1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-14 01:14:48 +00:00
hyperrogue/pattern2.cpp

1764 lines
55 KiB
C++

// HyperRogue patterns: compute codes for actual cells
// Copyright (C) 2011-2017 Zeno Rogue, see 'hyper.cpp' for details
int eupattern(cell *c) {
int v = cell_to_vec(c);
if(a4) {
int x, y;
tie(x,y) = vec_to_pair(v);
return ((x&1) + 2*(y&1)) % 3;
}
else {
return gmod(v*2, 3);
}
}
int eupattern4(cell *c) {
int v = cell_to_vec(c);
int x, y;
tie(x,y) = vec_to_pair(v);
return (x&1) + ((y&1)) * 2;
}
bool ishept(cell *c) {
// EUCLIDEAN
if(euclid) return eupattern(c) == 0;
else return c->type != S6;
}
bool ishex1(cell *c) {
// EUCLIDEAN
if(euclid) return eupattern(c) == 1;
else return c->type != S6;
}
int emeraldval(cell *c) {
if(euclid) return eupattern(c);
if(sphere) return 0;
if(ctof(c))
return c->master->emeraldval >> 3;
else {
return emerald_hexagon(
emeraldval(createMov(c,0)),
emeraldval(createMov(c,2)),
emeraldval(createMov(c,4))
);
}
}
// === FIFTYVALS ===
unsigned bitmajority(unsigned a, unsigned b, unsigned c) {
return (a&b) | ((a^b)&c);
}
int eufifty(cell *c) {
if(torus) {
if(c->land == laWildWest) return cell_to_vec(c) % 37;
else return cell_to_vec(c) % 27;
}
int x, y;
tie(x,y) = cell_to_pair(c);
int ix = x + 99999 + y;
int iy = y + 99999;
if(c->land == laWildWest)
return (ix + iy * 26 + 28) % 37;
else {
ix += (iy/3) * 3;
iy %= 3; ix %= 9;
return iy * 9 + ix;
}
}
int fiftyval(cell *c) {
if(euclid) return eufifty(c) * 32;
if(sphere || S7>7 || S6>6) return 0;
if(ctof(c))
return c->master->fiftyval;
else {
return bitmajority(
fiftyval(createMov(c,0)),
fiftyval(createMov(c,2)),
fiftyval(createMov(c,4))) + 512;
}
}
int cdist50(cell *c) {
if(sphere || S7>7 || S6>6) return 0;
if(euclid) {
if(c->land == laWildWest)
return "0123333332112332223322233211233333322"[eufifty(c)] - '0';
else return "012333321112322232222321123"[eufifty(c)] - '0';
}
if(c->type != 6) return cdist50(fiftyval(c));
int a0 = cdist50(createMov(c,0));
int a1 = cdist50(createMov(c,2));
int a2 = cdist50(createMov(c,4));
if(a0 == 0 || a1 == 0 || a2 == 0) return 1;
return a0+a1+a2-5;
}
int land50(cell *c) {
if(c->type != 6) return land50(fiftyval(c));
else if(sphere || euclid) return 0;
else {
if(cdist50(createMov(c,0)) < 3) return land50(createMov(c,0));
if(cdist50(createMov(c,2)) < 3) return land50(createMov(c,2));
if(cdist50(createMov(c,4)) < 3) return land50(createMov(c,4));
return 0;
}
}
int polara50(cell *c) {
if(c->type != 6) return polara50(fiftyval(c));
else if(sphere || euclid || S7>7 || S6>6) return 0;
else {
if(cdist50(createMov(c,0)) < 3) return polara50(createMov(c,0));
if(cdist50(createMov(c,2)) < 3) return polara50(createMov(c,2));
if(cdist50(createMov(c,4)) < 3) return polara50(createMov(c,4));
return 0;
}
}
int polarb50(cell *c) {
if(euclid) return true;
if(c->type != 6) return polarb50(fiftyval(c));
else if(sphere || euclid || S7>7 || S6>6) return true;
else {
if(cdist50(createMov(c,0)) < 3) return polarb50(createMov(c,0));
if(cdist50(createMov(c,2)) < 3) return polarb50(createMov(c,2));
if(cdist50(createMov(c,4)) < 3) return polarb50(createMov(c,4));
return 0;
}
}
int elhextable[28][3] = {
{0,1,2}, {1,2,9}, {1,9,-1}, {1,8,-1}, {1,-1,-1}
};
int fiftyval049(cell *c) {
if(euclid) return fiftyval(c) / 32;
else if(ctof(c)) {
int i = fiftyval(c) / 32;
if(i <= 7) return i;
vector<int> allcodes;
for(int k=0; k<7; k++) {
cell *c2 = createStep(c->master, k)->c7;
if(polara50(c2) == polara50(c) && polarb50(c2) == polarb50(c))
allcodes.push_back(fiftyval049(c2));
}
int d = allcodes[1] - allcodes[0];
if(d == -1 || d == 6) swap(allcodes[0], allcodes[1]);
// printf("%d,%d: %d\n", allcodes[0], allcodes[1], allcodes[0] + 7);
return allcodes[0] + 7;
}
else if(sphere) return 0;
else {
int a[3], qa=0;
int pa = polara50(c), pb = polarb50(c);
for(int i=0; i<6; i+=2) {
cell *c2 = c->mov[i];
if(polara50(c2) == pa && polarb50(c2) == pb)
a[qa++] = fiftyval049(c2);
}
// 0-1-2
sort(a, a+qa);
if(qa == 1) return 43+a[0]-1;
if(qa == 2 && a[1] == a[0]+7) return 36+a[0]-1;
if(qa == 2 && a[1] != a[0]+7) return 29+a[0]-1;
// 3: zgodnie
// 1: zgodnie
// 0: przeciwnie
// 2: przeciwnie
// 168:
if(a[1] == 1 && a[2] == 7)
return 15 + 6; // (polarb50(c) ? 0 : 6);
if(a[2] >= 1 && a[2] <= 7) {
return 15 + a[1] - 1; // (polarb50(c) ? a[1]%7 : a[1]-1);
}
if(a[0] == 1 && a[1] == 7 && a[2] == 8)
return 22;
if(a[0] == 1 && a[1] == 7 && a[2] == 14)
return 22;
if(a[1] <= 7 && a[2] >= 8)
return 22 + a[1]-1;
return 0;
}
}
int fiftyval200(cell *c) {
int i = fiftyval049(c);
i *= 4;
if(polara50(c)) i|=1;
if(polarb50(c)) i|=2;
return i;
}
/*
{0,1,2} 15+0..15+6
{1,2,9},22+0..22+6
{1,9} 29+0..29+6
{1,8} 36+0..36+6
{1} 43+0..43+6
*/
// zebraval
int dir_truncated457(cell *c) {
int wset = 0;
int has1 = 0;
for(int i=0; i<4; i++) {
int z = zebra40(createMov(c, i*2));
if(z&1) has1 = 1;
if(z&2) wset |= (1<<i);
}
if(wset == 0) return -8-has1;
if(wset == 15) return -10-has1;
if(wset == 3) return 1;
if(wset == 6) return 3;
if(wset == 12) return 5;
if(wset == 9) return 7;
return 0;
}
int val46(cell *c);
int zebra40(cell *c) {
if(euclid) return eupattern(c);
else if(a46) {
int v = val46(c);
if(v<4) return v;
else return 4+(v-4)/2;
}
else if(ctof(c)) return (c->master->zebraval/10);
else if(a4) {
int ws = dir_truncated457(c);
if(ws < 0) return -ws;
int tot = 0;
array<int, 4> zebras;
for(int i=0; i<4; i++) {
zebras[i] = zebra40(createMov(c, i*2));
tot += zebras[i];
}
// break cycles
int cod = 0;
int mo = 0; for(int i=0; i<4; i++) if(zebras[i] < zebras[mo]) mo = i;
for(int i=0; i<4; i++) for(int j=1; j<i; j++)
if(zebras[(mo+i)&3] < zebras[(mo+j)&3]) cod ^= 4;
if(tot == 0+2+4+6) return 16+cod;
if(tot == 1+3+5+7) return 19+cod;
if(tot == 0+1+2+3) return 18+cod;
if(tot == 4+5+6+7) return 17+cod;
return 24;
}
else if(sphere) return 0;
else if(euclid) return eupattern(c);
else if(S3 == 4 && S7 == 6) {
return 8 + ((c->master->zebraval / 10 + c->spin(0))%2) * 2;
}
else {
int ii[3], z;
ii[0] = (c->mov[0]->master->zebraval/10);
ii[1] = (c->mov[2]->master->zebraval/10);
ii[2] = (c->mov[4]->master->zebraval/10);
for(int r=0; r<2; r++)
if(ii[1] < ii[0] || ii[2] < ii[0])
z = ii[0], ii[0] = ii[1], ii[1] = ii[2], ii[2] = z;
for(int i=0; i<28; i++)
if(zebratable6[i][0] == ii[0] && zebratable6[i][1] == ii[1] &&
zebratable6[i][2] == ii[2]) {
int ans = 16+i;
// if(ans >= 40) ans ^= 2;
// if(ans >= 4 && ans < 16) ans ^= 2;
return ans;
}
return 0;
}
}
int zebra3(cell *c) {
if(c->type != 6) return (c->master->zebraval/10)/4;
else if(sphere || S7>7 || S6>6) return 0;
else {
int ii[3];
ii[0] = (c->mov[0]->master->zebraval/10)/4;
ii[1] = (c->mov[2]->master->zebraval/10)/4;
ii[2] = (c->mov[4]->master->zebraval/10)/4;
if(ii[0] == ii[1]) return ii[0];
if(ii[1] == ii[2]) return ii[1];
if(ii[2] == ii[0]) return ii[2];
return 0;
}
}
namespace fieldpattern {
pair<int, bool> fieldval(cell *c) {
if(ctof(c)) return make_pair(c->master->fieldval, false);
else return make_pair(btspin(c->master->fieldval, c->spin(0)), true);
}
int fieldval_uniq(cell *c) {
if(sphere) {
if(ctof(c)) return c->master->fieldval;
else return createMov(c, 0)->master->fieldval + 256 * createMov(c,2)->master->fieldval + (1<<16) * createMov(c,4)->master->fieldval;
}
else if(torus) {
return decodeId(c->master);
}
else if(euclid) {
return torusconfig::vec_to_id(cell_to_vec(c));
}
if(ctof(c)) return c->master->fieldval/S7;
else {
int z = 0;
for(int u=0; u<S6; u+=2)
z = max(z, btspin(createMov(c, u)->master->fieldval, c->spin(u)));
return -1-z;
}
}
int fieldval_uniq_rand(cell *c, int randval) {
if(sphere || torus || euclid)
// we do not care in these cases
return fieldval_uniq(c);
if(ctof(c)) return currfp.gmul(c->master->fieldval, randval)/7;
else {
int z = 0;
for(int u=0; u<6; u+=2)
z = max(z, btspin(currfp.gmul(createMov(c, u)->master->fieldval, randval), c->spin(u)));
return -1-z;
}
}
int subpathid = currfp.matcode[currfp.strtomatrix("RRRPRRRRRPRRRP")];
int subpathorder = currfp.order(currfp.matrices[subpathid]);
pair<int, int> subval(cell *c, int _subpathid = subpathid, int _subpathorder = subpathorder) {
if(!ctof(c)) {
auto m = subval(createMov(c, 0));
for(int u=2; u<S6; u+=2)
m = min(m, subval(createMov(c, u)));
return m;
}
else {
pair<int, int> pbest, pcur;
pcur.first = c->master->fieldval;
pcur.second = 0;
pbest = pcur;
for(int i=0; i<_subpathorder; i++) {
pcur.first = currfp.gmul(pcur.first, _subpathid);
pcur.second++;
if(pcur < pbest) pbest = pcur;
}
return pbest;
}
}
}
int getHemisphere(cell *c, int which) {
if(torus) return 0;
if(ctof(c)) {
int id = c->master->fiftyval;
if(S7 == 5) {
int hemitable[3][12] = {
{ 6, 3, 3, 3, 3, 3,-6,-3,-3,-3,-3,-3},
{ 6, 3, 6, 3, 0, 0,-6,-3,-6,-3, 0, 0},
{-3, 0, 3, 0,-6,-6, 3, 0,-3, 0, 6, 6}
};
return hemitable[which][id];
}
else if(S7 == 4) {
int hemitable[3][6] = {
{ 2, 2, 2,-1,-1,-1},
{ 2,-1, 2, 2,-1,-1},
{ 2,-1,-1, 2, 2,-1},
};
return hemitable[which][id];
}
else if(S7 == 3) {
int hemitable[3][4] = {
{ 2, 2,-1,-1},
{ 2,-1, 2,-1},
{ 2,-1,-1, 2},
};
return hemitable[which][id];
}
else return 0;
}
else {
int score = 0;
for(int i=0; i<6; i+=2)
score += getHemisphere(c->mov[i], which) * (c->mirror(i) ? -1 : 1);
return score/3;
}
}
namespace patterns {
void valSibling(cell *c, patterninfo& si, int sub, int pat) {
if(ctof(c)) {
int d = c->master->fieldval;
si.id = (d < siblings[d]) ? 0 : 1;
if(sub & SPF_ROT) si.id = 0;
for(int i=0; i<S7; i++) {
int di = c->master->move[i]->fieldval;
if(di == siblings[d]) si.dir = i;
}
si.reflect = false;
}
else {
int ids = 0, tids = 0, td = 0;
for(int i=0; i<S3; i++) {
int d = c->mov[i*2]->master->fieldval;
ids |= (1<<d); tids += d;
}
for(int i=0; i<S3; i++) {
int d = c->mov[i*2]->master->fieldval;
if(ids & (1<<siblings[d])) td += d;
}
if(td) {
si.id = 4;
for(int i=0; i<S3; i++) {
int d = c->mov[i*2]->master->fieldval;
if(!(ids & (1<<siblings[d]))) si.dir = 2*i;
}
/* if(!(sub & SPF_ROT)) {
int d0 = c->mov[(si.dir+2)%c->type]->master->fieldval;
if(d0 < siblings[d0]) si.id += 8;
} */
si.reflect = false;
}
else {
si.id = 8;
si.dir = 0; // whatever
patterninfo si2;
valSibling(c->mov[0], si2, sub, pat);
int di = si2.dir - c->spin(0);
di %= S7;
if(di<0) di += S7;
if(pat == PAT_SIBLING) si.reflect = di > S7/2;
if(sub & SPF_ROT) si.symmetries = 2;
}
}
}
int downdir(cell *c, cellfunction *cf = coastvalEdge) {
cell *c2 = chosenDown(c, 1, 1, cf);
if(!c2) return 0;
return neighborId(c, c2);
}
void applySym0123(int& i, int sub) {
bool sym01 = sub & SPF_SYM01;
bool sym02 = sub & SPF_SYM02;
bool sym03 = sub & SPF_SYM03;
if((sym01?1:0)+(sym02?1:0)+(sym03?1:0) >= 2) i &= ~3;
if(sym01 && (i&1)) i ^= 1;
if(sym02 && (i&2)) i ^= 2;
if(sym03 && (i&2)) i ^= 3;
}
void applyAlt(patterninfo& si, int sub, int pat) {
if(sub & SPF_ALTERNATE) {
si.id += 4;
si.id %= 12;
}
if(pat == PAT_COLORING && (sub & SPF_FOOTBALL)) {
if(si.id == 4) si.dir++;
si.id = !si.id;
if(si.id && (sub & SPF_EXTRASYM))
si.symmetries = si.id ? 1 : 2;
return;
}
}
void val46(cell *c, patterninfo &si, int sub, int pat) {
if(ctof(c)) {
si.id = c->master->emeraldval >> 1;
applySym0123(si.id, sub);
if(sub & SPF_CHANGEROT)
si.dir = (c->master->emeraldval&1);
else
si.dir = (c->master->emeraldval&1) ^ (c->master->emeraldval>>1);
si.symmetries = 2;
applyAlt(si, sub, pat);
/* printf("[%3d] ", c->master->emeraldval);
for(int i=0; i<6; i++) printf("%2d", val46(createMov(c, i)));
printf("\n"); */
}
else {
si.id = ((c->master->emeraldval & 1) ^ ((c->master->emeraldval & 2)>>1) ^ (c->spin(0)&1)) ? 8 : 4;
si.dir = ((c->mov[0]->master->emeraldval + c->spin(0)) & 1) ? 2 : 0;
if(createMov(c, si.dir)->master->emeraldval & 4)
si.dir += 4;
if((sub & SPF_TWOCOL) && (pat == PAT_COLORING)) si.id = 4;
else if(pat == PAT_COLORING && si.id == 4) si.dir++;
if(sub & SPF_SYM01) si.symmetries = 2;
else if(sub & SPF_SYM03) si.symmetries = 2;
else if(sub & SPF_SYM02) si.symmetries = 4;
applyAlt(si, sub, pat);
}
}
// if(a46) return patterndir46(c, w == PAT_ZEBRA ? 3 : w == PAT_PALACE ? 2 : 1);
int inr(int a, int b, int c) { return a >= b && a < c; }
void val457(cell *c, patterninfo &si, int sub) {
si.id = zebra40(c);
if(inr(si.id, 8, 12)) si.symmetries = 4;
applySym0123(si.id, sub);
if(sub & SPF_ROT) {
if(si.id >= 4 && si.id < 7) si.id -= 4;
if(si.id >= 20 && si.id < 23) si.id -= 4;
}
if(ctof(c)) {
for(int i=0; i<c->type; i++)
if((zebra40(createStep(c->master, i + S7/2)->c7)&2) == (zebra40(createStep(c->master, i + 1 + S7/2)->c7)&2))
si.dir = i;
}
else {
int d = dir_truncated457(c);
if(d >= 0) si.dir = d;
else si.dir = (zebra40(createMov(c, 0)) & 4) ? 2 : 0;
}
}
void val38(cell *c, patterninfo &si, int sub, int pat) {
bool symRotation = sub & SPF_ROT;
if(ctof(c)) {
if(!symRotation)
si.id = (c->master->fiftyval >> 1) & 3;
else
si.id = 0;
if(nontruncated)
si.id *= 4;
else
si.id += 4;
si.dir = (pat == PAT_COLORING ? 1 : 0) + (c->master->fiftyval | (c->master->fiftyval & 8 ? 0 : 2));
si.symmetries = 2;
si.id += 8;
si.id %= 12;
applyAlt(si, sub, pat);
}
else {
si.id = 8 * ((c->master->fiftyval & 1) ^ (c->spin(0) & 1));
for(int i=0; i<c->type; i+=2) {
int fv = (createMov(c, i)->master->fiftyval >> 1) & 3;
if(fv == 0) si.dir = (si.id == 8 && pat == PAT_COLORING ? 1 : 0) + i;
}
if(symRotation) si.symmetries = 2;
si.id += 8;
si.id %= 12;
applyAlt(si, sub, pat);
}
}
void valEuclid6(cell *c, patterninfo &si, int sub) {
bool symRotation = sub & SPF_ROT;
si.id = ishept(c) ? 4 : ishex1(c) ? 8 : 0;
if(sub & SPF_CHANGEROT) {
si.dir = (zebra40(c)*4) % 6;
}
if(symRotation) si.id = 1;
if(euclid6 && (sub & SPF_FULLSYM))
si.symmetries = 1;
}
void valEuclid4(cell *c, patterninfo &si, int sub) {
si.id = eupattern4(c);
applySym0123(si.id, sub);
if(sub & SPF_CHANGEROT) {
int dirt[] = {0,1,3,2};
si.dir = dirt[si.id];
if(c->type == 8) si.dir *= 2;
}
if(sub & SPF_SYM03) {
si.id *= 4;
applyAlt(si, sub, PAT_COLORING);
}
else
si.symmetries = (sub & SPF_EXTRASYM) ? c->type/4 : c->type;
}
void val_all(cell *c, patterninfo &si, int sub, int pat) {
if(a46) val46(c, si, sub, pat);
else if(a38) val38(c, si, sub, pat);
else if(sphere) valSibling(c, si, sub, pat);
else if(euclid4) valEuclid4(c, si, sub);
else if(euclid) valEuclid6(c, si, sub);
else if(a4) val457(c, si, sub);
else si.symmetries = ctof(c) ? 1 : 2;
}
void val_warped(cell *c, patterninfo& si) {
int u = ishept(c)?1:0;
int qhex = 0;
for(int v=0; v<c->type; v++) if(c->mov[v] && !isWarped(c->mov[v])) {
u += 2;
if(!ishept(c->mov[v])) qhex++;
}
if(u == 8 && qhex == 2) si.id = 12;
else if(u == 2 && qhex == 1) si.id = 8;
else if(u == 6 && qhex == 2) si.id = 10;
si.id = u;
if(u == 6) {
for(int i=1; i<c->type; i+=2) if(!isWarped(createMov(c,i)))
si.dir = i;
}
else if(u == 2 || u == 3 || u == 8) {
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,i)))
si.dir = i;
}
else if(u == 4 || u == 10) {
for(int i=0; i<c->type; i+=2) if(!isWarped(createMov(c,i)))
si.dir = i;
if(u == 4)
si.reflect = !isWarped(createMov(c, (si.dir+1)%6));
}
else if(u == 6) {
for(int i=1; i<c->type; i+=2) if(!isWarped(createMov(c,i)))
si.dir = i;
}
else if(u == 5) {
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,(i+3)%7)) && !isWarped(createMov(c,(i+4)%7)))
si.dir = i;
}
else if(u == 9) {
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,(i+2)%7)) && !isWarped(createMov(c,(i+5)%7)))
si.dir = i;
}
else if(u == 11) {
for(int i=0; i<c->type; i++) if(isWarped(createMov(c,(i)%7)) && isWarped(createMov(c,(i+1)%7)))
si.dir = i;
}
else if(u == 12) {
for(int i=0; i<c->type; i+=2) if(isWarped(createMov(c,i))) {
si.dir = i;
si.reflect = !isWarped(createMov(c, (i+1)%6));
}
}
else if(u == 7) {
for(int i=0; i<c->type; i++) if(!isWarped(createMov(c,(i+1)%7)) && !isWarped(createMov(c,(i+6)%7)))
si.dir = i;
}
}
void val_nopattern(cell *c, patterninfo& si, int sub) {
// use val_all for nicer rotation
val_all(c, si, 0, 0);
// get id:
if(stdhyperbolic && isWarped(c))
val_warped(c, si);
else {
si.id = ishept(c) ? 1 : 0;
if(euclid) {
si.dir = ishex1(c) ? 0 : 3;
if(ctof(c)) si.symmetries = 3;
if(subpattern_flags & SPF_EXTRASYM)
si.symmetries /= 3;
if(subpattern_flags & SPF_FULLSYM)
si.symmetries = 1;
}
if(sphere && !(nontruncated) && !(S7 == 3))
si.symmetries = ctof(c) ? 1 : 2;
if(sphere && (sub & SPF_EXTRASYM)) {
si.symmetries = ctof(c) ? 1 : 2;
}
if(a38)
si.symmetries = (ctof(c) && !nontruncated) ? 1 : 2;
if(a457) {
si.symmetries = ctof(c) ? 1 : 2;
if(!ctof(c)) si.dir = 0;
}
if(a46) {
si.symmetries = ctof(c) ? 1 : 2;
}
}
}
char whichPattern = 0;
int subpattern_flags;
void val_threecolors(cell *c, patterninfo& si, int sub) {
int pcol = pattern_threecolor(c);
si.id = pcol * 4;
pcol = (pcol+1) % 3;
si.dir = -1;
for(int i=0; i<c->type; i++)
if(pattern_threecolor(createMov(c, i)) == pcol) {
if(si.dir == -1) si.dir = i;
else {
si.symmetries = i - si.dir;
break;
}
}
if(euclid6 && !(sub & SPF_CHANGEROT)) {
si.dir = (zebra40(c)*4) % 6;
}
if(euclid6 && (sub & SPF_CHANGEROT)) si.dir = 0;
if(sub & SPF_ROT) si.id = 1;
if(euclid6 && !(sub & SPF_EXTRASYM)) {
si.symmetries = 6;
}
if(euclid6 && (sub & SPF_FULLSYM))
si.symmetries = 1;
if(S7 == 4)
applyAlt(si, sub, PAT_COLORING);
}
patterninfo getpatterninfo(cell *c, char pat, int sub) {
bool symRotation = sub & SPF_ROT;
// bool sym0 = sub & (SPF_SYM01 | SPF_SYM02 | SPF_SYM03);
patterninfo si;
si.dir = 0; si.reflect = false; si.id = ctof(c);
si.symmetries = c->type;
if(pat == PAT_ZEBRA && stdhyperbolic) {
si.id = zebra40(c); // 4 to 43
int t4 = si.id>>2, tcdir = 0;
if(nontruncated) tcdir = si.id^1;
else if(t4 == 10) tcdir = si.id-20;
else if(t4 >= 4 && t4 < 7) tcdir = 40 + (si.id&3);
else if(t4 >= 1 && t4 < 4) tcdir = si.id+12;
else if(t4 >= 7 && t4 < 10) tcdir = si.id-24;
for(int i=0; i<c->type; i++) if(c->mov[i] && zebra40(c->mov[i]) == tcdir)
si.dir = i;
applySym0123(si.id, sub);
if(symRotation) {
if(si.id >= 8 && si.id < 12) si.id -= 4;
if(si.id >= 12 && si.id < 16) si.id -= 8;
if(si.id >= 20 && si.id < 24) si.id -= 4;
if(si.id >= 24 && si.id < 28) si.id -= 8;
if(si.id >= 32 && si.id < 36) si.id -= 4;
if(si.id >= 36 && si.id < 40) si.id -= 8;
}
if(si.id >= 40 && si.id < 44 && symRotation)
si.symmetries = 2;
if(si.id >= 40 && si.id < 44 && (sub & (SPF_SYM02 | SPF_SYM03)))
si.symmetries = 2;
}
else if(pat == PAT_EMERALD && (stdhyperbolic || a38)) {
si.id = emeraldval(c); // 44 to 99
if(!euclid) {
int tcdir = 0, tbest = (si.id&3);
for(int i=0; i<c->type; i++) {
cell *c2 = c->mov[i];
if(c2) {
int t2 = emeraldval(c2);
if((si.id&3) == (t2&3) && t2 > tbest)
tbest = t2, tcdir = i;
}
}
si.dir = tcdir;
}
applySym0123(si.id, sub);
if(si.id >= 44 && si.id < 48)
si.symmetries = 2;
}
else if(pat == PAT_PALACE && stdhyperbolic) {
si.id = fiftyval200(c);
si.reflect = polara50(c);
int look_for = -1;
int shft = 0;
if(inr(si.id, 0, 4)) {
look_for = si.id + (nontruncated ? 4 : 60);
if(symRotation) si.symmetries = 1;
}
else if(inr(si.id, 4, 32)) look_for = si.id + (nontruncated ? 28 : 168);
else if(inr(si.id, 32, 60)) look_for = si.id + (nontruncated ? -28 : 112);
else if(inr(si.id, 60, 88)) look_for = si.id - 56, shft = si.reflect ? 1 : 5;
else if(inr(si.id, 88, 116)) look_for = si.id - 84, shft = 3;
else if(inr(si.id, 116, 144)) look_for = si.id + 56;
else if(inr(si.id, 144, 172)) look_for = si.id + 28;
else if(inr(si.id, 172, 200)) look_for = si.id - 28;
si.dir = -1;
for(int i=0; i<c->type; i++) {
cell *c2 = createMov(c, i);
if(fiftyval200(c2) == look_for)
si.dir = (i + shft) % c->type;
}
if(si.dir == -1) {
si.dir = 0;
if(c->cpdist <= 1) printf("Not found for ID = %d (lf=%d)\n", si.id, look_for);
c->item = itBuggy;
}
applySym0123(si.id, sub);
if(symRotation && si.id >= 4)
si.id -= ((si.id/4-1) % 7) * 4;
}
else if(pat == PAT_PALACE && euclid) {
si.id = fiftyval049(c);
si.symmetries = 6;
}
else if(pat == PAT_DOWN) {
si.id = towerval(c);
si.dir = downdir(c);
}
else if(pat == PAT_FIELD) {
if(euclid)
// use the torus ID
si.id = fieldpattern::fieldval_uniq(c);
else if(nontruncated)
// use the actual field codes
si.id = fieldpattern::fieldval(c).first;
else
// use the small numbers from windmap
si.id = windmap::getId(c);
// todo dir
}
else if(sphere && pat == PAT_SIBLING) {
val_all(c, si, sub, pat);
}
else if(a457 && pat == PAT_ZEBRA) {
val_all(c, si, sub, pat);
}
else if(pat == PAT_COLORING && (S7 == 4 || euclid)) {
val_threecolors(c, si, sub);
}
else if(pat == PAT_COLORING && (a46 || a38)) {
val_all(c, si, sub, pat);
}
else if(pat == PAT_CHESS) {
val_nopattern(c, si, sub);
si.id = celldist(c) & 1;
}
else
val_nopattern(c, si, sub);
return si;
}
}
int geosupport_threecolor() {
if(!nontruncated) {
if(S7 % 2) return 1;
return 2;
}
if((S7 % 2 == 0) && (S3 == 3))
return 2;
return 0;
}
int geosupport_graveyard() {
// always works in truncated geometries
if(!nontruncated) return 2;
// always works in patterns supporting three-color
return geosupport_threecolor();
}
int pattern_threecolor(cell *c) {
if(a38) {
patterns::patterninfo si;
patterns::val38(c, si, patterns::SPF_ROT, patterns::PAT_COLORING);
return si.id >> 2;
}
if(a46 && !nontruncated) {
patterns::patterninfo si;
patterns::val46(c, si, 0, patterns::PAT_COLORING);
int i = si.id;
return i >> 2;
}
if(euclid) {
if(a4 && nontruncated) return eupattern4(c);
return eupattern(c) % 3;
}
if(S7 == 4 && S3 == 3) {
int codesN[6] = {0,1,2,1,2,0};
if(nontruncated)
return codesN[c->master->fiftyval];
if(ctof(c))
return 0;
else for(int i=0; i<3; i++) {
cell *c2 = c->mov[i];
if(c2->master->fiftyval == 0)
return 1 + (c->spin(i)&1);
if(c2->master->fiftyval == 5)
return 2 - (c->spin(i)&1);
}
}
if(stdhyperbolic && nontruncated) {
int z = zebra40(c);
if(z == 5 || z == 8 || z == 15) return 0;
if(z == 10 || z == 12 || z == 7) return 2;
if(z == 6 || z == 9) return 3;
if(z == 14 || z == 11) return 4;
return 1;
}
if(a46 && nontruncated) {
patterns::patterninfo si;
patterns::val46(c, si, 0, patterns::PAT_COLORING);
return si.id;
}
if(S7 == 5 && nontruncated) {
const int codes[12] = {1, 2, 0, 3, 2, 0, 0, 1, 3, 1, 2, 3};
return codes[c->master->fiftyval];
}
if(S7 == 3 && nontruncated)
return c->master->fiftyval;
return !ishept(c);
}
// returns ishept in the normal tiling;
// in the 'pure heptagonal' tiling, returns true for a set of cells
// which roughly corresponds to the heptagons in the normal tiling
bool pseudohept(cell *c) {
return pattern_threecolor(c) == 0;
}
bool warptype(cell *c) {
if(a4 && nontruncated) {
if(euclid)
return among(eupattern4(c), 1, 2);
else
return c->master->distance & 1;
}
else return pattern_threecolor(c) == 0;
}
namespace patterns {
int canvasback = linf[laCanvas].color >> 2;
int subcanvas;
bool displaycodes;
char whichShape = 0;
char whichCanvas = 0;
int generateCanvas(cell *c) {
if(whichCanvas == 'C' && !torus) {
using namespace fieldpattern;
int z = currfp.getdist(fieldval(c), make_pair(0,false));
if(z < currfp.circrad) return 0x00C000;
int z2 = currfp.getdist(fieldval(c), make_pair(currfp.otherpole,false));
if(z2 < currfp.disthep[currfp.otherpole] - currfp.circrad)
return 0x3000;
return 0x6000;
}
if(whichCanvas == 'D' && !torus) {
using namespace fieldpattern;
int z = currfp.getdist(fieldval(c), make_pair(0,false));
return 255 * (currfp.maxdist+1-z) / currfp.maxdist;
}
if(whichCanvas == 'N' && !torus) {
using namespace fieldpattern;
int z = currfp.getdist(fieldval(c), make_pair(0,false));
int z2 = currfp.getdist(fieldval(c), make_pair(currfp.otherpole,false));
if(z < z2) return 0x00C000;
if(z > z2) return 0xC00000;
return 0xCCCC00;
}
if(whichCanvas == 'S' && !torus) {
return 0x3F1F0F * fieldpattern::subval(c).second + 0x000080;
}
if(whichCanvas == 'g')
return canvasback;
if(whichCanvas == 'r')
return hrand(0xFFFFFF + 1);
if(whichCanvas == 'e') {
static unsigned int fcol[4] = { 0x404040, 0x800000, 0x008000, 0x000080 };
int fv = emeraldval(c);
return fcol[fv&3];
}
if(whichCanvas == 'a') {
static unsigned int fcol8[8] = {
0x800000,
0x503000,
0x206000,
0x007010,
0x004040,
0x001070,
0x200060,
0x500030
};
if(c->wall == waNone) {
int col = fcol8[land50(c)];
if(polara50(c)) col += 0x181818;
return col;
}
}
if(whichCanvas == 'b') {
static unsigned int fcol[4] = { 0x404040, 0x800000, 0x008000, 0x000080 };
return fcol[polara50(c) + 2 * polarb50(c)];
}
if(whichCanvas == 'z') {
static unsigned int fcol[4] = { 0xC0C0C0, 0xE0E0E0, 0x404040, 0x606060 };
int fv = zebra40(c);
return fcol[fv&3];
}
if(whichCanvas == 't') {
static unsigned int fcol[4] = { 0x804040, 0x408040, 0x404080, 0x808040 };
int fv = zebra40(c);
if(fv/4 == 4 || fv/4 == 6 || fv/4 == 5 || fv/4 == 10) fv ^= 2;
return fcol[fv&3];
}
if(whichCanvas == 'x') {
static unsigned int fcol[4] = { 0xC0C0C0, 0x800000, 0x008000, 0x000080 };
return fcol[zebra3(c)];
}
if(whichCanvas == 'w') {
static unsigned int fcol[2] = { 0x303030, 0xC0C0C0 };
return fcol[randpattern(c, subcanvas) ? 1 : 0];
}
if(whichCanvas == 'l') {
int col[4];
bool err = false;
for(int j=0; j<4; j++) {
col[j] = getCdata(c, j);
col[j] *= 3;
col[j] %= 240;
if(col[j] > 120) col[j] = 240 - col[j];
if(col[j] < -120) col[j] = -240 - col[j];
}
return (0x808080 + col[0] + (col[1] << 8) + (col[2] << 16)) >> (err?2:0);
}
if(whichCanvas == 'd') {
int col[4];
bool err = false;
for(int j=0; j<4; j++) {
col[j] = getCdata(c, j);
col[j] *= 6;
col[j] %= 240;
if(col[j] > 120) col[j] = 240 - col[j];
if(col[j] < -120) col[j] = -240 - col[j];
}
col[0] /= 8;
col[1] /= 8;
col[2] /= 8;
return (0x101010 + col[0] + (col[1] << 8) + (col[2] << 16)) >> (err?2:0);
}
if(whichCanvas == 'h') {
int col[4];
bool err = false;
for(int j=0; j<4; j++) {
col[j] = getCdata(c, j);
col[j] *= 6;
col[j] %= 240;
if(col[j] > 120) col[j] = 240 - col[j];
if(col[j] < -120) col[j] = -240 - col[j];
}
col[0] /= 4;
col[1] /= 4;
col[2] /= 4;
return (0x202020 + col[0] + (col[1] << 8) + (col[2] << 16)) >> (err?2:0);
}
if(whichPattern == 'c') {
return (c->master->distance&1) ? 0xC0C0C0 : 0x202020;
}
if(whichCanvas == 'F') {
return pseudohept(c) ? 0x202020 : 0xC0C0C0;
}
if(whichCanvas == 'T') {
int fv = pattern_threecolor(c);
return nestcolors[fv&7];
}
return canvasback;
}
void showPrePattern() {
dialog::init("predesigned patterns");
dialog::addItem(XLAT("single color"), 'g');
dialog::addItem(XLAT("random colors"), 'r');
if(stdeuc) {
dialog::addItem(XLAT("rainbow landscape"), 'l');
dialog::addItem(XLAT("dark rainbow landscape"), 'd');
}
dialog::addItem(XLAT("football"), 'F');
if(S3 == 4 && nontruncated)
dialog::addItem(XLAT("chessboard"), 'c');
dialog::addItem(XLAT("nice coloring"), 'T');
if(stdhyperbolic) {
dialog::addSelItem(XLAT("emerald pattern"), "emerald", 'e');
dialog::addSelItem(XLAT("four elements"), "palace", 'b');
dialog::addSelItem(XLAT("eight domains"), "palace", 'a');
dialog::addSelItem(XLAT("zebra pattern"), "zebra", 'z');
dialog::addSelItem(XLAT("four triangles"), "zebra", 't');
dialog::addSelItem(XLAT("three stripes"), "zebra", 'x');
}
if(a4)
dialog::addSelItem(XLAT("zebra pattern"), "coloring", 'z');
dialog::addSelItem(XLAT("random black-and-white"), "current", 'w');
if(!sphere) {
dialog::addSelItem(XLAT("field pattern C"), "field", 'C');
dialog::addSelItem(XLAT("field pattern D"), "field", 'D');
dialog::addSelItem(XLAT("field pattern N"), "field", 'N');
dialog::addSelItem(XLAT("field pattern S"), "field", 'S');
}
dialog::display();
keyhandler = [] (int sym, int uni) {
dialog::handleNavigation(sym, uni);
if(uni == 'g') {
static unsigned c = (canvasback << 8) | 0xFF;
static unsigned canvasbacks[] = {
6, 0xFFFFFFFF, 0x101010FF, 0x404040FF, 0x808080FF, 0x800000FF, unsigned(linf[laCanvas].color >> 2) << 8
};
dialog::openColorDialog(c, canvasbacks);
dialog::reaction = [] () {
whichCanvas = 'g';
canvasback = c >> 8;
firstland = specialland = laCanvas;
randomPatternsMode = false;
restartGame(0, false, true);
};
}
else if((uni >= 'a' && uni <= 'z') || (uni >= 'A' && uni <= 'Z')) {
whichCanvas = uni;
subcanvas = rand();
firstland = specialland = laCanvas;
randomPatternsMode = false;
restartGame(0, false, true);
if(uni == 'x' || uni == 'z' || uni == 't')
whichPattern = PAT_ZEBRA, subpattern_flags = SPF_SYM0123 | SPF_ROT;
if(uni == 'e')
whichPattern = PAT_EMERALD, subpattern_flags = SPF_SYM0123 | SPF_ROT;
if(uni == 'b')
whichPattern = PAT_PALACE, subpattern_flags = SPF_SYM0123 | SPF_ROT;
if(uni == 'z' && a46)
whichPattern = PAT_COLORING, subpattern_flags = SPF_CHANGEROT | SPF_SYM0123;
}
else if(doexiton(sym, uni)) popScreen();
};
}
void showPattern() {
cmode = sm::SIDE | sm::MAYDARK;
{
dynamicval<bool> dc(displaycodes, true);
gamescreen(0);
}
dialog::init();
if(stdhyperbolic || a4)
dialog::addBoolItem(XLAT("Zebra Pattern"), (whichPattern == PAT_ZEBRA), PAT_ZEBRA);
if(stdhyperbolic)
dialog::addBoolItem(XLAT("Emerald Pattern"), (whichPattern == PAT_EMERALD), PAT_EMERALD);
else if(a38)
dialog::addBoolItem(XLAT("broken Emerald Pattern"), (whichPattern == PAT_EMERALD), PAT_EMERALD);
if(stdhyperbolic || euclid)
dialog::addBoolItem(XLAT("Palace Pattern"), (whichPattern == PAT_PALACE), PAT_PALACE);
if(nontruncated && S3 == 4)
dialog::addBoolItem(XLAT("chessboard"), (whichPattern == PAT_CHESS), PAT_CHESS);
if(a38 || a46 || euclid || S3 == 4)
dialog::addBoolItem(XLAT("coloring"), (whichPattern == PAT_COLORING), PAT_COLORING);
if(sphere)
dialog::addBoolItem(XLAT("siblings"), (whichPattern == PAT_SIBLING), PAT_SIBLING);
if(euclid)
dialog::addBoolItem(XLAT("torus pattern"), (whichPattern == PAT_FIELD), PAT_FIELD);
else if(sphere)
dialog::addBoolItem(XLAT("single cells"), (whichPattern == PAT_FIELD), PAT_FIELD);
else
dialog::addBoolItem(XLAT("field pattern"), (whichPattern == PAT_FIELD), PAT_FIELD);
if(
(whichPattern == PAT_EMERALD && (stdhyperbolic || a38)) ||
(whichPattern == PAT_PALACE && stdhyperbolic) ||
(whichPattern == PAT_ZEBRA && stdhyperbolic) ||
(whichPattern == PAT_SIBLING && sphere) ||
(whichPattern == PAT_ZEBRA && a457)) {
dialog::addBoolItem(XLAT("rotational symmetry"), subpattern_flags & SPF_ROT, '0');
}
if((euclid && whichPattern == PAT_COLORING) ||
(a38 && whichPattern == PAT_COLORING) ||
(a4 && nontruncated && whichPattern == PAT_COLORING && !a46))
dialog::addBoolItem(XLAT("edit all three colors"), subpattern_flags & SPF_ROT, '0');
if(euclid && whichPattern == PAT_COLORING)
dialog::addBoolItem(XLAT("rotate the color groups"), subpattern_flags & SPF_CHANGEROT, '4');
if(a46 && whichPattern == PAT_COLORING)
dialog::addBoolItem(XLAT("rotate the color groups"), subpattern_flags & SPF_CHANGEROT, '4');
if(a46 && whichPattern == PAT_COLORING && !nontruncated)
dialog::addBoolItem(XLAT("edit both truncated colors"), subpattern_flags & SPF_TWOCOL, '5');
if(
(whichPattern == PAT_EMERALD && (stdhyperbolic || a38)) ||
(whichPattern == PAT_PALACE && stdhyperbolic) ||
(whichPattern == PAT_ZEBRA && stdhyperbolic) ||
(whichPattern == PAT_COLORING && a46) ||
(whichPattern == PAT_ZEBRA && a457)
) {
dialog::addBoolItem(XLAT("symmetry 0-1"), subpattern_flags & SPF_SYM01, '1');
dialog::addBoolItem(XLAT("symmetry 0-2"), subpattern_flags & SPF_SYM02, '2');
dialog::addBoolItem(XLAT("symmetry 0-3"), subpattern_flags & SPF_SYM03, '3');
}
if(euclid && among(whichPattern, PAT_COLORING, 0))
dialog::addBoolItem(XLAT("extra symmetries"), subpattern_flags & SPF_EXTRASYM, '=');
if(euclid && among(whichPattern, PAT_COLORING, 0))
dialog::addBoolItem(XLAT("full symmetry"), subpattern_flags & SPF_FULLSYM, '!');
if(a38 && nontruncated && whichPattern == 0) {
dialog::addBoolItem(XLAT("extra symmetries"), subpattern_flags & SPF_EXTRASYM, '=');
}
if(a46 && nontruncated && whichPattern == PAT_COLORING) {
dialog::addBoolItem(XLAT("extra symmetries"), subpattern_flags & SPF_EXTRASYM, '=');
}
if((a38 || (sphere && S7 == 4) || euclid4 || a46) && !nontruncated) {
dialog::addBoolItem(XLAT("alternate coloring"), subpattern_flags & SPF_ALTERNATE, '\'');
dialog::addBoolItem(XLAT("football pattern"), subpattern_flags & SPF_FOOTBALL, '*');
}
dialog::addBoolItem(XLAT("display pattern codes (full)"), displaycodes, 'd');
dialog::addBoolItem(XLAT("display only hexagons"), (whichShape == '6'), '6');
dialog::addBoolItem(XLAT("display only heptagons"), (whichShape == '7'), '7');
dialog::addBoolItem(XLAT("display the triheptagonal grid"), (whichShape == '8'), '8');
if(cheater || autocheat) dialog::addItem(XLAT("line patterns"), 'l');
else dialog::addInfo("enable the cheat mode to use line patterns");
if(!needConfirmation()) dialog::addItem(XLAT("predesigned patterns"), 'r');
else dialog::addInfo("start a new game to use predesigned patterns");
dialog::display();
keyhandler = [] (int sym, int uni) {
dialog::handleNavigation(sym, uni);
if(among(uni, PAT_EMERALD, PAT_PALACE, PAT_ZEBRA, PAT_DOWN, PAT_FIELD, PAT_COLORING, PAT_SIBLING, PAT_CHESS)) {
if(whichPattern == uni) whichPattern = 0;
else whichPattern = uni;
mapeditor::modelcell.clear();
}
else if(uni >= '0' && uni <= '5')
subpattern_flags ^= (1 << (uni - '0'));
else if(uni == '=')
subpattern_flags ^= SPF_EXTRASYM;
else if(uni == '\'') {
subpattern_flags ^= SPF_ALTERNATE;
subpattern_flags &= ~SPF_FOOTBALL;
}
else if(uni == '*') {
subpattern_flags ^= SPF_FOOTBALL;
subpattern_flags &= ~SPF_ALTERNATE;
}
else if(uni == '!') {
subpattern_flags ^= SPF_FULLSYM;
}
else if(uni == '6' || uni == '7' || uni == '8') {
if(whichShape == uni) whichShape = 0;
else whichShape = uni;
}
else if(uni == 'd') displaycodes = !displaycodes;
else if(uni == 'l' && (cheater || autocheat))
pushScreen(linepatterns::showMenu);
else if(uni == 'r' && !needConfirmation()) pushScreen(showPrePattern);
else if(doexiton(sym, uni)) popScreen();
};
}
bool compatible(cpatterntype oldp, cpatterntype newp) {
// larges are not incompatible between themselves
if(newp == cpLarge || newp == cpZebra)
return false;
// other cps are compatible with themselves
if(newp == oldp) return true;
// Single can be upgraded to everything
if(oldp == cpSingle) return true;
// Football can be upgraded to Three colors
if(oldp == cpFootball) return newp == cpThree;
// incompatible otherwise
return false;
}
struct changeable_pattern_geometry {
eGeometry geo;
bool nontrunc;
char whichPattern;
int subpattern_flags;
};
struct changeable_pattern {
string name;
vector<changeable_pattern_geometry> geometries;
};
vector<changeable_pattern> cpatterns = {
{"football", {
{gNormal, false, 0, 0},
{gSphere, false, 0, 0},
{gEuclid, false, 0, SPF_EXTRASYM},
{gOctagon, false, 0, 0},
{gOctagon, true, PAT_COLORING, SPF_FOOTBALL | SPF_EXTRASYM},
{g45, false, 0, 0},
{g46, false, 0, SPF_EXTRASYM},
{g47, false, 0, 0},
{gSmallSphere, false, 0, 0},
{gSmallSphere, true, PAT_COLORING, SPF_FOOTBALL | SPF_EXTRASYM},
{gTinySphere, false, 0, SPF_EXTRASYM},
{gEuclidSquare, false, 0, SPF_EXTRASYM},
}},
{"three colors", {
{gEuclid, false, PAT_COLORING, SPF_SYM0123 | SPF_EXTRASYM},
{gSmallSphere, false, PAT_COLORING, 0},
{gSmallSphere, false, PAT_COLORING, SPF_ALTERNATE},
{gSmallSphere, true, PAT_COLORING},
{gOctagon, false, PAT_COLORING, SPF_ROT | SPF_EXTRASYM},
{gOctagon, false, PAT_COLORING, SPF_ROT | SPF_EXTRASYM | SPF_ALTERNATE},
{gOctagon, true, PAT_COLORING, 0},
{gEuclidSquare, false, PAT_COLORING, SPF_SYM03 | SPF_EXTRASYM},
{gEuclidSquare, false, PAT_COLORING, SPF_SYM03 | SPF_EXTRASYM | SPF_ALTERNATE},
{g46, false, PAT_COLORING, SPF_SYM0123},
{g46, false, PAT_COLORING, SPF_SYM0123 | SPF_EXTRASYM | SPF_ALTERNATE}
}},
{"chessboard", {
{gEuclidSquare, true, PAT_CHESS, SPF_EXTRASYM},
{g45, true, PAT_CHESS, 0},
{g46, true, PAT_CHESS, 0},
{g47, true, PAT_CHESS, 0}
}},
{"single type", {
{gNormal, true, 0, 0},
{gSphere, true, 0, SPF_EXTRASYM},
{gEuclid, false, PAT_COLORING, SPF_EXTRASYM | SPF_ROT | SPF_FULLSYM},
{gOctagon, true, 0, SPF_EXTRASYM},
{g45, true, 0, 0},
{g46, true, 0, 0},
{g47, true, 0, 0},
{gSmallSphere, true, 0, SPF_EXTRASYM},
{gTinySphere, true, 0, SPF_EXTRASYM},
{gEuclidSquare, true, 0, SPF_EXTRASYM},
}},
{"large picture", {
{gNormal, false, PAT_PALACE, SPF_SYM0123},
{gNormal, true, PAT_PALACE, SPF_SYM0123},
{gElliptic, false, PAT_FIELD, 0},
{gElliptic, true, PAT_FIELD, 0},
{gEuclid, false, PAT_PALACE, 0}
}},
{"periodic patterns", {
{gNormal, false, PAT_ZEBRA, SPF_SYM0123 | SPF_ROT},
{gNormal, false, PAT_PALACE, SPF_SYM0123 | SPF_ROT},
{gNormal, false, PAT_EMERALD, SPF_SYM0123 | SPF_ROT},
{g46, true, PAT_COLORING, SPF_SYM0123 | SPF_CHANGEROT},
{g45, true, PAT_ZEBRA, SPF_SYM0123 | SPF_ROT},
{g47, true, PAT_ZEBRA, SPF_SYM0123 | SPF_ROT},
}}
};
cpatterntype cgroup, old_cgroup;
void showChangeablePatterns() {
cmode = sm::SIDE | sm::MAYDARK;
{
dynamicval<bool> dc(displaycodes, true);
gamescreen(0);
}
dialog::init();
for(int i=0; i<size(cpatterns); i++) {
dialog::addBoolItem(XLAT(cpatterns[i].name), cgroup == i, '0'+i);
#if CAP_TEXTURE
if(texture::tstate == texture::tsActive && !compatible(texture::cgroup, (cpatterntype) i))
dialog::lastItem().value = XLAT("BAD");
#endif
}
dialog::addBreak(100);
if(cgroup != cpUnknown && cgroup < size(cpatterns))
for(int j=0; j<size(cpatterns[cgroup].geometries); j++) {
auto &g = cpatterns[cgroup].geometries[j];
string s = XLAT(ginf[g.geo].name);
s += truncatenames[g.nontrunc];
if(g.subpattern_flags & SPF_ALTERNATE) s += " (alt)";
if(cgroup == cpZebra) {
if(g.whichPattern == PAT_PALACE) s += " (Palace)";
else if(g.whichPattern == PAT_EMERALD) s += " (Emerald)";
else s += " (Zebra)";
}
dialog::addBoolItem(s, geometry == g.geo && nontruncated == g.nontrunc && whichPattern == g.whichPattern && subpattern_flags == g.subpattern_flags, 'a'+j);
}
dialog::addBreak(100);
dialog::addItem("more tuning", 'r');
dialog::display();
keyhandler = [] (int sym, int uni) {
if(uni == 'r')
pushScreen(showPattern);
else if(uni >= '0' && uni < '0' + size(cpatterns))
cgroup = cpatterntype(uni - '0');
else if(cgroup != cpUnknown && uni >= 'a' && uni < 'a' + size(cpatterns[cgroup].geometries)) {
#if CAP_TEXTURE
auto old_tstate = texture::tstate;
auto old_tstate_max = texture::tstate_max;
#endif
auto &g = cpatterns[cgroup].geometries[uni - 'a'];
if(g.geo != geometry) { targetgeometry = g.geo; restartGame('g', false, true); }
if(g.nontrunc != nontruncated) restartGame('7', false, true);
whichPattern = g.whichPattern;
subpattern_flags = g.subpattern_flags;
#if CAP_TEXTURE
texture::remap(old_tstate, old_tstate_max);
#endif
}
else if(doexiton(sym, uni))
popScreen();
};
}
void computeCgroup() {
cgroup = cpUnknown;
for(int i=0; i<size(cpatterns); i++)
for(int j=0; j<size(cpatterns[i].geometries); j++) {
auto &g = cpatterns[i].geometries[j];
if(geometry == g.geo && nontruncated == g.nontrunc && whichPattern == g.whichPattern && subpattern_flags == g.subpattern_flags)
cgroup = cpatterntype(i);
}
old_cgroup = cgroup;
}
void pushChangeablePatterns() {
pushScreen(showChangeablePatterns);
computeCgroup();
}
}
namespace linepatterns {
int lessalpha(int col, int m) {
part(col, 0) /= m;
return col;
}
int lessalphaif(int col, bool b) {
return b?lessalpha(col, 4):col;
}
int lessalphaif(int col, bool b1, bool b2) {
if(b1) col = lessalpha(col, 2);
if(b2) col = lessalpha(col, 2);
return col;
}
struct {
int id;
const char *lpname;
unsigned int color;
} patterns[] = {
{patTriNet, "triangle grid: not rings", 0xFFFFFF00},
{patTriRings, "triangle grid: rings", 0xFFFFFF00},
{patHepta, "heptagonal grid", 0x0000C000},
{patRhomb, "rhombic tesselation", 0x0000C000},
{patTrihepta, "triheptagonal tesselation", 0x0000C000},
{patNormal, "normal tesselation", 0x0000C000},
{patBigTriangles, "big triangular grid", 0x00606000},
{patBigRings, "big triangles: rings", 0x0000C000},
{patTree, "underlying tree", 0x00d0d000},
{patAltTree, "circle/horocycle tree", 0xd000d000},
{patZebraTriangles, "zebra triangles", 0x40FF4000},
{patZebraLines, "zebra lines", 0xFF000000},
{patVine, "vineyard pattern", 0x8438A400},
{patPalacelike, "firewall lines", 0xFF400000},
{patPalace, "firewall lines: Palace", 0xFFD50000},
{patPower, "firewall lines: Power", 0xFFFF0000},
{0, NULL, 0}
};
void clearAll() {
for(int k=0; patterns[k].lpname; k++) patterns[k].color &= ~255;
}
bool any() {
for(int k=0; patterns[k].lpname; k++) if(patterns[k].color & 255) return true;
return false;
}
void setColor(ePattern id, int col) {
for(int k=0; patterns[k].lpname; k++)
if(patterns[k].id == id) patterns[k].color = col;
}
void switchAlpha(ePattern id, int col) {
for(int k=0; patterns[k].lpname; k++)
if(patterns[k].id == id) patterns[k].color ^= col;
}
void drawPattern(int id, int col, cell *c, const transmatrix& V) {
switch(id) {
case patZebraTriangles:
if(zebra40(c) / 4 == 10) {
bool all = true;
hyperpoint tri[3];
for(int i=0; i<3; i++) {
cell *c2 = createMov(c, i*2);
if(!gmatrix.count(c2)) all = false;
else tri[i] = tC0(gmatrix[c2]);
}
if(all) for(int i=0; i<3; i++)
queueline(tri[i], tri[(i+1)%3], col, 3);
}
break;
case patZebraLines:
if(!pseudohept(c)) for(int i=0; i<c->type; i+=2) {
cell *c2 = createMov(c, i);
int fv1 = zebra40(c);
if(fv1/4 == 4 || fv1/4 == 6 || fv1/4 == 5 || fv1/4 == 10) fv1 ^= 2;
int fv2 = zebra40(c2);
if(fv2/4 == 4 || fv2/4 == 6 || fv2/4 == 5 || fv2/4 == 10) fv2 ^= 2;
if((fv1&1) == (fv2&1)) continue;
double x = sphere?.3651:euclid?.2611:.2849;
queueline(V * ddspin(c,i,-S14) * xpush0(x),
V * ddspin(c,i,+S14) * xpush0(x),
col, 1);
}
break;
case patNormal: {
double x = sphere?.401:euclid?.3 : .328;
if(euclid || !pseudohept(c)) for(int t=0; t<c->type; t++)
if(euclid ? c->mov[t]<c : (((t^1)&1) || c->mov[t] < c))
queueline(V * ddspin(c,t,-S7) * xpush0(x),
V * ddspin(c,t,+S7) * xpush0(x),
col, 1);
break;
}
case patTrihepta:
if(!pseudohept(c)) for(int i=0; i<6; i++) {
cell *c2 = c->mov[i];
if(!c2 || !pseudohept(c2)) continue;
double x = sphere?.3651:euclid?.2611:.2849;
queueline(V * ddspin(c,i,-S14) * xpush0(x),
V * ddspin(c,i,+S14) * xpush0(x),
col, 1);
}
break;
case patTriNet:
forCellEx(c2, c) if(c2 > c) if(gmatrix.count(c2)) if(celldist(c) != celldist(c2)) {
queueline(tC0(V), gmatrix[c2]*C0,
darkena(backcolor ^ 0xFFFFFF, 0, col),
2);
}
break;
case patTriRings:
forCellEx(c2, c) if(c2 > c) if(gmatrix.count(c2) && celldist(c) == celldist(c2))
queueline(tC0(V), gmatrix[c2]*C0,
darkena(backcolor ^ 0xFFFFFF, 0, col),
2);
break;
case patHepta:
forCellEx(c2, c) if(c2 > c) if(gmatrix.count(c2) && pseudohept(c) == pseudohept(c2))
queueline(tC0(V), gmatrix[c2]*C0,
darkena(backcolor ^ 0xFFFFFF, 0, col),
2);
break;
case patRhomb:
forCellEx(c2, c) if(c2 > c) if(gmatrix.count(c2) && pseudohept(c) != pseudohept(c2))
queueline(tC0(V), gmatrix[c2]*C0,
darkena(backcolor ^ 0xFFFFFF, 0, col),
2);
break;
case patPalace: {
int a = polarb50(c);
if(pseudohept(c)) for(int i=0; i<7; i++) {
cell *c1 = createMov(c, (i+3) % 7);
cell *c2 = createMov(c, (i+4) % 7);
if(polarb50(c1) != a && polarb50(c2) != a)
queueline(V * ddspin(c,i,84*5/14) * xpush0(tessf/2),
V * ddspin(c,i,84*9/14) * xpush0(tessf/2),
col, 1);
}
break;
}
case patPalacelike:
if(pseudohept(c)) for(int i=0; i<7; i++)
queueline(V * ddspin(c,i,84*5/14) * xpush0(tessf/2),
V * ddspin(c,i,84*9/14) * xpush0(tessf/2),
col, 1);
break;
case patBigTriangles: {
if(pseudohept(c) && !euclid) for(int i=0; i<S7; i++)
if(c->master->move[i] < c->master) {
queueline(tC0(V), V*xspinpush0((nontruncated?M_PI:0) -2*M_PI*i/S7, tessf), col, 2);
}
break;
}
case patBigRings: {
if(pseudohept(c) && !euclid) for(int i=0; i<S7; i++)
if(c->master->move[i] && c->master->move[i] < c->master && c->master->move[i]->dm4 == c->master->dm4)
queueline(tC0(V), V*xspinpush0((nontruncated?M_PI:0) -2*M_PI*i/S7, tessf), col, 2);
break;
}
case patTree:
if(ctof(c) && !euclid)
queueline(tC0(V), V*ddi0(nontruncated?S42:0, tessf), col, 2);
break;
case patAltTree:
if(ctof(c) && !euclid && c->master->alt) {
for(int i=0; i<S7; i++)
if(c->master->move[i] && c->master->move[i]->alt == c->master->alt->move[0])
queueline(tC0(V), V*xspinpush0((nontruncated?M_PI:0) -2*M_PI*i/S7, tessf), col, 2);
}
break;
case patVine: {
int p = emeraldval(c);
double hdist = hdist0(heptmove[0] * heptmove[2] * C0);
if(pseudohept(c) && (p/4 == 10 || p/4 == 8))
for(int i=0; i<S7; i++) if(c->mov[i] && emeraldval(c->mov[i]) == p-4) {
queueline(tC0(V), V*tC0(heptmove[i]), col, 2);
queueline(tC0(V), V*tC0(spin(-i * ALPHA) * xpush(-hdist/2)), col, 2);
}
break;
}
case patPower: {
int a = emeraldval(c);
if(pseudohept(c) && a/4 == 8) for(int i=0; i<7; i++) {
heptagon *h1 = c->master->move[(i+1)%7];
heptagon *h2 = c->master->move[(i+6)%7];
if(!h1 || !h2) continue;
if(emeraldval(h1->c7)/4 == 8 && emeraldval(h2->c7)/4 == 8)
queueline(V * ddspin(c,i,84*5/14) * xpush0(tessf/2),
V * ddspin(c,i,84*9/14) * xpush0(tessf/2),
col, 1);
}
break;
}
}
}
void drawAll() {
if(any()) for(map<cell*, transmatrix>::iterator it = gmatrix.begin(); it != gmatrix.end(); it++) {
cell *c = it->first;
transmatrix& V = it->second;
for(int k=0; patterns[k].lpname; k++) {
int col = patterns[k].color;
if(!(col & 255)) continue;
int id = patterns[k].id;
drawPattern(id, col, c, V);
}
}
}
int numpat = 0;
void showMenu() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen(0);
dialog::init(XLAT("line patterns"));
for(numpat=0; patterns[numpat].lpname; numpat++)
dialog::addColorItem(XLAT(patterns[numpat].lpname), patterns[numpat].color, 'a'+numpat);
dialog::addBreak(50);
dialog::addItem(XLAT("exit menu"), 'v');
dialog::addBreak(50);
dialog::addInfo("change the alpha parameter to show the lines");
dialog::display();
keyhandler = [] (int sym, int uni) {
dialog::handleNavigation(sym, uni);
if(uni >= 'a' && uni < 'a' + numpat) {
dialog::openColorDialog(patterns[uni - 'a'].color, NULL);
dialog::dialogflags |= sm::MAYDARK | sm::SIDE;
}
else if(doexiton(sym,uni)) popScreen();
};
}
};
int val46(cell *c) {
patterns::patterninfo si;
patterns::val46(c, si, 0, 0);
return si.id;
}