mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-24 17:10:36 +00:00
263 lines
7.7 KiB
C++
263 lines
7.7 KiB
C++
// Hyperbolic Rogue
|
|
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// heptagon here refers to underlying heptagonal tesselation
|
|
// (which you can see by changing the conditions in graph.cpp)
|
|
|
|
#define MIRR(x) x.mirrored
|
|
|
|
int heptacount = 0;
|
|
|
|
struct cell;
|
|
cell *newCell(int type, heptagon *master);
|
|
|
|
// spintable functions
|
|
|
|
// the automaton is used to generate each heptagon in an unique way
|
|
// (you can see the tree obtained by changing the conditions in graph.cpp)
|
|
// from the origin we can go further in any direction, and from other heptagons
|
|
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
|
|
// and sometimes in direction 5
|
|
|
|
hstate transition(hstate s, int dir) {
|
|
if(sphere) {
|
|
if(S7 == 4) {
|
|
if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1;
|
|
}
|
|
if(S7 == 3) {
|
|
if(s == hsOrigin) return hsB1;
|
|
}
|
|
if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1;
|
|
if(s == hsA0 && dir == 2) return hsB0;
|
|
if(s == hsA1 && dir == 2) return hsB1;
|
|
if(s == hsB0 && dir == S7-2) return hsC;
|
|
return hsError;
|
|
}
|
|
else if(S6 == 8) {
|
|
if(s == hsOrigin) return hsA;
|
|
if(s == hsA && (dir >= 2 && dir < S7-1)) return hsA;
|
|
if(s == hsA && (dir == S7-1)) return hsB;
|
|
if(s == hsB && (dir >= 2 && dir < S7-2)) return hsA;
|
|
if(s == hsB && (dir == S7-2)) return hsB;
|
|
}
|
|
else {
|
|
if(s == hsOrigin) return hsA;
|
|
if(s == hsA && dir >= 3 && dir <= S7-3) return hsA;
|
|
if(s == hsA && dir == S7-2) return hsB;
|
|
if(s == hsB && dir >= 3 && dir <= S7-4) return hsA;
|
|
if(s == hsB && dir == S7-3) return hsB;
|
|
}
|
|
return hsError;
|
|
}
|
|
|
|
/*
|
|
int indent = 0;
|
|
|
|
struct indenter {
|
|
indenter() { indent += 2; }
|
|
~indenter() { indent -= 2; }
|
|
};
|
|
|
|
template<class... T> auto iprintf(T... t) { for(int i=0; i<indent; i++) putchar(' '); return printf(t...); }
|
|
*/
|
|
|
|
#define COMPUTE -1000000
|
|
|
|
// create a new heptagon
|
|
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0, int fixdistance = COMPUTE) {
|
|
heptagon *h = new heptagon;
|
|
heptacount++;
|
|
h->alt = NULL;
|
|
h->s = s;
|
|
for(int i=0; i<MAX_EDGE; i++) h->move[i] = NULL;
|
|
h->spintable = 0;
|
|
h->move[pard] = parent; tsetspin(h->spintable, pard, d);
|
|
parent->move[d] = h; tsetspin(parent->spintable, d, pard);
|
|
if(parent->c7) {
|
|
h->c7 = newCell(S7, h);
|
|
h->rval0 = h->rval1 = 0; h->cdata = NULL;
|
|
h->emeraldval = emerald_heptagon(parent->emeraldval, d);
|
|
h->zebraval = zebra_heptagon(parent->zebraval, d);
|
|
h->fieldval = currfp.connections[fieldpattern::btspin(parent->fieldval, d)];
|
|
if(parent->s == hsOrigin)
|
|
h->fiftyval = firstfiftyval(d);
|
|
else
|
|
h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d);
|
|
}
|
|
else {
|
|
h->c7 = NULL;
|
|
h->emeraldval = 0;
|
|
h->fiftyval = 0;
|
|
}
|
|
//generateEmeraldval(parent);
|
|
//generateEmeraldval(h);
|
|
if(pard == 0) {
|
|
h->dm4 = parent->dm4+1;
|
|
if(fixdistance != COMPUTE) h->distance = fixdistance;
|
|
else if(nontruncated) h->distance = parent->distance + 1;
|
|
else if(parent->s == hsOrigin) h->distance = parent->distance + 2;
|
|
else if(S3 == 4) {
|
|
h->distance = parent->distance + 2;
|
|
if(h->spin(0) == 2 || (h->spin(0) == 3 && S7 <= 5))
|
|
h->distance = min<short>(h->distance, createStep(h->move[0], 0)->distance + 3);
|
|
if(h->spin(0) == 2 && h->move[0]) {
|
|
int d = h->spin(0);
|
|
int d1 = (d+S7-1)%S7;
|
|
heptagon* h1 = createStep(h->move[0], d1);
|
|
if(h1->distance <= h->move[0]->distance)
|
|
h->distance = h->move[0]->distance+1;
|
|
}
|
|
if((h->s == hsB && h->move[0]->s == hsB) || h->move[0]->s == hsA) {
|
|
int d = h->spin(0);
|
|
heptagon* h1 = createStep(h->move[0], (d+1)%S7);
|
|
if(h1->distance <= h->move[0]->distance)
|
|
h->distance = h->move[0]->distance+1;
|
|
}
|
|
if(h->spin(0) == S7-1)
|
|
h->distance = min(
|
|
h->move[0]->move[0]->distance + 2,
|
|
createStep(h, S7-1)->distance + 1
|
|
);
|
|
}
|
|
else if(h->spin(0) == S7-2)
|
|
h->distance = parent->distance + 1;
|
|
else if(h->spin(0) == S7-3 && h->move[0]->s == hsB)
|
|
h->distance = createStep(h->move[0], (h->spin(0)+2)%S7)->distance + 3;
|
|
else h->distance = parent->distance + 2;
|
|
}
|
|
else {
|
|
h->distance = parent->distance - (nontruncated?1:2);
|
|
if(S3 == 4 && S7 == 5) {
|
|
if(h->s == hsOrigin) {
|
|
printf("had to cheat!\n");
|
|
h->distance = parent->distance - 2;
|
|
}
|
|
else {
|
|
h->distance = parent->distance - 1;
|
|
buildHeptagon(h, 2, hsA, 0, h->distance + 2);
|
|
buildHeptagon(h, 4, hsB, 0, h->distance);
|
|
}
|
|
}
|
|
h->dm4 = parent->dm4-1;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
void connectHeptagons(heptagon *h1, int d1, heptagon *h2, int d2) {
|
|
h1->move[d1] = h2;
|
|
h1->setspin(d1, d2);
|
|
h2->move[d2] = h1;
|
|
h2->setspin(d2, d1);
|
|
}
|
|
|
|
int recsteps;
|
|
|
|
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
|
|
rot = fixrot(rot);
|
|
createStep(from, rot);
|
|
int fr = fixrot(from->spin(rot) + spin);
|
|
connectHeptagons(h, d, from->move[rot], fr);
|
|
/* h->move[d] = from->move[rot];
|
|
h->setspin(d, fr);
|
|
h->move[d]->move[fr] = h;
|
|
h->move[d]->setspin(fr, d); */
|
|
//generateEmeraldval(h->move[d]); generateEmeraldval(h);
|
|
}
|
|
|
|
extern int hrand(int);
|
|
|
|
// a structure used to walk on the heptagonal tesselation
|
|
// (remembers not only the heptagon, but also direction)
|
|
|
|
heptspin hsstep(const heptspin &hs, int spin) {
|
|
createStep(hs.h, hs.spin);
|
|
heptspin res;
|
|
res.h = hs.h->move[hs.spin];
|
|
res.mirrored = hs.mirrored ^ hs.h->mirror(hs.spin);
|
|
res.spin = fixrot(hs.h->spin(hs.spin) + (MIRR(res)?-spin:spin));
|
|
return res;
|
|
}
|
|
|
|
heptspin hsspin(const heptspin &hs, int val) {
|
|
heptspin res;
|
|
res.h = hs.h;
|
|
res.spin = fixrot(hs.spin + (MIRR(hs)?-val:val));
|
|
res.mirrored = hs.mirrored;
|
|
return res;
|
|
}
|
|
|
|
heptagon *createStep(heptagon *h, int d) {
|
|
d = fixrot(d);
|
|
if(!h->move[0] && h->s != hsOrigin) {
|
|
// cheating:
|
|
int pard=0;
|
|
if(S3 == 3)
|
|
pard = 3 + hrand(2);
|
|
else if(S3 == 4 && S7 == 5)
|
|
pard = 3; // to do: randomize
|
|
else if(S3 == 4)
|
|
pard = 3;
|
|
buildHeptagon(h, 0, h->distance < -10000 ? hsOrigin : hsA, pard);
|
|
}
|
|
if(h->move[d]) return h->move[d];
|
|
if(h->s == hsOrigin) {
|
|
buildHeptagon(h, d, hsA);
|
|
}
|
|
else if(S3 == 4) {
|
|
if(d == 1) {
|
|
heptspin hs;
|
|
hs.h = h;
|
|
hs.spin = 0;
|
|
hs.mirrored = false;
|
|
hs = hsstep(hs, -1);
|
|
hs = hsstep(hs, -1);
|
|
hs = hsstep(hs, -1);
|
|
connectHeptagons(h, d, hs.h, hs.spin);
|
|
}
|
|
else if(h->s == hsB && d == S7-1) {
|
|
heptspin hs;
|
|
hs.h = h;
|
|
hs.spin = 0;
|
|
hs.mirrored = false;
|
|
hs = hsstep(hs, 1);
|
|
hs = hsstep(hs, 1);
|
|
hs = hsstep(hs, 1);
|
|
connectHeptagons(h, d, hs.h, hs.spin);
|
|
}
|
|
else
|
|
buildHeptagon(h, d, transition(h->s, d));
|
|
}
|
|
else if(d == 1) {
|
|
addSpin(h, d, h->move[0], h->spin(0)-1, -1);
|
|
}
|
|
else if(d == S7-1) {
|
|
addSpin(h, d, h->move[0], h->spin(0)+1, +1);
|
|
}
|
|
else if(d == 2) {
|
|
createStep(h->move[0], h->spin(0)-1);
|
|
addSpin(h, d, h->move[0]->modmove(h->spin(0)-1), S7-2 + h->move[0]->gspin(h->spin(0)-1), -1);
|
|
}
|
|
else if(d == S7-2 && h->s == hsB) {
|
|
createStep(h->move[0], h->spin(0)+1);
|
|
addSpin(h, d, h->move[0]->modmove(h->spin(0)+1), 2 + h->move[0]->gspin(h->spin(0)+1), +1);
|
|
}
|
|
else
|
|
buildHeptagon(h, d, (d == S7-2 || (h->s == hsB && d == S7-3)) ? hsB : hsA);
|
|
return h->move[d];
|
|
}
|
|
|
|
// display the coordinates of the heptagon
|
|
void backtrace(heptagon *pos) {
|
|
if(pos->s == hsOrigin) return;
|
|
backtrace(pos->move[0]);
|
|
printf(" %d", pos->spin(0));
|
|
}
|
|
|
|
void hsshow(const heptspin& t) {
|
|
printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin);
|
|
}
|
|
|
|
// create h->move[d] if not created yet
|
|
heptagon *createStep(heptagon *h, int d);
|
|
|