1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-30 15:39:54 +00:00
hyperrogue/irregular.cpp
2023-01-27 00:27:10 +01:00

1090 lines
31 KiB
C++

// Hyperbolic Rogue -- Irregular (Voronoi) tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file irregular.cpp
* \brief Irregular (Voronoi) tilings
*/
#include "hyper.h"
namespace hr {
EX namespace irr {
EX int irrid;
#if CAP_IRR
EX ld density = 2;
EX ld quality = .2;
EX int place_attempts = 10;
EX int rearrange_max_attempts = 50;
EX int rearrange_less = 10;
EX int cellcount;
#if HDR
struct cellinfo {
cell *owner;
map<cell*, transmatrix> relmatrices;
vector<hyperpoint> jpoints;
hyperpoint p;
transmatrix pusher, rpusher;
vector<int> neid;
vector<int> spin;
vector<hyperpoint> vertices;
int localindex;
bool is_pseudohept;
int patterndir;
int generation;
};
#endif
EX map<cell*, int> cellindex;
EX vector<cellinfo> cells;
EX map<heptagon*, vector<int> > cells_of_heptagon;
int runlevel;
vector<ld> edgelens, distlens;
void make_cells_of_heptagon() {
cells_of_heptagon.clear();
for(int i=0; i<isize(cells); i++) {
auto &p1 = cells[i];
auto &vc = cells_of_heptagon[p1.owner->master];
p1.localindex = isize(vc);
vc.push_back(i);
}
}
string status[5];
EX hrmap *base;
EX euc::torus_config_full base_config;
bool gridmaking;
int rearrange_index;
bool cell_sorting;
EX int bitruncations_requested = 1;
EX int bitruncations_performed = 0;
int black_adjacent, white_three;
void set_relmatrices(cellinfo& ci) {
auto& all = base->allcells();
ci.relmatrices.clear();
for(auto c0: all) ci.relmatrices[c0] = calc_relative_matrix(c0, ci.owner, ci.p);
}
void rebase(cellinfo& ci) {
cell *cx = ci.owner;
virtualRebase(ci.owner, ci.p);
if(ci.owner != cx) {
printf("rebased %p to %p\n", hr::voidp(cx), hr::voidp(ci.owner));
set_relmatrices(ci);
}
}
void compute_jpoints() {
for(int i=0; i<isize(cells); i++) {
auto &ci = cells[i];
ci.pusher = rgpushxto0(ci.p);
ci.rpusher = gpushxto0(ci.p);
ci.jpoints.clear();
for(int j=0; j<isize(cells); j++) {
auto &cj = cells[j];
ci.jpoints.push_back(ci.rpusher * ci.relmatrices[cj.owner] * cj.p);
}
}
}
void bitruncate() {
int cc = isize(cells);
map<pair<int, int>, int> bitruncated_id;
for(int i=0; i<cc; i++) {
int v = isize(cells[i].vertices);
for(int j=0; j<v; j++) {
int last = cells[i].neid[(j+v-1)%v];
int next = cells[i].neid[j];
if(!bitruncated_id.count(make_pair(i, last))) {
bitruncated_id[make_pair(i, last)] =
bitruncated_id[make_pair(last, next)] =
bitruncated_id[make_pair(next, i)] =
isize(cells);
cells.emplace_back();
cellinfo& s = cells.back();
s.patterndir = -1;
s.owner = cells[i].owner;
s.p = cells[i].pusher * cells[i].vertices[j];
s.neid.push_back(i);
s.neid.push_back(-1);
s.neid.push_back(last);
s.neid.push_back(-1);
s.neid.push_back(next);
s.neid.push_back(-1);
s.generation = bitruncations_performed + 1;
virtualRebase(s.owner, s.p);
set_relmatrices(s);
}
}
}
for(int i=0; i<cc; i++) {
int v = isize(cells[i].vertices);
vector<int> newnei;
for(int j=0; j<v; j++) {
int last = cells[i].neid[(j+v-1)%v];
int next = cells[i].neid[j];
auto id = bitruncated_id[make_pair(i, last)];
newnei.push_back(id);
for(int k=0; k<6; k++)
if(cells[id].neid[k] == i) {
cells[id].neid[(k+5)%6] = bitruncated_id[make_pair(i, next)];
}
}
cells[i].neid = std::move(newnei);
}
make_cells_of_heptagon();
compute_jpoints();
for(int i=0; i<isize(cells); i++) {
auto &ci = cells[i];
ci.vertices.clear();
ci.pusher = rgpushxto0(ci.p);
ci.rpusher = gpushxto0(ci.p);
int v = isize(ci.neid);
for(int j=0; j<v; j++) {
int last = ci.neid[(j+v-1)%v];
int next = ci.neid[j];
hyperpoint h1 = ci.rpusher * ci.relmatrices[cells[last].owner] * cells[last].p;
hyperpoint h2 = ci.rpusher * ci.relmatrices[cells[next].owner] * cells[next].p;
ci.vertices.push_back(mid3(C0, h1, h2));
}
}
bitruncations_performed++;
cell_sorting = false;
}
int rearrange(bool total, ld minedge) {
int tooshort = 0;
for(int i=0; i<isize(cells); i++) {
auto& p1 = cells[i];
hyperpoint h = Hypc;
for(auto v: p1.vertices) h = h + v;
bool changed = total;
for(int j=0; j<isize(p1.vertices); j++)
if(hdist(p1.vertices[j], p1.vertices[(j+1) % isize(p1.vertices)]) < minedge) {
tooshort++; changed = true;
h = h + p1.vertices[j] + p1.vertices[(j+1) % isize(p1.vertices)];
}
if(changed)
cells[i].p = p1.pusher * normalize(h);
}
return tooshort;
}
bool step(int delta) {
if(!gridmaking) return false;
timetowait = 0;
auto& all = base->allcells();
auto t = SDL_GetTicks();
while(SDL_GetTicks() < t + 250)
switch(runlevel) {
case 0: {
cells.clear();
cells_of_heptagon.clear();
cellindex.clear();
if(0) if(cellcount <= isize(all) * 2) {
for(auto h: all) {
cells.emplace_back();
cellinfo& s = cells.back();
s.patterndir = -1;
s.owner = h, s.p = xspinpush0(hrand(1000), .01);
s.generation = 0;
set_relmatrices(s);
}
}
runlevel++;
break;
}
case 1: {
while(isize(cells) < cellcount) {
if(SDL_GetTicks() > t + 250) { make_cells_of_heptagon(); status[0] = its(isize(cells)) + " cells"; return false; }
cells.emplace_back();
cellinfo& s = cells.back();
s.patterndir = -1;
ld bestval = 0;
for(int j=0; j<place_attempts; j++) {
int k = hrand(isize(all));
cell *c = all[k];
map<cell*, transmatrix> relmatrices;
hyperpoint h = randomPointIn(c->type);
for(auto c0: all) relmatrices[c0] = calc_relative_matrix(c0, c, h);
ld mindist = 1e6;
for(auto p: cells) {
if(!relmatrices.count(p.owner)) continue;
ld val = hdist(h, relmatrices[p.owner] * p.p);
if(val < mindist) mindist = val;
}
if(mindist > bestval) bestval = mindist, s.owner = c, s.p = h, s.relmatrices = std::move(relmatrices);
}
}
make_cells_of_heptagon();
cell_sorting = true; bitruncations_performed = 0;
runlevel++;
status[0] = "all " + its(isize(cells)) + " cells";
break;
}
case 2: {
if(cell_sorting)
sort(cells.begin(), cells.end(), [] (const cellinfo &s1, const cellinfo &s2) { return hdist0(s1.p) < hdist0(s2.p); });
make_cells_of_heptagon();
edgelens.clear();
distlens.clear();
int stats[16];
for(int k=0; k<16; k++) stats[k] = 0;
compute_jpoints();
for(int i=0; i<isize(cells); i++) {
auto &p1 = cells[i];
p1.vertices.clear();
p1.neid.clear();
int j = 0;
if(j == i) j = 1;
for(int k=0; k<isize(cells); k++) if(k != i) {
if(hdist(p1.jpoints[k], C0) < hdist(p1.jpoints[j], C0))
j = k;
}
hyperpoint t = mid(p1.jpoints[j], C0);
// p1.vertices.push_back(p1.pusher * t);
int j0 = j;
int oldj = j;
do {
int best_k = -1;
hyperpoint best_h;
for(int k=0; k<isize(cells); k++) if(k != i && k != j && k != oldj) {
hyperpoint h = circumscribe(C0, p1.jpoints[j], p1.jpoints[k]);
if(h[LDIM] < 0) continue;
if(!clockwise(t, h)) continue;
if(best_k == -1)
best_k = k, best_h = h;
else if(clockwise(h, best_h))
best_k = k, best_h = h;
}
p1.vertices.push_back(best_h);
p1.neid.push_back(best_k);
distlens.push_back(hdist0(best_h));
oldj = j, j = best_k, t = best_h;
if(j == -1) break;
if(isize(p1.vertices) == 15) break;
}
while(j != j0);
for(int j=0; j<isize(p1.vertices); j++)
edgelens.push_back(hdist(p1.vertices[j], p1.vertices[(j+1) % isize(p1.vertices)]));
stats[isize(p1.vertices)]++;
}
for(int a=0; a<16; a++) printf("%3d ", stats[a]);
if(isize(edgelens)) {
printf("|");
printf("%4d ", isize(edgelens));
sort(edgelens.begin(), edgelens.end());
for(int a=0; a<=8; a++) printf("%6.3lf", double(edgelens[(a * isize(edgelens) - 1) / 8]));
printf(" | ");
sort(distlens.begin(), distlens.end());
for(int a=0; a<=8; a++) printf("%5.2lf", double(distlens[(a * isize(edgelens) - 1) / 8]));
}
printf("\n");
runlevel++;
break;
}
case 3: {
int errors = 0, toobig = 0;
for(int i=0; i<isize(cells); i++) {
int v = isize(cells[i].vertices);
if(v > 8 || v< 3) {
if(v < 3 || v >= 15)
errors++;
else toobig++;
cells[i] = cells.back();
i--; cells.pop_back();
}
}
if(errors > 0) status[1] = XLAT("bad cells: %1", its(errors)); else status[1] = " ";
if(toobig > 0) status[2] = XLAT("too many edges: %1", its(toobig)); else status[2] = " ";
if(isize(cells) < cellcount*3/4) runlevel = 0;
else if(isize(cells) < cellcount) runlevel = 1;
else { rearrange_index = 0; runlevel++; }
break;
}
case 4: {
ld median = edgelens[isize(edgelens) / 2];
ld minedge = median * quality;
status[3] = XLAT("median edge: %1 minimum: %2", fts(median), fts(edgelens[0]));
if(!bitruncations_performed && edgelens[0] < minedge) {
if(rearrange_index >= rearrange_max_attempts) {
runlevel = 0; break;
}
int tooshort = rearrange(rearrange_index < rearrange_less, minedge);
status[3] += XLAT(" (edges too short: %1)", its(tooshort));
runlevel = 2;
rearrange_index++;
break;
}
runlevel++;
break;
}
case 5: {
if(bitruncations_performed < bitruncations_requested)
bitruncate();
else
runlevel = 6;
break;
}
case 6: {
int notfound = 0;
for(int i=0; i<isize(cells); i++) {
auto &p1 = cells[i];
int N = isize(p1.vertices);
p1.spin.resize(N);
for(int j=0; j<N; j++) {
auto i1 = p1.neid[j];
if(i1 < 0 || i1 >= isize(cells)) {
runlevel = 0;
return false;
}
bool found = false;
for(int k=0; k < isize(cells[i1].vertices); k++)
if(cells[i1].neid[k] == i)
found = true, p1.spin[j] = k;
if(!found) notfound++;
}
}
if(notfound) { status[4] = XLAT("cells badly paired: %1", its(notfound)); runlevel = 0; break; }
int heptas = 0;
for(auto p: cells_of_heptagon) {
printf("%p: %d\n", hr::voidp(p.first), isize(p.second));
heptas++;
}
if(heptas != isize(all)) {
status[4] = XLAT("cells not covered: %1", its(isize(all) - heptas));
printf("heptas = %d\n", heptas);
runlevel = 0; break;
}
int faredge = 0;
for(int i=0; i<isize(cells); i++) {
auto &p1 = cells[i];
for(int j: p1.neid) {
auto &p2 = cells[j];
bool ok = p1.owner == p2.owner || isNeighbor(p1.owner, p2.owner);
if(!ok) faredge++;
}
}
if(faredge) {
status[4] = XLAT("adjacent cells from nonadjacent heptagons: %1", its(faredge));
runlevel = 0; return false;
}
/*
black_adjacent = 0;
white_three = 0;
for(int i=0; i<isize(cells); i++) {
if(!cells[i].by_bitruncation) {
for(int j: cells[i].neid) if(!cells[j].by_bitruncation) black_adjacent++;
}
else {
int v = isize(cells[i].neid);
for(int j=0; j<v; j++)
if(cells[cells[i].neid[j]].by_bitruncation)
if(cells[cells[i].neid[(j+1)%v]].by_bitruncation)
white_three++;
}
}
printf("black_adjacent = %d, white_three = %d\n", black_adjacent, white_three);
*/
status[4] = XLAT("OK");
runlevel = 10;
for(auto& s: cells) s.is_pseudohept = false;
for(auto& s: cells) {
s.is_pseudohept = true;
for(int i: s.neid) if(cells[i].is_pseudohept) s.is_pseudohept = false;
}
for(auto& s: cells) {
int d = -1;
ld dist = cgi.hcrossf / 2;
ld dists[8];
for(int i=0; i<S7; i++) {
dists[i] = hdist(s.p, xspinpush0(cgi.hexshift - i * TAU / S7, -cgi.hcrossf));
if(dists[i] < dist)
d = i, dist = dists[i];
}
if(d != -1 && dists[(d+1) % S7] > dists[(d+S7-1) % S7])
d = (d + S7 - 1) % S7;
s.patterndir = d;
}
break;
}
case 10:
return false;
}
return false;
}
EX void compute_geometry() {
if(IRREGULAR) {
ld scale = sqrt(isize(cells_of_heptagon) * 1. / isize(cells));
cgi.crossf *= scale;
cgi.hepvdist *= scale;
cgi.rhexf *= scale;
cgi.hexhexdist *= scale;
cgi.hexvdist *= scale;
cgi.base_distlimit = (cgi.base_distlimit + log(scale) / log(2.618)) / scale;
if(cgi.base_distlimit > 25) cgi.base_distlimit = 25;
}
}
bool draw_cell_schematics(cell *c, const shiftmatrix& V) {
if(gridmaking) {
heptagon *h = c->master;
for(int i: cells_of_heptagon[h]) {
auto& p = cells[i];
if(p.owner == c) {
queuestr(V * rgpushxto0(p.p), .1, its(i), isize(p.vertices) > 8 ? 0xFF0000 : 0xFFFFFF);
int N = isize(p.vertices);
for(int j=0; j<N; j++)
gridline(V, p.pusher * p.vertices[j], p.pusher * p.vertices[(1+j)%N], 0xFFFFFFFF, 0);
gridline(V, p.p, C0, 0xFF0000FF, 0);
if(p.patterndir != -1)
gridline(V, p.p, calc_relative_matrix(c->master->move(p.patterndir)->c7, c, p.p) * C0, 0x00FF00FF, 0);
}
}
}
return false;
}
#if HDR
struct heptinfo {
heptspin base;
vector<cell*> subcells;
vector<int> celldists[2];
};
#endif
EX map<heptagon*, heptinfo> periodmap;
EX void link_to_base(heptagon *h, heptspin base) {
// printf("linking %p to %p/%d\n", hr::voidp(h), hr::voidp(base.at), base.spin);
auto &hi = periodmap[h];
hi.base = base;
for(int k: cells_of_heptagon[base.at]) {
cell *c = newCell(isize(cells[k].vertices), h);
hi.subcells.push_back(c);
cellindex[c] = k;
}
h->c7 = hi.subcells[0];
}
EX void clear_links(heptagon *h) {
auto& hi = periodmap[h];
for(cell *c: hi.subcells) {
for(int i=0; i<c->type; i++) if(c->move(i)) c->move(i)->move(c->c.spin(i)) = NULL;
cellindex.erase(c);
delete c;
}
h->c7 = NULL;
periodmap.erase(h);
}
EX void link_start(heptagon *h) {
link_to_base(h, heptspin(cells[0].owner->master, 0));
}
EX void link_next(heptagon *parent, int d) {
if(!periodmap.count(parent))
link_to_base(parent, heptspin(cells[0].owner->master, 0));
// printf("linking next: %p direction %d [s%d]\n", hr::voidp(parent), d, parent->c.spin(d));
auto *h = parent->move(d);
heptspin hs = periodmap[parent].base + d + wstep - parent->c.spin(d);
link_to_base(h, hs);
}
EX void may_link_next(heptagon *parent, int d) {
if(!periodmap.count(parent->move(d)))
link_next(parent, d);
}
EX void link_cell(cell *c, int d) {
// printf("linking cell: %p direction %d\n", hr::voidp(c), d);
int ci = cellindex[c];
auto& sc = cells[ci];
int ci2 = sc.neid[d];
auto& sc2 = cells[ci2];
heptagon *master2 = NULL;
if(sc2.owner == sc.owner) {
master2 = c->master;
// printf("local\n");
}
else {
int dirs = 0;
int os = periodmap[c->master].base.spin;
for(int d=0; d<S7; d++) if(sc2.owner->master == sc.owner->master->modmove(os+d)) {
heptspin hss(c->master, d);
hss += wstep;
master2 = hss.at;
// printf("master2 is %p; base = %p; should be = %p\n", hr::voidp(master2), hr::voidp(periodmap[master2].base.at), hr::voidp(sc2.owner->master));
dirs++;
}
if(dirs != 1) { printf("dirs error\n"); exit(1); }
}
cell *c2 = periodmap[master2].subcells[sc2.localindex];
c->c.connect(d, c2, sc.spin[d], false);
}
int hdist(heptagon *h1, heptagon *h2) {
if(h1 == h2) return 0;
for(int i=0; i<S7; i++) if(h1->move(i) == h2) return 1;
return 2;
}
// compute celldist or celldistalt for all the subcells of h.
// We use the following algorithm:
// - assume that everything is computed for all the adjacent heptagons of h which are closer to the origin
// - consider h and its two neighbors which are in the same distance to the origin ('siblings')
// - compute celldists for all the cells in these three heptagons, by bfs, based on the 'parent' heptagons adjacent to h
// - record the computed distances for h, but not for its siblings
static const int NODISTANCE = 2000000000;
map<heptagon*, heptagon*> last_on_horocycle;
void compute_horocycle(heptagon *);
void compute_distances(heptagon *h, bool alts) {
/* if(alts) printf("[%p] compute_distances %p\n", hr::voidp(h->alt->alt), hr::voidp(h));
printf("neighbors:"); for(int i=0; i<S7; i++) printf(" %p", createStep(h, i)); printf("\n"); */
if(alts) {
if(!last_on_horocycle[h->alt->alt])
last_on_horocycle[h->alt->alt] = h;
if(h->alt->alt->s != hsOrigin)
while(h->alt->distance <= last_on_horocycle[h->alt->alt]->alt->distance)
compute_horocycle(h->alt->alt);
}
auto dm4 = [alts, h] (heptagon *h1) -> unsigned {
if(!alts) return h1->dm4;
if(alts && !h1->alt) return 100; // error
if(alts && h1->alt->alt != h->alt->alt) return 100; // error
return h1->alt->dm4;
};
unsigned cdm = dm4(h), pdm = (cdm-1)&3;
vector<heptagon*> hs;
hs.push_back(h);
for(int i=0; i<S7; i++) if(dm4(createStep(h, i)) == cdm)
hs.push_back(h->move(i));
vector<vector<int>*> to_clear;
for(auto hx: hs) {
auto &hi = periodmap[hx];
int ct = isize(hi.subcells);
auto& cd = hi.celldists[alts];
if(cd.empty() && hx != h) to_clear.push_back(&cd);
cd.resize(ct, NODISTANCE);
if(h == hx && (alts ? h->alt->s == hsOrigin : h->s == hsOrigin))
cd[0] = 0;
}
while(true) {
bool changed = false;
for(auto hx: hs) {
auto& hi = periodmap[hx];
auto& cd = hi.celldists[alts];
for(int i=0; i<isize(hi.subcells); i++)
forCellCM(c2, hi.subcells[i])
if(among(dm4(c2->master), cdm, pdm) && hdist(h, c2->master) < 2) {
int d = irr::celldist(c2, alts) + 1;
if(d < cd[i]) cd[i] = d, changed = true;
}
}
if(!changed) break;
}
/* for(auto hx: hs) {
auto& hi = periodmap[hx];
auto& cd = hi.celldists[alts];
// for(int i: cd) if(i == NODISTANCE) printf("distances not computed\n");
} */
for(auto x: to_clear) x->clear();
// for(int i: cd) printf(" %d", i); printf("\n");
}
void erase_alt(heptagon *alt) {
last_on_horocycle.erase(alt);
}
void compute_horocycle(heptagon *alt) {
heptagon *master = last_on_horocycle[alt];
// printf("computing horocycle, master distance = %d [M=%p, A=%p]\n", master->alt->distance, hr::voidp(master), hr::voidp(alt));
static const int LOOKUP = 16;
set<heptagon*> hs[LOOKUP];
hs[0].insert(master);
set<heptagon*> region;
for(int i=0; i<LOOKUP-1; i++) {
for(auto h: hs[i]) {
currentmap->extend_altmap(h);
for(int j=0; j<S7; j++) {
if(h->move(j)->alt->alt != master->alt->alt) continue;
region.insert(h->move(j));
if(h->move(j)->alt->distance < h->alt->distance)
hs[i+1].insert(h->move(j));
}
}
if(hs[i+1].empty()) { printf("error: hs[%d] not found\n", i+1); exit(1); }
}
/* printf("[%p] compute_horocycle ");
for(int i=0; i<LOOKUP-1; i++) printf("%d -> ", isize(hs[i])); printf("%p\n", isize(hs[LOOKUP-1])); */
map<cell*, int> xdist;
vector<cell*> xdqueue;
cell *orig = periodmap[*(hs[LOOKUP-1].begin())].subcells[0];
xdist[orig] = 0;
xdqueue.push_back(orig);
for(int i=0; i<isize(xdqueue); i++) {
forCellCM(c1, xdqueue[i])
if(!xdist.count(c1) && region.count(c1->master)) {
xdist[c1] = xdist[xdqueue[i]] + 1;
xdqueue.push_back(c1);
}
}
int delta = NODISTANCE;
for(int i=0; i<S7; i++) {
heptagon *h = master->move(i);
if(h->alt->alt != master->alt->alt) continue;
heptinfo& hi = periodmap[h];
if(!isize(hi.celldists[1])) continue;
for(int c=0; c<isize(hi.subcells); c++) {
if(hi.celldists[1][c] == NODISTANCE) continue;
int delta_candidate = hi.celldists[1][c] - xdist[hi.subcells[c]];
if(delta != NODISTANCE && delta_candidate != delta) {
printf("delta conflict: %d vs %d\n", delta, delta_candidate);
delta = max(delta, delta_candidate);
}
delta = delta_candidate;
}
}
if(delta == NODISTANCE) {
delta = master->alt->distance - xdist[periodmap[master].subcells[0]];
// printf("delta not found, set to %d\n", delta);
}
// printf("using delta = %d\n", delta);
for(int i=0; i<LOOKUP/2; i++) {
for(auto h: hs[i]) for(int j=-1; j<S7; j++) {
heptinfo& hi = periodmap[j == -1 ? h : h->move(j)];
hi.celldists[1].resize(isize(hi.subcells));
for(int c=0; c<isize(hi.subcells); c++)
hi.celldists[1][c] = delta + xdist[hi.subcells[c]];
}
}
last_on_horocycle[alt] = *(hs[LOOKUP/2].begin());
}
EX int celldist(cell *c, bool alts) {
heptagon *master = c->master;
auto &hi = periodmap[master];
/* if(alts && master->alt->alt->s != hsOrigin && isize(hi.celldists[alts]) == 0) {
int doalts = 0;
for(int i=0; i<S7; i++) if(master->move(i)->alt == master->alt->move[0]) {
doalts = 1;
if(periodmap[master->move(i)].celldists[true].empty()) {
compute_horocycle(master);
doalts = 2;
}
}
if(doalts == 0) {
currentmap->extend_altmap(master);
for(int i=0; i<S7; i++) if(master->move(i)->alt == master->alt->move[0] && periodmap[master->move(i)].celldists[true].empty())
compute_horocycle(master);
}
} */
if(isize(hi.celldists[alts]) == 0)
compute_distances(master, alts);
return hi.celldists[alts][cells[cellindex[c]].localindex];
}
eGeometry orig_geometry;
void start_game_on_created_map() {
popScreen();
for(hrmap *& hm : allmaps) if(hm == base) hm = NULL;
stop_game();
geometry = orig_geometry;
variation = eVariation::irregular;
irrid++;
gridmaking = false;
start_game();
}
bool save_map(const string& fname) {
fhstream f(fname, "wt");
if(!f.f) return false;
auto& all = base->allcells();
int origcells = 0;
for(cellinfo& ci: cells)
if(ci.generation == 0)
origcells++;
println(f, spaced(int(geometry), isize(all), origcells));
for(auto h: all) {
origcells = 0;
for(auto i: cells_of_heptagon[h->master])
if(cells[i].generation == 0)
origcells++;
println(f, origcells);
for(auto i: cells_of_heptagon[h->master]) if(cells[i].generation == 0) {
auto &ci = cells[i];
println(f, spaced(ci.p[0], ci.p[1], ci.p[LDIM]));
}
}
return true;
}
bool load_map(const string &fname) {
fhstream f(fname, "rt");
if(!f.f) return false;
auto& all = base->allcells();
int g, sa;
scan(f, g, sa, cellcount);
if(sa != isize(all) || g != geometry) { printf("bad parameters\n"); addMessage(XLAT("bad format or bad map geometry")); return false; }
density = cellcount * 1. / isize(all);
cells.clear();
for(auto h: all) {
int q = 0;
scan(f, q);
if(q < 0 || q > cellcount) { runlevel = 0; return false; }
while(q--) {
cells.emplace_back();
cellinfo& s = cells.back();
s.patterndir = -1;
double a, b, c;
scan(f, a, b, c);
s.p = hpxyz(a, b, c);
for(auto c0: all) s.relmatrices[c0] = calc_relative_matrix(c0, h, s.p);
s.owner = h;
}
}
make_cells_of_heptagon();
runlevel = 2;
return true;
}
void cancel_map_creation() {
base = NULL;
runlevel = 0;
popScreen();
gridmaking = false;
stop_game();
geometry = orig_geometry;
start_game();
}
string irrmapfile = "irregularmap.txt";
string irrhelp =
"This option creates irregular grids to play the game on. "
"Currently rather slow algorithms are used, "
"so not recommended with too high density or "
"with too large periodic base geometry. "
"For technical reasons, the density cannot be too small.";
bool too_small_euclidean() {
for(cell *c: base->allcells())
forCellIdEx(c1, i1, c)
forCellIdEx(c2, i2, c)
if(i1 != i2 && c1 == c2) return true;
return false;
}
void show_gridmaker() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("irregular grid"));
dialog::addSelItem(XLAT("density"), fts(density), 'd');
dialog::add_action([] {
dialog::editNumber(density, 1, 10, .1, 4, XLAT("density"), XLAT(irrhelp));
dialog::reaction = [] () {
int s = cellcount;
if(density < 1) density = 1;
cellcount = int(isize(currentmap->allcells()) * density + .5);
println(hlog, "density = ", fts(density), " cellcount = ", cellcount);
if(cellcount > s) runlevel = 1;
if(cellcount < s) runlevel = 0;
};
});
dialog::addSelItem(XLAT("min edge to median"), fts(quality), 'q');
dialog::add_action([] {
dialog::editNumber(quality, 0, 1, .05, .2, XLAT("quality"), XLAT(
"The smallest allowed ratio of edge length to median edge length. "
"Tilings with low values are easier to generate, but tend to be more ugly."
));
dialog::reaction = [] () {
println(hlog, "quality = ", density);
if(runlevel > 4) runlevel = 4;
};
});
dialog::addBreak(100);
for(int i=0; i<5; i++)
dialog::addInfo(status[i]);
dialog::addBreak(100);
dialog::addSelItem(XLAT("activate"), runlevel == 10 ? XLAT("ready") : XLAT("wait..."), 'f');
if(runlevel == 10) dialog::add_action(start_game_on_created_map);
dialog::addItem(XLAT("cancel"), 'c');
dialog::add_action(cancel_map_creation);
dialog::addItem(XLAT("save"), 's');
dialog::add_action([] () {
dialog::openFileDialog(irrmapfile, XLAT("irregular to save:"), ".txt", [] () {
if(save_map(irrmapfile)) {
addMessage(XLAT("Map saved to %1", irrmapfile));
return true;
}
else {
addMessage(XLAT("Failed to save map to %1", irrmapfile));
return false;
}
});
});
dialog::addItem(XLAT("load"), 'l');
dialog::add_action([] () {
dialog::openFileDialog(irrmapfile, XLAT("irregular to load:"), ".txt", [] () {
if(load_map(irrmapfile)) {
addMessage(XLAT("Map loaded from %1", irrmapfile));
return true;
}
else {
addMessage(XLAT("Failed to load map from %1", irrmapfile));
return false;
}
});
});
dialog::addSelItem(XLAT("bitruncation count"), its(bitruncations_requested), 'b');
dialog::add_action([] () {
dialog::editNumber(bitruncations_requested, 0, 5, 1, 1, XLAT("bitruncation const"),
XLAT("Bitruncation introduces some regularity, allowing more sophisticated floor tilings and textures."));
dialog::reaction = [] () {
if(bitruncations_requested > bitruncations_performed && runlevel > 5) runlevel = 5;
if(bitruncations_requested < bitruncations_performed) runlevel = 0;
};
});
if(too_small_euclidean())
dialog::addInfo(XLAT("too small period -- irregular tiling generation fails"));
dialog::addItem(XLAT("reset"), 'r');
dialog::add_action([] () { runlevel = 0; });
dialog::addHelp();
dialog::display();
keyhandler = [] (int sym, int uni) {
handlePanning(sym, uni);
if(uni == 'h' || sym == SDLK_F1) gotoHelp(XLAT(irrhelp));
dialog::handleNavigation(sym, uni);
// no exit
};
}
EX void visual_creator() {
stop_game();
orig_geometry = geometry;
switch(geometry) {
case gNormal:
geometry = gKleinQuartic;
break;
case gOctagon:
geometry = gBolza2;
break;
default: ;
break;
}
variation = eVariation::pure;
start_game();
if(base) delete base;
base = currentmap;
base_config = euc::eu;
drawthemap();
cellcount = int(isize(base->allcells()) * density + .5);
pushScreen(show_gridmaker);
runlevel = 0;
gridmaking = true;
}
EX void auto_creator() {
variation = eVariation::pure;
int cc = cellcount;
bitruncations_requested = bitruncations_performed;
visual_creator();
cellcount = cc; density = cc * 1. / isize(base->allcells());
printf("Creating the irregular map automatically...\n");
while(runlevel < 10) step(1000);
start_game_on_created_map();
}
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-irrvis")) {
PHASE(3);
restart_game();
visual_creator();
showstartmenu = false;
}
else if(argis("-irrdens")) {
PHASEFROM(2);
shift_arg_formula(density);
}
else if(argis("-irrb")) {
PHASEFROM(2);
shift(); bitruncations_requested = argi();
}
else if(argis("-irrq")) {
PHASEFROM(2);
shift_arg_formula(quality);
}
else if(argis("-irrload")) {
PHASE(3);
restart_game();
visual_creator();
showstartmenu = false;
shift();
load_map(args());
while(runlevel < 10) step(1000);
start_game_on_created_map();
}
else return 1;
return 0;
}
#endif
EX unsigned char density_code() {
if(isize(cells) < 128) return isize(cells);
else {
int t = 127, a = isize(cells);
while(a > 127) a = a * 9/10, t++;
return t;
}
}
EX bool pseudohept(cell* c) {
return cells[cellindex[c]].is_pseudohept;
}
EX bool ctof(cell* c) {
return cells[cellindex[c]].patterndir == -1;
}
EX bool supports(eGeometry g) {
if(g == gEuclid || g == gEuclidSquare) return ginf[g].flags & qCLOSED;
return among(g, gNormal, gKleinQuartic, gOctagon, gBolza2, gFieldQuotient, gSphere, gSmallSphere, gTinySphere);
}
EX array<heptagon*, 3> get_masters(cell *c) {
int d = cells[cellindex[c]].patterndir;
heptspin s = periodmap[c->master].base;
heptspin s0 = heptspin(c->master, 0) + (d - s.spin);
return make_array(s0.at, (s0 + wstep).at, (s0 + 1 + wstep).at);
}
EX void swap_vertices() {
for(auto& c: cells) {
swappoint(c.p);
swapmatrix(c.pusher);
swapmatrix(c.rpusher);
for(auto& jp: c.jpoints) swappoint(jp);
for(auto& rm: c.relmatrices) swapmatrix(rm.second);
for(auto& v: c.vertices) swappoint(v);
}
}
auto hook =
#if CAP_COMMANDLINE
addHook(hooks_args, 100, readArgs) +
#endif
#if MAXMDIM >= 4
addHook(hooks_swapdim, 100, swap_vertices) +
#endif
addHook(hooks_drawcell, 100, draw_cell_schematics) +
addHook(shmup::hooks_turn, 100, step);
#endif
}}
/*
if(mouseover && !ctof(mouseover)) {
for(auto h: gp::get_masters(mouseover))
queueline(ggmatrix(h->c7)*C0, shmup::ggmatrix(mouseover)*C0, 0xFFFFFFFF);
}
*/