mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-08 23:19:54 +00:00
251 lines
6.8 KiB
C++
251 lines
6.8 KiB
C++
// Hyperbolic Rogue
|
|
// geometrical constants
|
|
|
|
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
|
|
ld tessf, crossf, hexf, hcrossf, hexhexdist;
|
|
|
|
// tessf: distance from heptagon center to another heptagon center
|
|
// hexf: distance from heptagon center to heptagon vertex
|
|
// crossf: distance from heptagon center to adjacent hexagon center
|
|
// hexhexdist: distance between adjacent hexagon vertices
|
|
|
|
#define ALPHA (M_PI*2/S7)
|
|
|
|
hyperpoint Crad[42];
|
|
|
|
transmatrix heptmove[7], hexmove[7];
|
|
transmatrix invheptmove[7], invhexmove[7];
|
|
|
|
transmatrix spinmatrix[84];
|
|
|
|
const transmatrix& getspinmatrix(int id) {
|
|
while(id>=S84) id -= S84;
|
|
while(id<0) id += S84;
|
|
return spinmatrix[id];
|
|
}
|
|
|
|
// the results are:
|
|
// hexf = 0.378077 hcrossf = 0.620672 tessf = 1.090550
|
|
// hexhexdist = 0.566256
|
|
|
|
// the distance between two hexagon centers
|
|
|
|
void precalc() {
|
|
|
|
DEBB(DF_INIT, (debugfile,"precalc\n"));
|
|
|
|
if(euclid) return;
|
|
|
|
ld fmin = 1, fmax = 2;
|
|
|
|
for(int p=0; p<100; p++) {
|
|
ld f = (fmin+fmax) / 2;
|
|
hyperpoint H = xpush(f) * C0;
|
|
ld v1 = intval(H, C0), v2 = intval(H, spin(2*M_PI/S7)*H);
|
|
if(sphere ? v1 < v2 : v1 > v2) fmin = f; else fmax = f;
|
|
}
|
|
tessf = fmin;
|
|
|
|
fmin = 0, fmax = sphere ? M_PI / 2 : 2;
|
|
for(int p=0; p<100; p++) {
|
|
ld f = (fmin+fmax) / 2;
|
|
hyperpoint H = spin(M_PI/S7) * xpush(f) * C0;
|
|
ld v1 = intval(H, C0), v2 = intval(H, xpush(tessf) * C0);
|
|
if(v1 < v2) fmin = f; else fmax = f;
|
|
}
|
|
hcrossf = fmin;
|
|
crossf = purehepta ? tessf : hcrossf;
|
|
|
|
fmin = 0, fmax = tessf;
|
|
for(int p=0; p<100; p++) {
|
|
ld f = (fmin+fmax) / 2;
|
|
hyperpoint H = xpush(f) * C0;
|
|
hyperpoint H1 = spin(2*M_PI/S7) * H;
|
|
hyperpoint H2 = xpush(tessf-f) * C0;
|
|
ld v1 = intval(H, H1), v2 = intval(H, H2);
|
|
if(v1 < v2) fmin = f; else fmax = f;
|
|
}
|
|
hexf = fmin;
|
|
|
|
// printf("hexf = %.6Lf cross = %.6Lf tessf = %.6Lf\n", hexf, crossf, tessf);
|
|
|
|
for(int i=0; i<S42; i++)
|
|
Crad[i] = spin(2*M_PI*i/S42) * xpush(.4) * C0;
|
|
for(int d=0; d<S7; d++)
|
|
heptmove[d] = spin(-d * ALPHA) * xpush(tessf) * spin(M_PI);
|
|
for(int d=0; d<S7; d++)
|
|
hexmove[d] = spin(-d * ALPHA) * xpush(-crossf)* spin(M_PI);
|
|
|
|
for(int d=0; d<S7; d++) invheptmove[d] = inverse(heptmove[d]);
|
|
for(int d=0; d<S7; d++) invhexmove[d] = inverse(hexmove[d]);
|
|
|
|
hexhexdist = hdist(xpush(crossf) * C0, spin(M_PI*2/S7) * xpush(crossf) * C0);
|
|
|
|
for(int i=0; i<S84; i++) spinmatrix[i] = spin(i * M_PI / S42);
|
|
}
|
|
|
|
transmatrix ddi(ld dir, ld dist) {
|
|
if(euclid)
|
|
return eupush(cos(M_PI*dir/S42) * dist, -sin(M_PI*dir/S42) * dist);
|
|
else
|
|
return spin(M_PI*dir/S42) * xpush(dist) * spin(-M_PI*dir/S42);
|
|
}
|
|
|
|
hyperpoint ddi0(ld dir, ld dist) {
|
|
if(euclid)
|
|
return hpxy(cos(M_PI*dir/S42) * dist, -sin(M_PI*dir/S42) * dist);
|
|
else
|
|
return xspinpush0(M_PI*dir/S42, dist);
|
|
}
|
|
|
|
namespace geom3 {
|
|
|
|
int tc_alpha=3, tc_depth=1, tc_camera=2;
|
|
|
|
ld depth = 1; // world below the plane
|
|
ld camera = 1; // camera above the plane
|
|
ld wall_height = .3;
|
|
ld slev = .08;
|
|
ld lake_top = .25, lake_bottom = .9;
|
|
ld rock_wall_ratio = .9;
|
|
ld human_wall_ratio = .7;
|
|
ld human_height;
|
|
|
|
ld highdetail = 8, middetail = 8;
|
|
|
|
// Here we convert between the following parameters:
|
|
|
|
// abslev: level below the plane
|
|
// lev: level above the world (abslev = depth-lev)
|
|
// projection: projection parameter
|
|
// factor: zoom factor
|
|
|
|
ld abslev_to_projection(ld abslev) {
|
|
if(sphere || euclid) return camera+abslev;
|
|
return tanh(abslev) / tanh(camera);
|
|
}
|
|
|
|
ld projection_to_abslev(ld proj) {
|
|
if(sphere || euclid) return proj-camera;
|
|
// tanh(abslev) / tanh(camera) = proj
|
|
return atanh(proj * tanh(camera));
|
|
}
|
|
|
|
ld lev_to_projection(ld lev) {
|
|
return abslev_to_projection(depth - lev);
|
|
}
|
|
|
|
ld projection_to_factor(ld proj) {
|
|
return lev_to_projection(0) / proj;
|
|
}
|
|
|
|
ld factor_to_projection(ld fac) {
|
|
return lev_to_projection(0) / fac;
|
|
}
|
|
|
|
ld lev_to_factor(ld lev) {
|
|
return projection_to_factor(lev_to_projection(lev));
|
|
}
|
|
ld factor_to_lev(ld fac) {
|
|
return depth - projection_to_abslev(factor_to_projection(fac));
|
|
}
|
|
|
|
// how should we scale at level lev
|
|
ld scale_at_lev(ld lev) {
|
|
if(sphere || euclid) return 1;
|
|
return cosh(depth - lev);
|
|
}
|
|
|
|
ld INFDEEP, BOTTOM, HELLSPIKE, LAKE, WALL,
|
|
SLEV[4], FLATEYE,
|
|
LEG1, LEG, LEG3, GROIN, GROIN1, GHOST,
|
|
BODY, NECK1, NECK, NECK3, HEAD,
|
|
ABODY, AHEAD, BIRD;
|
|
|
|
string invalid;
|
|
|
|
void compute() {
|
|
// tanh(depth) / tanh(camera) == vid.alpha
|
|
invalid = "";
|
|
|
|
if(tc_alpha < tc_depth && tc_alpha < tc_camera)
|
|
vid.alpha = tanh(depth) / tanh(camera);
|
|
else if(tc_depth < tc_alpha && tc_depth < tc_camera) {
|
|
ld v = vid.alpha * tanh(camera);
|
|
if(v<-1 || v>1) invalid = "cannot adjust depth", depth = camera;
|
|
else depth = atanh(v);
|
|
}
|
|
else {
|
|
ld v = tanh(depth) / vid.alpha;
|
|
if(v<-1 || v>1) invalid = "cannot adjust camera", camera = depth;
|
|
else camera = atanh(v);
|
|
}
|
|
|
|
if(fabs(vid.alpha) < 1e-6) invalid = "does not work with perfect Klein";
|
|
|
|
if(invalid != "") {
|
|
INFDEEP = .7;
|
|
BOTTOM = .8;
|
|
HELLSPIKE = .85;
|
|
LAKE = .9;
|
|
WALL = 1.25;
|
|
SLEV[0] = 1;
|
|
SLEV[1] = 1.08;
|
|
SLEV[2] = 1.16;
|
|
SLEV[3] = 1.24;
|
|
FLATEYE = 1.03;
|
|
LEG1 = 1.025;
|
|
LEG = 1.05;
|
|
LEG3 = 1.075;
|
|
GROIN = 1.09;
|
|
GROIN1 = 1.105;
|
|
GHOST = 1.1;
|
|
BODY = 1.15;
|
|
NECK1 = 1.16;
|
|
NECK = 1.17;
|
|
NECK3 = 1.18;
|
|
HEAD = 1.19;
|
|
ABODY = 1.08;
|
|
AHEAD = 1.12;
|
|
BIRD = 1.20;
|
|
}
|
|
else {
|
|
INFDEEP = (euclid || sphere) ? 0.01 : lev_to_projection(0) * tanh(camera);
|
|
WALL = lev_to_factor(wall_height);
|
|
|
|
human_height = human_wall_ratio * wall_height;
|
|
|
|
LEG1 = lev_to_factor(human_height * .1);
|
|
LEG = lev_to_factor(human_height * .2);
|
|
LEG3 = lev_to_factor(human_height * .3);
|
|
GROIN = lev_to_factor(human_height * .4);
|
|
GROIN1= lev_to_factor(human_height * .5);
|
|
BODY = lev_to_factor(human_height * .6);
|
|
NECK1 = lev_to_factor(human_height * .7);
|
|
NECK = lev_to_factor(human_height * .8);
|
|
NECK3 = lev_to_factor(human_height * .9);
|
|
HEAD = lev_to_factor(human_height);
|
|
|
|
ABODY = lev_to_factor(human_height * .4);
|
|
AHEAD = lev_to_factor(human_height * .6);
|
|
BIRD = lev_to_factor((human_wall_ratio+1)/2 * wall_height * .8);
|
|
GHOST = lev_to_factor(human_height * .5);
|
|
FLATEYE = lev_to_factor(human_height * .15);
|
|
|
|
slev = rock_wall_ratio * wall_height / 3;
|
|
for(int s=0; s<=3; s++)
|
|
SLEV[s] = lev_to_factor(rock_wall_ratio * wall_height * s/3);
|
|
LAKE = lev_to_factor(-lake_top);
|
|
HELLSPIKE = lev_to_factor(-(lake_top+lake_bottom)/2);
|
|
BOTTOM = lev_to_factor(-lake_bottom);
|
|
}
|
|
}
|
|
}
|
|
|
|
void initgeo() {
|
|
// printf("%Lf\n", (ld) hdist0(xpush(-1)*ypush(0.01)*xpush(1)*C0));
|
|
precalc();
|
|
}
|