(c, sinh(r) / cos(alpha), 0);
|
|
if(isnan(s)) { next_nan = true, maxa = alpha; continue; }
|
|
ld got_phi = 2*sin(alpha)*s - atan(sin(alpha) * roottan(c, s));
|
|
if(got_phi > phi) next_nan = false, maxa = alpha;
|
|
else mina = alpha;
|
|
}
|
|
|
|
if(next_nan) {
|
|
mina = M_PI/4;
|
|
|
|
for(int it=0; it<40; it++) {
|
|
alpha = (mina + maxa) / 2;
|
|
c = cos(2 * alpha);
|
|
s = arootsin(c, sinh(r) / cos(alpha), 1);
|
|
ld got_phi = 2*sin(alpha)*s - atan(sin(alpha) * roottan(c, s)) - M_PI;
|
|
if(got_phi < phi) maxa = alpha;
|
|
else mina = alpha;
|
|
}
|
|
beta = theta + atan(sin(alpha) * roottan(c, s)) + M_PI;
|
|
}
|
|
else beta = theta + atan(sin(alpha) * roottan(c, s));
|
|
}
|
|
|
|
EX hyperpoint get_inverse_exp(hyperpoint h, ld index IS(0)) {
|
|
if(sqhypot_d(2, h) < 1e-12) return point3(0, 0, atan2(h[2], h[3]) + index);
|
|
ld r = asinh(hypot_d(2, h));
|
|
ld phi = atan2(h[2], h[3]) + index;
|
|
ld theta = atan2(h[1], h[0]) + phi + index;
|
|
|
|
ld alpha, s, beta;
|
|
find_alpha(phi, r, theta, alpha, s, beta);
|
|
|
|
return point3(s * cos(beta) * cos(alpha), s * sin(beta) * cos(alpha), s * sin(alpha));
|
|
}
|
|
|
|
EX string slshader =
|
|
"float atan2(float y, float x) {"
|
|
" if(x == 0.) return y > 0. ? PI/2. : -PI/2.;"
|
|
" if(x > 0.) return atan(y / x);"
|
|
" if(y >= 0.) return atan(y / x) + PI;"
|
|
" if(y < 0.) return atan(y / x) - PI;"
|
|
" }"
|
|
|
|
"uniform mediump float uIndexSL;"
|
|
"uniform mediump int uIterations;"
|
|
|
|
"vec4 inverse_exp(vec4 h) {"
|
|
"if(h[0]*h[0] + h[1] * h[1] < 1e-6) return vec4(0, 0, atan(h[2], h[3]) + uIndexSL, 1);"
|
|
"float r = asinh(sqrt(h[0] * h[0] + h[1] * h[1]));"
|
|
"float phi = atan2(h[2], h[3]) + uIndexSL;"
|
|
"float theta = atan2(h[1], h[0]) + phi + uIndexSL;"
|
|
"float alpha;"
|
|
"float s;"
|
|
"float beta;"
|
|
"float sgn = 1.;"
|
|
"float bound = .999;"
|
|
"if(phi < 0.) { phi = -phi; theta = -theta; sgn = -1.; }"
|
|
"float c;"
|
|
"s = sinh(r) / cos(PI/4.);"
|
|
"float gphi = 2.*sin(PI/4.)*s - atan(sin(PI/4.) * s);"
|
|
"float lo_gphi = gphi;"
|
|
"float lo_s = s;"
|
|
"float lo_alpha = PI/4.;"
|
|
"float lx_gphi = gphi;"
|
|
"float lx_s = s;"
|
|
"float lx_alpha = PI/4.;"
|
|
"float hi_gphi = gphi;"
|
|
"float hi_s = s;"
|
|
"float hi_alpha = PI/4.;"
|
|
"if(gphi > phi) {"
|
|
" float mina = 0.;"
|
|
" float maxa = PI/4.;"
|
|
" lo_gphi = 0.; lo_s = r; lo_alpha = 0.;"
|
|
" for(int it=0; it<uIterations; it++) {"
|
|
" alpha = (mina + maxa) / 2.;"
|
|
" c = sqrt(cos(2. * alpha));"
|
|
" s = asinh(sinh(r) / cos(alpha) * c) / c;"
|
|
" gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tanh(c * s) / c);"
|
|
" if(gphi > phi) { maxa = alpha; hi_alpha = alpha; hi_s = s; hi_gphi = gphi; }"
|
|
" else { mina = alpha; lo_alpha = alpha; lo_s = s; lo_gphi = gphi; }"
|
|
" }"
|
|
" }"
|
|
"else {"
|
|
" hi_gphi = phi; hi_s = phi; hi_alpha = 9.;"
|
|
" int next_nan = 1;"
|
|
" float mina = PI/4.;"
|
|
" float maxa = PI/2.;"
|
|
" for(int it=0; it<uIterations; it++) {"
|
|
" alpha = (mina + maxa) / 2.;"
|
|
" c = sqrt(-cos(2. * alpha));"
|
|
" if(sinh(r) * c > bound * cos(alpha)) { next_nan = 1; maxa = alpha; continue; }"
|
|
" s = asin(sinh(r) * c / cos(alpha)) / c;"
|
|
" gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tan(c*s) / c);"
|
|
" if(gphi > phi) { next_nan = 0; maxa = alpha; hi_gphi = gphi; hi_s = s; hi_alpha = alpha; }"
|
|
" else { mina = alpha; lx_gphi = lo_gphi; lx_s = lo_s; lx_alpha = lo_alpha; lo_gphi = gphi; lo_s = s; lo_alpha = alpha; }"
|
|
" }"
|
|
" if(next_nan != 0) {"
|
|
" mina = PI/4.; "
|
|
" for(int it=0; it<uIterations; it++) {"
|
|
" alpha = (mina + maxa) / 2.;"
|
|
" c = sqrt(-cos(2. * alpha));"
|
|
" float z = sinh(r) * c / cos(alpha);"
|
|
" if(z>bound) { maxa = alpha; next_nan = 1; continue; }"
|
|
" float s1 = PI - asin(z);"
|
|
" s = s1 / c;"
|
|
" gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tan(s1) / c) - PI;"
|
|
" if(gphi < phi) { next_nan = 0; maxa = alpha; hi_gphi = gphi; hi_s = s; hi_alpha = alpha; }"
|
|
" else { mina = alpha; lo_gphi = gphi; lo_s = s; lo_alpha = alpha; }"
|
|
" }"
|
|
" }"
|
|
" }"
|
|
"if(hi_alpha <= 9.) { hi_gphi = lx_gphi; hi_s = lx_s; hi_alpha = lx_alpha; } "
|
|
"float fr = (phi-lo_gphi) / (hi_gphi-lo_gphi);"
|
|
"alpha = lo_alpha + (hi_alpha-lo_alpha) * fr;"
|
|
"s = lo_s + (hi_s-lo_s) * fr;"
|
|
"beta = theta - phi + 2.*sin(alpha)*s;"
|
|
"alpha = alpha * sgn; beta = beta * sgn;"
|
|
"return vec4(s * cos(beta) * cos(alpha), s * sin(beta) * cos(alpha), s * sin(alpha), 1.);"
|
|
"}";
|
|
|
|
EX }
|
|
|
|
EX namespace rots {
|
|
|
|
EX transmatrix uxpush(ld x) {
|
|
if(sl2) return xpush(x);
|
|
return cspin(1, 3, x) * cspin(0, 2, x);
|
|
}
|
|
|
|
EX transmatrix uypush(ld y) {
|
|
if(sl2) return ypush(y);
|
|
return cspin(0, 3, -y) * cspin(1, 2, y);
|
|
}
|
|
|
|
EX transmatrix uzpush(ld z) {
|
|
if(sl2) return zpush(z);
|
|
return cspin(3, 2, -z) * cspin(0, 1, -z);
|
|
}
|
|
|
|
struct hrmap_rotation_space : hybrid::hrmap_hybrid {
|
|
|
|
std::unordered_map<int, transmatrix> saved_matrices;
|
|
|
|
transmatrix relative_matrix(cell *c1, int i) {
|
|
if(i == c1->type-2) return uzpush(-cgi.plevel) * spin(-2*cgi.plevel);
|
|
if(i == c1->type-1) return uzpush(+cgi.plevel) * spin(+2*cgi.plevel);
|
|
cell *c2 = c1->cmove(i);
|
|
int id1 = hybrid::underlying == gArchimedean ? arcm::id_of(c1->master) + 20 * arcm::parent_index_of(c1->master) : shvid(c1);
|
|
int id2 = hybrid::underlying == gArchimedean ? arcm::id_of(c2->master) + 20 * arcm::parent_index_of(c2->master) : shvid(c2);
|
|
int j = c1->c.spin(i);
|
|
int id = id1 + (id2 << 10) + (i << 20) + (j << 26);
|
|
auto &M = saved_matrices[id];
|
|
if(M[3][3]) return M;
|
|
|
|
/*if(PURE && hybrid::underlying != gArchimedean) {
|
|
ld A = master_to_c7_angle();
|
|
transmatrix Q = spin(-A + 2 * M_PI * i / S7) * uxpush(cgi.tessf) * spin(M_PI - 2 * M_PI * j / S7 + A);
|
|
return Q;
|
|
} */
|
|
hyperpoint d;
|
|
ld alpha, beta, distance;
|
|
transmatrix Spin;
|
|
cell *cw = where[c1].first;
|
|
in_underlying([&] {
|
|
transmatrix T = cellrelmatrix(cw, i);
|
|
hyperpoint h = tC0(T);
|
|
Spin = inverse(gpushxto0(h) * T);
|
|
d = hr::inverse_exp(h, iTable);
|
|
alpha = atan2(Spin[0][1], Spin[0][0]);
|
|
distance = hdist0(h);
|
|
beta = atan2(h[1], h[0]);
|
|
});
|
|
for(int k=0; k<3; k++) Spin[3][k] = Spin[k][3] = 0; Spin[3][3] = 1;
|
|
return M = spin(beta) * uxpush(distance/2) * spin(-beta+alpha);
|
|
}
|
|
|
|
virtual transmatrix relative_matrix(cell *c2, cell *c1, const struct hyperpoint& point_hint) override {
|
|
if(c1 == c2) return Id;
|
|
if(gmatrix0.count(c2) && gmatrix0.count(c1))
|
|
return inverse(gmatrix0[c1]) * gmatrix0[c2];
|
|
for(int i=0; i<c1->type; i++) if(c1->move(i) == c2) return relative_matrix(c1, i);
|
|
return Id; // not implemented yet
|
|
}
|
|
|
|
void draw() override {
|
|
set<cell*> visited;
|
|
|
|
cell* start = viewcenter();
|
|
vector<pair<cell*, transmatrix>> dq;
|
|
|
|
visited.insert(start);
|
|
dq.emplace_back(start, cview());
|
|
|
|
for(int i=0; i<isize(dq); i++) {
|
|
cell *c = dq[i].first;
|
|
transmatrix V = dq[i].second;
|
|
|
|
if(sl2) {
|
|
if(V[3][3] < 0) V = centralsym * V;
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V, 0, false);
|
|
}
|
|
else {
|
|
drawcell(c, V, 0, false);
|
|
}
|
|
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c1 = c->cmove(i);
|
|
if(visited.count(c1)) continue;
|
|
visited.insert(c1);
|
|
dq.emplace_back(c1, V * relative_matrix(c, i));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
EX }
|
|
|
|
EX namespace nisot {
|
|
|
|
EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) {
|
|
if(sol) return solv::christoffel(at, velocity, transported);
|
|
else if(nil) return nilv::christoffel(at, velocity, transported);
|
|
else if(sl2) return slr::christoffel(at, velocity, transported);
|
|
else return point3(0, 0, 0);
|
|
}
|
|
|
|
EX bool in_table_range(hyperpoint h) {
|
|
if(sol) return solv::in_table_range(h);
|
|
return true;
|
|
}
|
|
|
|
EX void geodesic_step(hyperpoint& at, hyperpoint& velocity) {
|
|
auto acc = christoffel(at, velocity, velocity);
|
|
|
|
auto at2 = at + velocity / 2;
|
|
auto velocity2 = velocity + acc / 2;
|
|
|
|
auto acc2 = christoffel(at2, velocity2, velocity2);
|
|
|
|
at = at + velocity + acc2 / 2;
|
|
|
|
velocity = velocity + acc;
|
|
}
|
|
|
|
EX hyperpoint numerical_exp(hyperpoint v, int steps) {
|
|
hyperpoint at = point31(0, 0, 0);
|
|
v /= steps;
|
|
v[3] = 0;
|
|
for(int i=0; i<steps; i++) geodesic_step(at, v);
|
|
return at;
|
|
}
|
|
|
|
EX transmatrix parallel_transport_bare(transmatrix Pos, hyperpoint h) {
|
|
|
|
h[3] = 0;
|
|
|
|
auto tPos = transpose(Pos);
|
|
|
|
const ld eps = 1e-4;
|
|
|
|
if(sl2) {
|
|
hyperpoint p = slr::to_phigans(tPos[3]);
|
|
for(int i=0; i<3; i++)
|
|
tPos[i] = (slr::to_phigans(tPos[3] + tPos[i] * eps) - p) / eps;
|
|
tPos[3] = p;
|
|
h = transpose(tPos) * h;
|
|
}
|
|
else h = Pos * h;
|
|
|
|
int steps = 100;
|
|
h /= steps;
|
|
|
|
for(int i=0; i<steps; i++) {
|
|
for(int j=0; j<3; j++)
|
|
tPos[j] += christoffel(tPos[3], h, tPos[j]);
|
|
geodesic_step(tPos[3], h);
|
|
}
|
|
|
|
if(sl2) {
|
|
hyperpoint p = slr::from_phigans(tPos[3]);
|
|
for(int i=0; i<3; i++)
|
|
tPos[i] = (slr::from_phigans(tPos[3] + tPos[i] * eps) - p) / eps;
|
|
tPos[3] = p;
|
|
}
|
|
|
|
return transpose(tPos);
|
|
}
|
|
|
|
EX void fixmatrix(transmatrix& T) {
|
|
transmatrix push = eupush( tC0(T) );
|
|
transmatrix push_back = inverse(push);
|
|
transmatrix gtl = push_back * T;
|
|
{ dynamicval<eGeometry> g(geometry, gSphere); hr::fixmatrix(gtl); }
|
|
T = push * gtl;
|
|
}
|
|
|
|
EX transmatrix parallel_transport(const transmatrix Position, const hyperpoint direction) {
|
|
auto P = Position;
|
|
nisot::fixmatrix(P);
|
|
if(!geodesic_movement) return inverse(eupush(Position * translate(-direction) * inverse(Position) * C0)) * Position;
|
|
return parallel_transport_bare(P, direction);
|
|
}
|
|
|
|
EX transmatrix spin_towards(const transmatrix Position, const hyperpoint goal) {
|
|
|
|
hyperpoint at = tC0(Position);
|
|
transmatrix push_back = inverse(translate(at));
|
|
hyperpoint back_goal = push_back * goal;
|
|
back_goal = inverse_exp(back_goal, iTable);
|
|
|
|
transmatrix back_Position = push_back * Position;
|
|
|
|
return rspintox(inverse(back_Position) * back_goal);
|
|
}
|
|
|
|
EX hrmap *new_map() {
|
|
if(sol) return new solv::hrmap_sol;
|
|
if(nil) return new nilv::hrmap_nil;
|
|
if(prod) return new product::hrmap_product;
|
|
if(hybri) return new rots::hrmap_rotation_space;
|
|
return NULL;
|
|
}
|
|
|
|
auto config = addHook(hooks_args, 0, [] () {
|
|
using namespace arg;
|
|
if(argis("-solrange")) {
|
|
shift_arg_formula(solv::solrange_xy);
|
|
shift_arg_formula(solv::solrange_z);
|
|
return 0;
|
|
}
|
|
if(argis("-slrange")) {
|
|
shift_arg_formula(slr::range_xy);
|
|
return 0;
|
|
}
|
|
else if(argis("-fsol")) {
|
|
shift(); solv::solfname = args();
|
|
return 0;
|
|
}
|
|
else if(argis("-solglitch")) {
|
|
shift_arg_formula(solv::glitch_xy);
|
|
shift_arg_formula(solv::glitch_z);
|
|
return 0;
|
|
}
|
|
else if(argis("-solgeo")) {
|
|
geodesic_movement = true;
|
|
pmodel = mdGeodesic;
|
|
return 0;
|
|
}
|
|
else if(argis("-solnogeo")) {
|
|
geodesic_movement = false;
|
|
pmodel = mdPerspective;
|
|
return 0;
|
|
}
|
|
else if(argis("-product")) {
|
|
PHASEFROM(2);
|
|
set_geometry(gProduct);
|
|
return 0;
|
|
}
|
|
else if(argis("-rotspace")) {
|
|
PHASEFROM(2);
|
|
set_geometry(gRotSpace);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
});
|
|
|
|
}
|
|
|
|
}
|