mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-04 22:40:35 +00:00
1515 lines
46 KiB
C++
1515 lines
46 KiB
C++
// Hyperbolic Rogue -- basic geometry
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file geometry.cpp
|
|
* \brief Calculation of basic, and less basic, constants in each geometry
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
#if HDR
|
|
struct usershapelayer {
|
|
vector<hyperpoint> list;
|
|
bool sym;
|
|
int rots;
|
|
color_t color;
|
|
hyperpoint shift, spin;
|
|
ld zlevel;
|
|
int texture_offset;
|
|
PPR prio;
|
|
};
|
|
|
|
extern int usershape_changes;
|
|
|
|
static const int USERLAYERS = 32;
|
|
|
|
struct usershape { usershapelayer d[USERLAYERS]; };
|
|
|
|
struct hpcshape {
|
|
int s, e;
|
|
PPR prio;
|
|
int flags;
|
|
hyperpoint intester;
|
|
struct basic_textureinfo *tinf;
|
|
int texture_offset;
|
|
int shs, she;
|
|
void clear() { s = e = shs = she = texture_offset = 0; prio = PPR::ZERO; tinf = NULL; flags = 0; }
|
|
};
|
|
|
|
#define SIDE_SLEV 0
|
|
#define SIDE_WTS3 3
|
|
#define SIDE_WALL 4
|
|
#define SIDE_LAKE 5
|
|
#define SIDE_LTOB 6
|
|
#define SIDE_BTOI 7
|
|
#define SIDE_SKY 8
|
|
#define SIDE_HIGH 9
|
|
#define SIDE_HIGH2 10
|
|
#define SIDE_ASHA 11
|
|
#define SIDE_BSHA 12
|
|
#define SIDEPARS 13
|
|
|
|
/** GOLDBERG_BITS controls the size of tables for Goldberg. see gp::check_limits */
|
|
|
|
#ifndef GOLDBERG_BITS
|
|
#define GOLDBERG_BITS 5
|
|
#endif
|
|
|
|
static const int GOLDBERG_LIMIT = (1<<GOLDBERG_BITS);
|
|
static const int GOLDBERG_MASK = (GOLDBERG_LIMIT-1);
|
|
|
|
#ifndef BADMODEL
|
|
#define BADMODEL 0
|
|
#endif
|
|
|
|
#ifndef WINGS
|
|
static const int WINGS = (BADMODEL ? 1 : 4);
|
|
#endif
|
|
|
|
typedef array<hpcshape, WINGS+1> hpcshape_animated;
|
|
|
|
extern vector<hpcshape> shPlainWall3D, shWireframe3D, shWall3D, shMiniWall3D;
|
|
|
|
struct floorshape {
|
|
bool is_plain;
|
|
int shapeid;
|
|
int id;
|
|
int pstrength; // pattern strength in 3D
|
|
int fstrength; // frame strength in 3D
|
|
PPR prio;
|
|
vector<hpcshape> b, shadow, side[SIDEPARS], levels[SIDEPARS], cone[2];
|
|
vector<vector<hpcshape>> gpside[SIDEPARS];
|
|
floorshape() { prio = PPR::FLOOR; pstrength = fstrength = 10; }
|
|
};
|
|
|
|
struct plain_floorshape : floorshape {
|
|
ld rad0, rad1;
|
|
void configure(ld r0, ld r1) { rad0 = r0; rad1 = r1; }
|
|
};
|
|
|
|
extern vector<ld> equal_weights;
|
|
|
|
// noftype: 0 (shapeid2 is heptagonal or just use shapeid1), 1 (shapeid2 is pure heptagonal), 2 (shapeid2 is Euclidean), 3 (shapeid2 is hexagonal)
|
|
struct escher_floorshape : floorshape {
|
|
int shapeid0, shapeid1, noftype, shapeid2;
|
|
ld scale;
|
|
};
|
|
|
|
struct basic_textureinfo {
|
|
int texture_id;
|
|
vector<glvertex> tvertices;
|
|
vector<glvertex> colors;
|
|
};
|
|
|
|
/** additional modules can add extra shapes etc. */
|
|
struct gi_extension {
|
|
virtual ~gi_extension() {}
|
|
};
|
|
|
|
struct expansion_analyzer;
|
|
|
|
/** both for 'heptagon' 3D cells and subdivided 3D cells */
|
|
struct subcellshape {
|
|
/** \brief raw coordinates of vertices of all faces */
|
|
vector<vector<hyperpoint>> faces;
|
|
/** \brief raw coordinates of all vertices in one vector */
|
|
vector<hyperpoint> vertices_only;
|
|
/** \brief cooked coordinates of vertices of all faces, computed from faces as: from_cellcenter * final_coords(v) */
|
|
vector<vector<hyperpoint>> faces_local;
|
|
/** \brief cooked coordinates of all vertices in one vector */
|
|
vector<hyperpoint> vertices_only_local;
|
|
/** \brief weights -- used to generate wall shapes in some geometries, empty otherwise */
|
|
vector<vector<double>> weights;
|
|
/** the center of every raw face */
|
|
vector<hyperpoint> face_centers;
|
|
vector<vector<char>> dirdist;
|
|
hyperpoint cellcenter;
|
|
transmatrix to_cellcenter;
|
|
transmatrix from_cellcenter;
|
|
/** \brief for adjacent directions a,b, next_dir[a][b] is the next direction adjacent to a, in (counter?)clockwise order from b */
|
|
vector<vector<char>> next_dir;
|
|
/** useful in product geometries */
|
|
vector<hyperpoint> walltester;
|
|
|
|
/** compute all the properties based on `faces`, for the main heptagon cellshape */
|
|
void compute_hept();
|
|
|
|
/** compute all the properties based on `faces`, for subcells */
|
|
void compute_sub();
|
|
|
|
/** common part of compute_hept and compute_sub */
|
|
void compute_common();
|
|
};
|
|
|
|
enum class ePipeEnd {sharp, ball};
|
|
|
|
/** basic geometry parameters */
|
|
struct geometry_information {
|
|
|
|
/** distance from heptagon center to another heptagon center */
|
|
ld tessf;
|
|
|
|
/** distance from heptagon center to adjacent cell center (either hcrossf or tessf) */
|
|
ld crossf;
|
|
|
|
/** distance from heptagon center to small heptagon vertex */
|
|
ld hexf;
|
|
|
|
/** distance from heptagon center to big heptagon vertex */
|
|
ld hcrossf;
|
|
|
|
/** distance between adjacent hexagon vertices */
|
|
ld hexhexdist;
|
|
|
|
/** distance between hexagon vertex and hexagon center */
|
|
ld hexvdist;
|
|
|
|
/** distance between heptagon vertex and hexagon center (either hcrossf or something else) */
|
|
ld hepvdist;
|
|
|
|
/** distance from heptagon center to heptagon vertex (either hexf or hcrossf) */
|
|
ld rhexf;
|
|
|
|
/** edge length */
|
|
ld edgelen;
|
|
|
|
/** basic parameters for 3D geometries */
|
|
map<int, int> close_distances;
|
|
|
|
int loop, face, schmid;
|
|
|
|
transmatrix spins[32], adjmoves[32];
|
|
|
|
unique_ptr<struct subcellshape> heptshape;
|
|
vector<struct subcellshape> subshapes;
|
|
|
|
ld adjcheck;
|
|
ld strafedist;
|
|
|
|
ld ultra_mirror_dist, ultra_material_part, ultra_mirror_part;
|
|
|
|
vector<transmatrix> ultra_mirrors;
|
|
|
|
int xp_order, r_order, rx_order;
|
|
|
|
transmatrix full_X, full_R, full_P;
|
|
|
|
/** for 2D geometries */
|
|
vector<transmatrix> heptmove, hexmove, invhexmove;
|
|
|
|
int base_distlimit;
|
|
|
|
/** size of the Sword (from Orb of the Sword), used in the shmup mode */
|
|
ld sword_size;
|
|
/** scale factor for the graphics of most things*/
|
|
ld scalefactor;
|
|
ld orbsize, floorrad0, floorrad1, zhexf;
|
|
ld corner_bonus;
|
|
ld hexshift;
|
|
ld asteroid_size[8];
|
|
ld wormscale;
|
|
ld tentacle_length;
|
|
/** level in product geometries */
|
|
ld plevel;
|
|
/** level for a z-step */
|
|
int single_step;
|
|
/** the number of levels in PSL */
|
|
int psl_steps;
|
|
|
|
/** for binary tilings */
|
|
transmatrix direct_tmatrix[14];
|
|
transmatrix inverse_tmatrix[14];
|
|
|
|
/** a bitmask for hr::bt::use_direct_for */
|
|
int use_direct;
|
|
|
|
/** various parameters related to the 3D view */
|
|
ld INFDEEP, BOTTOM, HELLSPIKE, LAKE, WALL, FLOOR, STUFF,
|
|
SLEV[4], FLATEYE,
|
|
LEG0, LEG1, LEG, LEG3, GROIN, GROIN1, GHOST,
|
|
BODY, BODY1, BODY2, BODY3,
|
|
NECK1, NECK, NECK3, HEAD, HEAD1, HEAD2, HEAD3,
|
|
ALEG0, ALEG, ABODY, AHEAD, BIRD, LOWSKY, SKY, HIGH, HIGH2,
|
|
SHALLOW;
|
|
ld human_height, slev;
|
|
|
|
ld eyelevel_familiar, eyelevel_human, eyelevel_dog;
|
|
|
|
#if CAP_SHAPES
|
|
hpcshape
|
|
shSemiFloorSide[SIDEPARS],
|
|
shBFloor[2],
|
|
shWave[8][2],
|
|
shCircleFloor,
|
|
shBarrel,
|
|
shWall[2], shMineMark[2], shBigMineMark[2], shFan,
|
|
shZebra[5],
|
|
shSwitchDisk,
|
|
shTower[11],
|
|
shEmeraldFloor[6],
|
|
shSemiFeatherFloor[2],
|
|
shSemiFloor[2], shSemiBFloor[2], shSemiFloorShadow,
|
|
shMercuryBridge[2],
|
|
shTriheptaSpecial[14],
|
|
shCross, shGiantStar[2], shLake, shMirror,
|
|
shHalfFloor[6], shHalfMirror[3],
|
|
shGem[2], shStar, shFlash, shDisk, shHalfDisk, shDiskT, shDiskS, shDiskM, shDiskSq, shEccentricDisk, shDiskSegment,
|
|
shHeptagon, shHeptagram,
|
|
shTinyBird, shTinyShark,
|
|
shEgg, shSmallEgg,
|
|
shRing, shSpikedRing, shTargetRing, shSawRing, shGearRing, shPeaceRing,
|
|
shHeptaRing, shSpearRing, shLoveRing, shFrogRing,
|
|
shPowerGearRing, shProtectiveRing, shTerraRing, shMoveRing,
|
|
shReserved4, shMoonDisk,
|
|
shDaisy, shSnowflake, shTriangle, shNecro, shStatue, shKey, shWindArrow,
|
|
shGun,
|
|
shFigurine, shTreat, shSmallTreat,
|
|
shElementalShard,
|
|
// shBranch,
|
|
shIBranch, shTentacle, shTentacleX, shILeaf[3],
|
|
shMovestar,
|
|
shWolf, shYeti, shDemon, shGDemon, shEagle, shGargoyleWings, shGargoyleBody,
|
|
shFoxTail1, shFoxTail2,
|
|
shDogBody, shDogHead, shDogFrontLeg, shDogRearLeg, shDogFrontPaw, shDogRearPaw,
|
|
shDogTorso,
|
|
shHawk,
|
|
shCatBody, shCatLegs, shCatHead, shFamiliarHead, shFamiliarEye,
|
|
shWolf1, shWolf2, shWolf3,
|
|
shRatEye1, shRatEye2, shRatEye3,
|
|
shDogStripes,
|
|
shPBody, shSmallPBody, shPSword, shSmallPSword, shPKnife,
|
|
shFerocityM, shFerocityF,
|
|
shHumanFoot, shHumanLeg, shHumanGroin, shHumanNeck, shSkeletalFoot, shYetiFoot,
|
|
shMagicSword, shSmallSword, shMagicShovel, shSeaTentacle, shKrakenHead, shKrakenEye, shKrakenEye2,
|
|
shArrow,
|
|
shPHead, shPFace, shGolemhead, shHood, shArmor,
|
|
shAztecHead, shAztecCap,
|
|
shSabre, shTurban1, shTurban2, shVikingHelmet, shRaiderHelmet, shRaiderArmor, shRaiderBody, shRaiderShirt,
|
|
shWestHat1, shWestHat2, shGunInHand,
|
|
shKnightArmor, shKnightCloak, shWightCloak,
|
|
shGhost, shEyes, shSlime, shJelly, shJoint, shWormHead, shSmallWormHead, shTentHead, shShark, shWormSegment, shSmallWormSegment, shWormTail, shSmallWormTail,
|
|
shSlimeEyes, shDragonEyes, shSmallDragonEyes, shWormEyes, shSmallWormEyes, shGhostEyes,
|
|
shMiniGhost, shSmallEyes, shMiniEyes,
|
|
shHedgehogBlade, shSmallHedgehogBlade, shHedgehogBladePlayer,
|
|
shWolfBody, shWolfHead, shWolfLegs, shWolfEyes,
|
|
shWolfFrontLeg, shWolfRearLeg, shWolfFrontPaw, shWolfRearPaw,
|
|
shFemaleBody, shFemaleHair, shFemaleDress, shWitchDress,
|
|
shWitchHair, shBeautyHair, shFlowerHair, shFlowerHand, shSuspenders, shTrophy,
|
|
shBugBody, shBugArmor, shBugLeg, shBugAntenna,
|
|
shPickAxe, shSmallPickAxe, shPike, shFlailBall, shSmallFlailBall, shFlailTrunk, shSmallFlailTrunk, shFlailChain, shHammerHead, shSmallHammerHead,
|
|
shBook, shBookCover, shGrail,
|
|
shBoatOuter, shBoatInner, shCompass1, shCompass2, shCompass3,
|
|
shKnife, shTongue, shFlailMissile, shTrapArrow,
|
|
shPirateHook, shSmallPirateHook, shPirateHood, shEyepatch, shPirateX,
|
|
// shScratch,
|
|
shHeptaMarker, shSnowball, shHugeDisk, shSun, shNightStar, shEuclideanSky,
|
|
shSkeletonBody, shSkull, shSkullEyes, shFatBody, shWaterElemental,
|
|
shPalaceGate, shFishTail,
|
|
shMouse, shMouseLegs, shMouseEyes,
|
|
shPrincessDress, shPrinceDress,
|
|
shWizardCape1, shWizardCape2,
|
|
shBigCarpet1, shBigCarpet2, shBigCarpet3,
|
|
shGoatHead, shRose, shRoseItem, shSmallRose, shThorns,
|
|
shRatHead, shRatTail, shRatEyes, shRatCape1, shRatCape2,
|
|
shWizardHat1, shWizardHat2,
|
|
shTortoise[13][6],
|
|
shDragonLegs, shDragonTail, shDragonHead, shSmallDragonHead, shDragonSegment, shDragonNostril, shSmallDragonNostril,
|
|
shDragonWings,
|
|
shSolidBranch, shWeakBranch, shBead0, shBead1,
|
|
shBatWings, shBatBody, shBatMouth, shBatFang, shBatEye,
|
|
shParticle[16], shAsteroid[8],
|
|
shReptile[5][4],
|
|
shReptileBody, shReptileHead, shReptileFrontFoot, shReptileRearFoot,
|
|
shReptileFrontLeg, shReptileRearLeg, shReptileTail, shReptileEye,
|
|
|
|
shTrylobite, shTrylobiteHead, shTrylobiteBody,
|
|
shTrylobiteFrontLeg, shTrylobiteRearLeg, shTrylobiteFrontClaw, shTrylobiteRearClaw,
|
|
|
|
shBullBody, shBullHead, shBullHorn, shBullRearHoof, shBullFrontHoof,
|
|
shSmallBullHead, shSmallBullHorn,
|
|
shTinyBullHead, shTinyBullHorn, shTinyBullBody,
|
|
|
|
shButterflyBody, shButterflyWing, shGadflyBody, shGadflyWing, shGadflyEye,
|
|
|
|
shTerraArmor1, shTerraArmor2, shTerraArmor3, shTerraHead, shTerraFace,
|
|
shJiangShi, shJiangShiDress, shJiangShiCap1, shJiangShiCap2,
|
|
|
|
shPikeBody, shPikeEye,
|
|
|
|
shAsymmetric,
|
|
|
|
shPBodyOnly, shPBodyArm, shPBodyHand, shPHeadOnly,
|
|
|
|
shDodeca, shSmallerDodeca,
|
|
|
|
shLightningBolt, shHumanoid, shHalfHumanoid, shHourglass,
|
|
shShield, shSmallFan, shTreeIcon, shLeafIcon;
|
|
|
|
hpcshape shFrogRearFoot, shFrogFrontFoot, shFrogRearLeg, shFrogFrontLeg, shFrogRearLeg2, shFrogBody, shFrogEye, shFrogStripe, shFrogJumpFoot, shFrogJumpLeg, shSmallFrogRearFoot, shSmallFrogFrontFoot, shSmallFrogRearLeg, shSmallFrogFrontLeg, shSmallFrogRearLeg2, shSmallFrogBody;
|
|
|
|
hpcshape_animated
|
|
shAnimatedEagle, shAnimatedTinyEagle, shAnimatedGadfly, shAnimatedHawk, shAnimatedButterfly,
|
|
shAnimatedGargoyle, shAnimatedGargoyle2, shAnimatedBat, shAnimatedBat2;
|
|
|
|
hpcshape shTinyArrow;
|
|
|
|
hpcshape shReserved[16];
|
|
|
|
int orb_inner_ring; //< for shDisk* shapes, the number of vertices in the inner ring
|
|
int res1, res2;
|
|
|
|
map<int, hpcshape> shPipe;
|
|
|
|
vector<hpcshape> shPlainWall3D, shWireframe3D, shWall3D, shMiniWall3D;
|
|
vector<hyperpoint> walltester;
|
|
|
|
vector<int> wallstart;
|
|
vector<transmatrix> raywall;
|
|
|
|
vector<struct plain_floorshape*> all_plain_floorshapes;
|
|
vector<struct escher_floorshape*> all_escher_floorshapes;
|
|
|
|
plain_floorshape
|
|
shFloor,
|
|
shMFloor, shMFloor2, shMFloor3, shMFloor4, shFullFloor,
|
|
shBigTriangle, shTriheptaFloor, shBigHepta;
|
|
|
|
escher_floorshape
|
|
shStarFloor, shCloudFloor, shCrossFloor, shChargedFloor,
|
|
shSStarFloor, shOverFloor, shTriFloor, shFeatherFloor,
|
|
shBarrowFloor, shNewFloor, shTrollFloor, shButterflyFloor,
|
|
shLavaFloor, shLavaSeabed, shSeabed, shCloudSeabed,
|
|
shCaveSeabed, shPalaceFloor, shDemonFloor, shCaveFloor,
|
|
shDesertFloor, shPowerFloor, shRoseFloor, shSwitchFloor,
|
|
shTurtleFloor, shRedRockFloor[3], shDragonFloor;
|
|
|
|
ld dlow_table[SIDEPARS], dhi_table[SIDEPARS], dfloor_table[SIDEPARS];
|
|
|
|
int prehpc;
|
|
/** list of points in all shapes */
|
|
vector<hyperpoint> hpc;
|
|
/** what shape are we currently creating */
|
|
hpcshape *last;
|
|
/** is the current shape already started? first = not yet */
|
|
bool first;
|
|
/** starting point of the current shape, can be ultraideal */
|
|
hyperpoint starting_point;
|
|
/** first ideal point of the current shape */
|
|
hyperpoint starting_ideal;
|
|
/** last added point of the current shape, can be ultraideal */
|
|
hyperpoint last_point;
|
|
/** last ideal point of the current shape */
|
|
hyperpoint last_ideal;
|
|
|
|
bool validsidepar[SIDEPARS];
|
|
|
|
vector<glvertex> ourshape;
|
|
#endif
|
|
|
|
hpcshape shFullCross[2];
|
|
|
|
int SD3, SD6, SD7, S12, S14, S21, S28, S42, S36, S84;
|
|
ld S_step;
|
|
|
|
vector<pair<int, cell*>> walloffsets;
|
|
|
|
vector<array<int, 3>> symmetriesAt;
|
|
|
|
struct cellrotation_t {
|
|
transmatrix M;
|
|
vector<int> mapping;
|
|
int inverse_id;
|
|
};
|
|
|
|
vector<cellrotation_t> cellrotations;
|
|
|
|
#ifndef SCALETUNER
|
|
static constexpr
|
|
#endif
|
|
double bscale7 = 1, brot7 = 0, bscale6 = 1, brot6 = 0;
|
|
|
|
vector<hpcshape*> allshapes;
|
|
|
|
transmatrix shadowmulmatrix;
|
|
|
|
map<usershapelayer*, hpcshape> ushr;
|
|
|
|
void prepare_basics();
|
|
void prepare_compute3();
|
|
void prepare_shapes();
|
|
void prepare_usershapes();
|
|
|
|
void hpcpush(hyperpoint h);
|
|
void hpc_connect_ideal(hyperpoint a, hyperpoint b);
|
|
void hpcsquare(hyperpoint h1, hyperpoint h2, hyperpoint h3, hyperpoint h4);
|
|
void chasmifyPoly(double fac, double fac2, int k);
|
|
void shift(hpcshape& sh, double dx, double dy, double dz);
|
|
void initPolyForGL();
|
|
void extra_vertices();
|
|
transmatrix ddi(int a, ld x);
|
|
void drawTentacle(hpcshape &h, ld rad, ld var, ld divby);
|
|
hyperpoint hpxyzsc(double x, double y, double z);
|
|
hyperpoint turtlevertex(int u, double x, double y, double z);
|
|
|
|
void bshape(hpcshape& sh, PPR prio);
|
|
void finishshape();
|
|
void bshape(hpcshape& sh, PPR prio, double shzoom, int shapeid, double bonus = 0, flagtype flags = 0);
|
|
|
|
void copyshape(hpcshape& sh, hpcshape& orig, PPR prio);
|
|
void zoomShape(hpcshape& old, hpcshape& newsh, double factor, PPR prio);
|
|
void pushShape(usershapelayer& ds);
|
|
void make_sidewalls();
|
|
void procedural_shapes();
|
|
void make_wall(int id, const vector<hyperpoint> vertices, vector<ld> weights = equal_weights);
|
|
|
|
void reserve_wall3d(int i);
|
|
void compute_cornerbonus();
|
|
void create_wall3d();
|
|
void configure_floorshapes();
|
|
|
|
void init_floorshapes();
|
|
void bshape2(hpcshape& sh, PPR prio, int shapeid, struct matrixlist& m);
|
|
void bshape_regular(floorshape &fsh, int id, int sides, ld shift, ld size, cell *model);
|
|
void generate_floorshapes_for(int id, cell *c, int siid, int sidir);
|
|
void generate_floorshapes();
|
|
void make_floor_textures_here();
|
|
void finish_apeirogon(hyperpoint center);
|
|
|
|
vector<hyperpoint> get_shape(hpcshape sh);
|
|
void add_cone(ld z0, const vector<hyperpoint>& vh, ld z1);
|
|
void add_prism_sync(ld z0, vector<hyperpoint> vh0, ld z1, vector<hyperpoint> vh1);
|
|
void add_prism(ld z0, vector<hyperpoint> vh0, ld z1, vector<hyperpoint> vh1);
|
|
void shift_last(ld z);
|
|
void shift_shape(hpcshape& sh, ld z);
|
|
void shift_shape_orthogonally(hpcshape& sh, ld z);
|
|
void add_texture(hpcshape& sh);
|
|
void make_ha_3d(hpcshape& sh, bool isarmor, ld scale);
|
|
void make_humanoid_3d(hpcshape& sh);
|
|
void addtri(array<hyperpoint, 3> hs, int kind);
|
|
void make_armor_3d(hpcshape& sh, int kind = 1);
|
|
void make_foot_3d(hpcshape& sh);
|
|
void make_head_only();
|
|
void make_head_3d(hpcshape& sh);
|
|
void make_paw_3d(hpcshape& sh, hpcshape& legsh);
|
|
void make_abody_3d(hpcshape& sh, ld tail);
|
|
void make_ahead_3d(hpcshape& sh);
|
|
void make_skeletal(hpcshape& sh, ld push = 0);
|
|
void make_revolution(hpcshape& sh, int mx = 180, ld push = 0);
|
|
void make_revolution_cut(hpcshape &sh, int each = 180, ld push = 0, ld width = 99);
|
|
void clone_shape(hpcshape& sh, hpcshape& target);
|
|
void animate_bird(hpcshape& orig, hpcshape_animated& animated, ld body);
|
|
void slimetriangle(hyperpoint a, hyperpoint b, hyperpoint c, ld rad, int lev);
|
|
void balltriangle(hyperpoint a, hyperpoint b, hyperpoint c, ld rad, int lev);
|
|
void make_ball(hpcshape& sh, ld rad, int lev);
|
|
void make_star(hpcshape& sh, ld rad);
|
|
void make_euclidean_sky();
|
|
void adjust_eye(hpcshape& eye, hpcshape head, ld shift_eye, ld shift_head, int q, ld zoom=1);
|
|
void shift_last_straight(ld z);
|
|
void queueball(const transmatrix& V, ld rad, color_t col, eItem what);
|
|
void make_shadow(hpcshape& sh);
|
|
void make_3d_models();
|
|
|
|
/* Goldberg parameters */
|
|
#if CAP_GP
|
|
struct gpdata_t {
|
|
vector<array<array<array<transmatrix, 6>, GOLDBERG_LIMIT>, GOLDBERG_LIMIT>> Tf;
|
|
transmatrix corners;
|
|
ld alpha;
|
|
int area;
|
|
int pshid[3][8][GOLDBERG_LIMIT][GOLDBERG_LIMIT][8];
|
|
int nextid;
|
|
};
|
|
shared_ptr<gpdata_t> gpdata = nullptr;
|
|
#endif
|
|
|
|
shared_ptr<expansion_analyzer> expansion = nullptr;
|
|
|
|
int state = 0;
|
|
int usershape_state = 0;
|
|
|
|
/** contains the texture point coordinates for 3D models */
|
|
basic_textureinfo models_texture;
|
|
|
|
geometry_information() { last = NULL; use_count = 0; }
|
|
|
|
void require_basics() { if(state & 1) return; state |= 1; prepare_basics(); }
|
|
void require_shapes() { if(state & 2) return; state |= 2; prepare_shapes(); }
|
|
void require_usershapes() { if(usershape_state == usershape_changes) return; usershape_state = usershape_changes; prepare_usershapes(); }
|
|
int timestamp;
|
|
|
|
hpcshape& generate_pipe(ld length, ld width, ePipeEnd endtype = ePipeEnd::sharp);
|
|
|
|
map<string, unique_ptr<gi_extension>> ext;
|
|
|
|
/** prevent from being destroyed */
|
|
int use_count;
|
|
};
|
|
#endif
|
|
|
|
EX subcellshape& get_hsh() {
|
|
if(!cgi.heptshape) cgi.heptshape = (unique_ptr<subcellshape>) (new subcellshape);
|
|
return *cgi.heptshape;
|
|
}
|
|
|
|
EX void add_wall(int i, const vector<hyperpoint>& h) {
|
|
auto& f = get_hsh().faces;
|
|
if(isize(f) <= i) f.resize(i+1);
|
|
f[i] = h;
|
|
}
|
|
|
|
/** values of hcrossf and hexf for the standard geometry. Since polygons are
|
|
* usually drawn in this geometry, the scale in other geometries is usually
|
|
* based on comparing these values to the values in the other geometry.
|
|
*/
|
|
|
|
#if HDR
|
|
static const ld hcrossf7 = 0.620672, hexf7 = 0.378077, tessf7 = 1.090550, hexhexdist7 = 0.566256;
|
|
#endif
|
|
|
|
EX bool scale_used() { return (shmup::on && geometry == gNormal && BITRUNCATED) ? (cheater || autocheat) : true; }
|
|
|
|
EX bool is_subcube_based(eVariation var) {
|
|
return among(var, eVariation::subcubes, eVariation::dual_subcubes, eVariation::bch, eVariation::bch_oct);
|
|
}
|
|
|
|
EX bool is_reg3_variation(eVariation var) {
|
|
return var == eVariation::coxeter;
|
|
}
|
|
|
|
void geometry_information::prepare_basics() {
|
|
|
|
DEBBI(DF_INIT | DF_POLY | DF_GEOM, ("prepare_basics"));
|
|
|
|
hexshift = 0;
|
|
|
|
ld ALPHA = TAU / S7;
|
|
|
|
ld fmin, fmax;
|
|
|
|
ld s3, beta;
|
|
|
|
heptshape = nullptr;
|
|
|
|
xp_order = 0;
|
|
|
|
if(arcm::in() && !mproduct)
|
|
ginf[gArchimedean].cclass = gcHyperbolic;
|
|
|
|
dynamicval<eVariation> gv(variation, variation);
|
|
bool inv = INVERSE;
|
|
if(INVERSE) {
|
|
variation = gp::variation_for(gp::param);
|
|
println(hlog, "bitruncated = ", BITRUNCATED);
|
|
}
|
|
|
|
if(mhybrid) {
|
|
auto t = this;
|
|
ld d = mproduct ? 1 : 2;
|
|
hybrid::in_underlying_geometry([&] {
|
|
t->rhexf = cgi.rhexf / d;
|
|
t->hexf = cgi.hexf / d;
|
|
t->crossf = cgi.crossf / d;
|
|
t->hcrossf = cgi.crossf / d;
|
|
t->tessf = cgi.tessf / d;
|
|
t->hexvdist = cgi.hexvdist / d;
|
|
t->hexhexdist = hdist(xpush0(cgi.hcrossf), xspinpush0(TAU/S7, cgi.hcrossf)) / d;
|
|
t->base_distlimit = cgi.base_distlimit-1;
|
|
});
|
|
goto hybrid_finish;
|
|
}
|
|
|
|
if(embedded_plane) geom3::light_flip(true);
|
|
|
|
if((sphere || hyperbolic) && WDIM == 3 && !bt::in()) {
|
|
rhexf = hexf = 0.378077;
|
|
crossf = hcrossf = 0.620672;
|
|
tessf = 1.090550;
|
|
hexhexdist = 0.566256;
|
|
goto finish;
|
|
}
|
|
|
|
s3 = S3;
|
|
if(fake::in() && !arcm::in()) s3 = fake::around;
|
|
|
|
beta = (S3 >= OINF && !fake::in()) ? 0 : TAU/s3;
|
|
|
|
tessf = euclid ? 1 : edge_of_triangle_with_angles(beta, M_PI/S7, M_PI/S7);
|
|
|
|
if(elliptic && S7 == 4 && !fake::in()) tessf = 90._deg;
|
|
|
|
hcrossf = euclid ? tessf / 2 / sin(M_PI/s3) : edge_of_triangle_with_angles(90._deg, M_PI/S7, beta/2);
|
|
|
|
if(S3 >= OINF) hcrossf = 10;
|
|
|
|
crossf = BITRUNCATED ? hcrossf : tessf;
|
|
|
|
fmin = 0, fmax = tessf;
|
|
for(int p=0; p<100; p++) {
|
|
ld f = (fmin+fmax) / 2;
|
|
hyperpoint H = xpush0(f);
|
|
hyperpoint H1 = spin(TAU/S7) * H;
|
|
hyperpoint H2 = xpush0(tessf-f);
|
|
ld v1 = intval(H, H1), v2 = intval(H, H2);
|
|
|
|
if(fake::in() && WDIM == 2) {
|
|
hexvdist = hdist(xpush0(f), xspinpush0(ALPHA/2, hcrossf));
|
|
v2 = hdist(
|
|
spin(90._deg/S3) * xpush0(hexvdist),
|
|
spin(-90._deg/S3) * xpush0(hexvdist)
|
|
);
|
|
|
|
v1 = hdist(
|
|
spin(M_PI/S7) * xpush0(f),
|
|
spin(-M_PI/S7) * xpush0(f)
|
|
);
|
|
}
|
|
|
|
if(v1 < v2) fmin = f; else fmax = f;
|
|
}
|
|
hexf = fmin;
|
|
|
|
rhexf = BITRUNCATED ? hexf : hcrossf;
|
|
edgelen = hdist(xpush0(rhexf), xspinpush0(TAU/S7, rhexf));
|
|
|
|
if(BITRUNCATED && !(S7&1))
|
|
hexshift = ALPHA/2 + ALPHA * ((S7-1)/2) + M_PI;
|
|
|
|
finish:
|
|
|
|
hexvdist = hdist(xpush0(hexf), xspinpush0(ALPHA/2, hcrossf));
|
|
|
|
hexhexdist = fake::in() ?
|
|
2 * hdist0(mid(xspinpush0(M_PI/S6, hexvdist), xspinpush0(-M_PI/S6, hexvdist)))
|
|
: hdist(xpush0(crossf), xspinpush0(TAU/S7, crossf));
|
|
|
|
DEBB(DF_GEOM | DF_POLY,
|
|
(format("S7=%d S6=%d hexf = " LDF" hcross = " LDF" tessf = " LDF" hexshift = " LDF " hexhex = " LDF " hexv = " LDF "\n", S7, S6, hexf, hcrossf, tessf, hexshift,
|
|
hexhexdist, hexvdist)));
|
|
|
|
base_distlimit = ginf[geometry].distlimit[!BITRUNCATED];
|
|
|
|
#if CAP_GP
|
|
gp::compute_geometry(inv);
|
|
#endif
|
|
#if CAP_IRR
|
|
irr::compute_geometry();
|
|
#endif
|
|
#if CAP_ARCM
|
|
if(arcm::in()) {
|
|
auto& ac = arcm::current_or_fake();
|
|
if(fake::in()) ac = arcm::current;
|
|
ac.compute_geometry();
|
|
crossf = hcrossf7 * ac.scale();
|
|
hexvdist = ac.scale() * .5;
|
|
rhexf = ac.scale() * .5;
|
|
edgelen = ac.edgelength;
|
|
}
|
|
#endif
|
|
#if CAP_BT
|
|
if(bt::in()) hexvdist = rhexf = 1, tessf = 1, scalefactor = 1, crossf = hcrossf7;
|
|
if(geometry == gHoroRec || kite::in() || sol || nil || nih) hexvdist = rhexf = .5, tessf = .5, scalefactor = .5, crossf = hcrossf7/2;
|
|
if(bt::in()) scalefactor *= min<ld>(vid.binary_width, 1), crossf *= min<ld>(vid.binary_width, 1);
|
|
#endif
|
|
#if MAXMDIM >= 4
|
|
if(reg3::in()) reg3::generate();
|
|
if(euc::in(3)) euc::generate();
|
|
#if CAP_SOLV
|
|
else if(sn::in()) sn::create_faces();
|
|
#endif
|
|
#if CAP_BT
|
|
else if(bt::in()) bt::create_faces();
|
|
#endif
|
|
else if(nil) nilv::create_faces();
|
|
#endif
|
|
|
|
hybrid_finish:
|
|
|
|
scalefactor = crossf / hcrossf7;
|
|
orbsize = crossf;
|
|
|
|
if(fake::in() && WDIM == 2) {
|
|
auto& u = *fake::underlying_cgip;
|
|
geometry = fake::underlying;
|
|
ld orig = xpush0(u.hcrossf)[0] / xpush0(u.hcrossf)[GDIM];
|
|
geometry = gFake;
|
|
ld our = xpush0(hcrossf)[0] / xpush0(hcrossf)[GDIM];
|
|
fake::scale = our / orig;
|
|
// if(debugflags & DF_GEOM)
|
|
}
|
|
|
|
if(fake::in() && WDIM == 3) {
|
|
auto& u = fake::underlying_cgip;
|
|
crossf = u->crossf * fake::scale;
|
|
scalefactor = u->scalefactor * fake::scale;
|
|
orbsize = u->orbsize * fake::scale;
|
|
hexf = u->hexf * fake::scale;
|
|
rhexf = u->rhexf * fake::scale;
|
|
hexvdist = u->hexvdist * fake::scale;
|
|
hcrossf = u->hcrossf * fake::scale;
|
|
}
|
|
|
|
if(arb::in()) {
|
|
auto csc = arb::current_or_slided().cscale;
|
|
scalefactor = csc;
|
|
hcrossf = crossf = orbsize = hcrossf7 * csc;
|
|
hexf = rhexf = hexvdist = csc * arb::current_or_slided().floor_scale;
|
|
base_distlimit = arb::current.range;
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
if(is_subcube_based(variation)) {
|
|
scalefactor /= reg3::subcube_count;
|
|
orbsize /= reg3::subcube_count;
|
|
}
|
|
#endif
|
|
|
|
if(geom3::euc_in_hyp()) {
|
|
scalefactor *= exp(-vid.depth);
|
|
}
|
|
|
|
if(geom3::euc_in_noniso()) scalefactor *= geom3::euclid_embed_scale;
|
|
if(geom3::sph_in_euc()) scalefactor *= (1 + vid.depth);
|
|
if(geom3::sph_in_hyp()) scalefactor *= sinh(1 + vid.depth);
|
|
|
|
if(scale_used()) {
|
|
scalefactor *= vid.creature_scale;
|
|
orbsize *= vid.creature_scale;
|
|
}
|
|
|
|
zhexf = BITRUNCATED ? hexf : crossf* .55;
|
|
if(scale_used()) zhexf *= vid.creature_scale;
|
|
if(WDIM == 2 && GDIM == 3) zhexf *= 1.5, orbsize *= 1.2;
|
|
|
|
floorrad0 = hexvdist* (GDIM == 3 ? 1 : 1 - 0.08 * global_boundary_ratio);
|
|
floorrad1 = rhexf * (GDIM == 3 ? 1 : 1 - 0.06 * global_boundary_ratio);
|
|
|
|
if(euc::in(2,4)) {
|
|
if(!BITRUNCATED)
|
|
floorrad0 = floorrad1 = rhexf * (GDIM == 3 ? 1 : .94);
|
|
else
|
|
floorrad0 = hexvdist * (GDIM == 3 ? 1 : .9),
|
|
floorrad1 = rhexf * (GDIM == 3 ? 1 : .8);
|
|
}
|
|
|
|
plevel = vid.plevel_factor * scalefactor;
|
|
single_step = 1;
|
|
if(mhybrid && !mproduct) {
|
|
#if CAP_ARCM
|
|
if(hybrid::underlying == gArchimedean)
|
|
arcm::current.get_step_values(psl_steps, single_step);
|
|
#else
|
|
if(0) ;
|
|
#endif
|
|
else {
|
|
single_step = S3 * S7 - 2 * S7 - 2 * S3;
|
|
psl_steps = 2 * S7;
|
|
if(BITRUNCATED) psl_steps *= S3;
|
|
if(inv) psl_steps = 2 * S3;
|
|
if(single_step < 0) single_step = -single_step;
|
|
}
|
|
DEBB(DF_GEOM | DF_POLY, ("steps = ", psl_steps, " / ", single_step));
|
|
plevel = M_PI * single_step / psl_steps;
|
|
}
|
|
|
|
set_sibling_limit();
|
|
|
|
geom3::light_flip(false);
|
|
|
|
#if CAP_BT && MAXMDIM >= 4
|
|
if(bt::in()) bt::build_tmatrix();
|
|
#endif
|
|
|
|
prepare_compute3();
|
|
if(hyperbolic && &currfp != &fieldpattern::fp_invalid)
|
|
currfp.analyze();
|
|
|
|
heptmove.resize(S7);
|
|
hexmove.resize(S7);
|
|
invhexmove.resize(S7);
|
|
|
|
for(int d=0; d<S7; d++)
|
|
heptmove[d] = spin(-d * ALPHA) * lxpush(tessf) * spin(M_PI);
|
|
|
|
for(int d=0; d<S7; d++)
|
|
hexmove[d] = spin(hexshift-d * ALPHA) * lxpush(-crossf)* spin(M_PI);
|
|
|
|
for(int d=0; d<S7; d++) invhexmove[d] = iso_inverse(hexmove[d]);
|
|
|
|
gp::prepare_matrices(inv);
|
|
|
|
#if CAP_SOLV
|
|
if(asonov::in()) {
|
|
asonov::prepare();
|
|
asonov::prepare_walls();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
EX transmatrix xspinpush(ld dir, ld dist) {
|
|
if(WDIM == 2 && GDIM == 3) {
|
|
geom3::light_flip(true);
|
|
transmatrix T = spin(dir) * xpush(dist) * spin(-dir);
|
|
geom3::light_flip(false);
|
|
swapmatrix(T);
|
|
return T;
|
|
}
|
|
else if(euclid)
|
|
return eupush(cos(dir) * dist, -sin(dir) * dist);
|
|
else
|
|
return spin(dir) * xpush(dist) * spin(-dir);
|
|
}
|
|
|
|
EX purehookset hooks_swapdim;
|
|
|
|
EX namespace geom3 {
|
|
|
|
// Here we convert between the following parameters:
|
|
|
|
// abslev: level below the plane
|
|
// lev: level above the world (abslev = depth-lev)
|
|
// projection: projection parameter
|
|
// factor: zoom factor
|
|
|
|
EX ld abslev_to_projection(ld abslev) {
|
|
if(sphere || euclid) return vid.camera+abslev;
|
|
return tanh(abslev) / tanh(vid.camera);
|
|
}
|
|
|
|
ld projection_to_abslev(ld proj) {
|
|
if(sphere || euclid) return proj-vid.camera;
|
|
// tanh(abslev) / tanh(camera) = proj
|
|
return atanh(proj * tanh(vid.camera));
|
|
}
|
|
|
|
ld lev_to_projection(ld lev) {
|
|
return abslev_to_projection(vid.depth - lev);
|
|
}
|
|
|
|
ld projection_to_factor(ld proj) {
|
|
return lev_to_projection(0) / proj;
|
|
}
|
|
|
|
EX ld factor_to_projection(ld fac) {
|
|
return lev_to_projection(0) / fac;
|
|
}
|
|
|
|
EX ld lev_to_factor(ld lev) {
|
|
if(mproduct) return -lev;
|
|
if(WDIM == 3) return lev;
|
|
if(GDIM == 3) return vid.depth - lev;
|
|
return projection_to_factor(lev_to_projection(lev));
|
|
}
|
|
EX ld factor_to_lev(ld fac) {
|
|
if(mproduct) return -fac;
|
|
if(GDIM == 3) return fac;
|
|
return vid.depth - projection_to_abslev(factor_to_projection(fac));
|
|
}
|
|
|
|
EX void do_auto_eye() {
|
|
if(!vid.auto_eye) return;
|
|
auto& cs = getcs();
|
|
if(cs.charid < 4)
|
|
vid.eye = cgi.eyelevel_human;
|
|
else if(cs.charid < 8)
|
|
vid.eye = cgi.eyelevel_dog;
|
|
else if(cs.charid == 8)
|
|
vid.eye = cgi.eyelevel_familiar;
|
|
}
|
|
|
|
// how should we scale at level lev
|
|
EX ld scale_at_lev(ld lev) {
|
|
if(sphere || euclid) return 1;
|
|
return cosh(vid.depth - lev);
|
|
}
|
|
|
|
EX string invalid;
|
|
|
|
EX ld actual_wall_height() {
|
|
if(mhybrid) return cgi.plevel;
|
|
#if CAP_GP
|
|
if(GOLDBERG && vid.gp_autoscale_heights)
|
|
return vid.wall_height * min<ld>(4 / hypot_d(2, gp::next), 1);
|
|
#endif
|
|
return vid.wall_height;
|
|
}
|
|
EX }
|
|
|
|
void geometry_information::prepare_compute3() {
|
|
using namespace geom3;
|
|
DEBBI(DF_INIT | DF_POLY | DF_GEOM, ("geom3::compute"));
|
|
// tanh(depth) / tanh(camera) == pconf.alpha
|
|
invalid = "";
|
|
|
|
if(GDIM == 3 || flipped) ;
|
|
else if(vid.tc_alpha < vid.tc_depth && vid.tc_alpha < vid.tc_camera)
|
|
pconf.alpha = tan_auto(vid.depth) / tan_auto(vid.camera);
|
|
else if(vid.tc_depth < vid.tc_alpha && vid.tc_depth < vid.tc_camera) {
|
|
ld v = pconf.alpha * tan_auto(vid.camera);
|
|
if(hyperbolic && (v<1e-6-12 || v>1-1e-12)) invalid = XLAT("cannot adjust depth"), vid.depth = vid.camera;
|
|
else vid.depth = atan_auto(v);
|
|
}
|
|
else {
|
|
ld v = tan_auto(vid.depth) / pconf.alpha;
|
|
if(hyperbolic && (v<1e-12-1 || v>1-1e-12)) invalid = XLAT("cannot adjust camera"), vid.camera = vid.depth;
|
|
else vid.camera = atan_auto(v);
|
|
}
|
|
|
|
if(fabs(pconf.alpha) < 1e-6) invalid = XLAT("does not work with perfect Klein");
|
|
|
|
if(invalid != "") {
|
|
INFDEEP = .7;
|
|
BOTTOM = .8;
|
|
HELLSPIKE = .85;
|
|
LAKE = .9;
|
|
FLOOR = 1;
|
|
WALL = 1.25;
|
|
SLEV[0] = 1;
|
|
SLEV[1] = 1.08;
|
|
SLEV[2] = 1.16;
|
|
SLEV[3] = 1.24;
|
|
FLATEYE = 1.03;
|
|
LEG1 = 1.025;
|
|
LEG = 1.05;
|
|
LEG3 = 1.075;
|
|
GROIN = 1.09;
|
|
GROIN1 = 1.105;
|
|
GHOST = 1.1;
|
|
BODY = 1.15;
|
|
BODY1 = 1.151;
|
|
BODY2 = 1.152;
|
|
BODY3 = 1.153;
|
|
NECK1 = 1.16;
|
|
NECK = 1.17;
|
|
NECK3 = 1.18;
|
|
HEAD = 1.188;
|
|
HEAD1= 1.189;
|
|
HEAD2= 1.190;
|
|
HEAD3= 1.191;
|
|
ABODY = 1.08;
|
|
AHEAD = 1.12;
|
|
BIRD = 1.20;
|
|
}
|
|
else {
|
|
INFDEEP = GDIM == 3 ? (sphere ? 90._deg : +5) : (euclid || sphere) ? 0.01 : lev_to_projection(0) * tanh(vid.camera);
|
|
ld wh = actual_wall_height();
|
|
WALL = lev_to_factor(wh);
|
|
FLOOR = lev_to_factor(0);
|
|
|
|
human_height = vid.human_wall_ratio * wh;
|
|
if(WDIM == 3) human_height = scalefactor * vid.height_width / 2;
|
|
if(mhybrid) human_height = min(human_height, cgi.plevel * .9);
|
|
|
|
ld reduce = (WDIM == 3 ? human_height / 2 : 0);
|
|
|
|
LEG0 = lev_to_factor(human_height * .0 - reduce);
|
|
LEG1 = lev_to_factor(human_height * .1 - reduce);
|
|
LEG = lev_to_factor(human_height * .2 - reduce);
|
|
LEG3 = lev_to_factor(human_height * .3 - reduce);
|
|
GROIN = lev_to_factor(human_height * .4 - reduce);
|
|
GROIN1= lev_to_factor(human_height * .5 - reduce);
|
|
BODY = lev_to_factor(human_height * .6 - reduce);
|
|
BODY1 = lev_to_factor(human_height * .61 - reduce);
|
|
BODY2 = lev_to_factor(human_height * .62 - reduce);
|
|
BODY3 = lev_to_factor(human_height * .63 - reduce);
|
|
NECK1 = lev_to_factor(human_height * .7 - reduce);
|
|
NECK = lev_to_factor(human_height * .8 - reduce);
|
|
NECK3 = lev_to_factor(human_height * .9 - reduce);
|
|
HEAD = lev_to_factor(human_height * .97 - reduce);
|
|
HEAD1 = lev_to_factor(human_height * .98 - reduce);
|
|
HEAD2 = lev_to_factor(human_height * .99 - reduce);
|
|
HEAD3 = lev_to_factor(human_height - reduce);
|
|
|
|
reduce = (GDIM == 3 ? human_height * .3 : 0);
|
|
|
|
int sgn = vid.wall_height > 0 ? 1 : -1;
|
|
ld ees = geom3::euc_in_noniso() ? geom3::euclid_embed_scale : 1;
|
|
|
|
STUFF = lev_to_factor(0) - sgn * max(orbsize * ees * 0.3, zhexf * ees * .6);
|
|
|
|
ABODY = lev_to_factor(human_height * .4 - reduce);
|
|
ALEG0 = lev_to_factor(human_height * .0 - reduce);
|
|
ALEG = lev_to_factor(human_height * .2 - reduce);
|
|
AHEAD = lev_to_factor(human_height * .6 - reduce);
|
|
BIRD = lev_to_factor(WDIM == 3 ? 0 : (vid.human_wall_ratio+1)/2 * wh * .8);
|
|
GHOST = lev_to_factor(WDIM == 3 ? 0 : human_height * .5);
|
|
FLATEYE = lev_to_factor(human_height * .15);
|
|
|
|
slev = vid.rock_wall_ratio * wh / 3;
|
|
for(int s=0; s<=3; s++)
|
|
SLEV[s] = lev_to_factor(vid.rock_wall_ratio * wh * s/3);
|
|
LAKE = lev_to_factor(sgn * -vid.lake_top);
|
|
SHALLOW = lev_to_factor(sgn * -.4);
|
|
HELLSPIKE = lev_to_factor(sgn * -(vid.lake_top+vid.lake_bottom)/2);
|
|
BOTTOM = lev_to_factor(sgn * -vid.lake_bottom);
|
|
LOWSKY = lev_to_factor(2 * wh);
|
|
HIGH = LOWSKY;
|
|
HIGH2 = lev_to_factor(3 * wh);
|
|
SKY = LOWSKY - sgn * 5;
|
|
|
|
if(geom3::mgclass() == gcSphere && geom3::ggclass() != gcSphere) {
|
|
ld max_high = lerp(-FLOOR, -1, 0.8);
|
|
ld max_high2 = lerp(-FLOOR, -1, 0.9);
|
|
if(HIGH < max_high) HIGH = max_high;
|
|
if(HIGH2 < max_high2) HIGH2 = max_high2;
|
|
if(LOWSKY < max_high) LOWSKY = max_high;
|
|
if(SKY < max_high) SKY = max_high;
|
|
if(vid.wall_height < 0) {
|
|
SKY = -3 * vid.wall_height;
|
|
LOWSKY = 1.75 * SKY;
|
|
}
|
|
if(SHALLOW < max_high) SHALLOW = max_high;
|
|
if(LAKE < max_high) LAKE = max_high;
|
|
if(BOTTOM < max_high2) BOTTOM = max_high2;
|
|
if(HELLSPIKE < max_high) HELLSPIKE = max_high;
|
|
if(sgn < 0) INFDEEP = -1;
|
|
}
|
|
|
|
if(geom3::euc_in_hyp() && sgn < 0) INFDEEP = FLOOR - 5;
|
|
}
|
|
}
|
|
|
|
EX namespace geom3 {
|
|
|
|
#if HDR
|
|
enum eSpatialEmbedding {
|
|
seNone,
|
|
seDefault,
|
|
seLowerCurvature,
|
|
seMuchLowerCurvature,
|
|
seProduct,
|
|
seNil,
|
|
seSol, seNIH, seSolN,
|
|
seNIH_inv
|
|
};
|
|
#endif
|
|
|
|
EX vector<pair<string, string>> spatial_embedding_options = {
|
|
{"2D engine", "Use HyperRogue's 2D engine to simulate same curvature. Works well in top-down and third-person perspective."},
|
|
{"same curvature", "Embed as an equidistant surface in the 3D version of the same geometry."},
|
|
{"lower curvature", "Embed as a surface in a space of lower curvature."},
|
|
{"much lower curvature", "Embed sphere as a sphere in hyperbolic space."},
|
|
{"product", "Add one extra dimension in the Euclidean way."},
|
|
{"Nil", "Embed into Nil. Works only with Euclidean. You need to set the variation to Pure."},
|
|
{"Sol", "Embed into Sol. Works only with Euclidean. You need to set the variation to Pure."},
|
|
{"stretched hyperbolic", "Embed into stretched hyperbolic geometry. Works only with Euclidean. You need to set the variation to Pure."},
|
|
{"stretched Sol", "Embed into stretched Sol geometry. Works only with Euclidean. You need to set the variation to Pure."},
|
|
};
|
|
|
|
EX eSpatialEmbedding spatial_embedding = seDefault;
|
|
EX ld euclid_embed_scale = 1;
|
|
EX bool auto_configure = true;
|
|
EX bool flat_embedding = false;
|
|
EX bool inverted_embedding = false;
|
|
|
|
EX bool supports_flat() { return spatial_embedding == seDefault; }
|
|
EX bool supports_invert() { return among(spatial_embedding, seDefault, seLowerCurvature, seMuchLowerCurvature, seNil, seSol, seNIH, seSolN); }
|
|
|
|
EX vector<geometryinfo> ginf_backup;
|
|
|
|
EX eGeometryClass mgclass() {
|
|
return (embedded_plane ? ginf_backup : ginf)[geometry].g.kind;
|
|
}
|
|
|
|
EX eGeometryClass ggclass() {
|
|
return (flipped ? ginf_backup : ginf)[geometry].g.kind;
|
|
}
|
|
|
|
EX bool euc_in_hyp() {
|
|
return ggclass() == gcHyperbolic && mgclass() == gcEuclid;
|
|
}
|
|
|
|
EX bool euc_in_nil() {
|
|
return ggclass() == gcNil && mgclass() == gcEuclid;
|
|
}
|
|
|
|
EX bool euc_in_solnih() {
|
|
return among(ggclass(), gcSol, gcNIH, gcSolN) && mgclass() == gcEuclid;
|
|
}
|
|
|
|
EX bool hyp_in_solnih() {
|
|
return among(ggclass(), gcSol, gcNIH, gcSolN) && mgclass() == gcHyperbolic;
|
|
}
|
|
|
|
EX bool euc_in_noniso() {
|
|
return among(ggclass(), gcNil, gcSol, gcNIH, gcSolN) && mgclass() == gcEuclid;
|
|
}
|
|
|
|
EX bool sph_in_euc() {
|
|
return ggclass() == gcEuclid && mgclass() == gcSphere;
|
|
}
|
|
|
|
EX bool sph_in_hyp() {
|
|
return ggclass() == gcHyperbolic && mgclass() == gcSphere;
|
|
}
|
|
|
|
EX bool sph_in_low() {
|
|
return mgclass() == gcSphere && among(ggclass(), gcHyperbolic, gcEuclid);
|
|
}
|
|
|
|
EX bool in_product() {
|
|
return ggclass() == gcProduct;
|
|
}
|
|
|
|
EX bool same_in_same() {
|
|
return mgclass() == ggclass();
|
|
}
|
|
|
|
EX bool flipped;
|
|
|
|
EX void light_flip(bool f) {
|
|
if(f != flipped) {
|
|
swap(ginf[geometry].g, geom3::ginf_backup[geometry].g);
|
|
swap(ginf[geometry].flags, geom3::ginf_backup[geometry].flags);
|
|
flipped = f;
|
|
}
|
|
}
|
|
|
|
#if HDR
|
|
template<class T> auto in_flipped(const T& f) -> decltype(f()) {
|
|
light_flip(true);
|
|
finalizer ff([] { light_flip(false); });
|
|
return f();
|
|
}
|
|
|
|
template<class T> auto in_not_flipped(const T& f) -> decltype(f()) {
|
|
light_flip(false);
|
|
finalizer ff([] { light_flip(true); });
|
|
return f();
|
|
}
|
|
|
|
#define IPF(x) geom3::in_flipped([&] { return (x); })
|
|
#endif
|
|
|
|
EX void apply_always3() {
|
|
if(!vid.always3 && !ginf_backup.empty()) {
|
|
ginf = ginf_backup;
|
|
ginf_backup.clear();
|
|
}
|
|
if(vid.always3 && ginf_backup.empty()) {
|
|
ginf_backup = ginf;
|
|
for(geometryinfo& gi: ginf) {
|
|
auto &g = gi.g;
|
|
if(vid.always3 && g.gameplay_dimension == 2 && g.graphical_dimension == 2) {
|
|
g.graphical_dimension++;
|
|
g.homogeneous_dimension++;
|
|
g.sig[3] = g.sig[2];
|
|
g.sig[2] = g.sig[1];
|
|
|
|
if(spatial_embedding == seProduct && g.kind != gcEuclid) {
|
|
g.kind = gcProduct;
|
|
g.homogeneous_dimension--;
|
|
g.sig[2] = g.sig[3];
|
|
}
|
|
|
|
if(spatial_embedding == seLowerCurvature) {
|
|
if(g.kind == gcEuclid) g = ginf[gSpace534].g;
|
|
if(g.kind == gcSphere) g = ginf[gCubeTiling].g;
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
|
|
if(spatial_embedding == seMuchLowerCurvature) {
|
|
g = ginf[gSpace534].g;
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
|
|
bool ieuclid = g.kind == gcEuclid;
|
|
|
|
if(spatial_embedding == seNil && ieuclid) {
|
|
g = ginf[gNil].g;
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
|
|
bool ieuc_or_binary = ieuclid || (gi.flags & qBINARY);
|
|
|
|
if(spatial_embedding == seSol && ieuc_or_binary) {
|
|
g = ginf[gSol].g;
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
|
|
if(spatial_embedding == seNIH && ieuc_or_binary) {
|
|
g = ginf[gNIH].g;
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
|
|
if(spatial_embedding == seSolN && ieuc_or_binary) {
|
|
g = ginf[gSolN].g;
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
EX void switch_always3() {
|
|
if(dual::split(switch_always3)) return;
|
|
#if CAP_GL && CAP_RUG
|
|
if(rug::rugged) rug::close();
|
|
#endif
|
|
vid.always3 = !vid.always3;
|
|
apply_always3();
|
|
swapmatrix(View);
|
|
callhooks(hooks_swapdim);
|
|
}
|
|
#endif
|
|
|
|
EX void switch_tpp() {
|
|
if(dual::split(switch_fpp)) return;
|
|
if(pmodel == mdDisk && pconf.camera_angle) {
|
|
vid.yshift = 0;
|
|
pconf.camera_angle = 0;
|
|
pconf.xposition = 0;
|
|
pconf.yposition = 0;
|
|
pconf.scale = 1;
|
|
vid.fixed_facing = false;
|
|
}
|
|
else {
|
|
vid.yshift = -0.3;
|
|
pconf.camera_angle = -45;
|
|
pconf.scale = 18/16. * vid.xres / vid.yres / multi::players;
|
|
pconf.xposition = 0;
|
|
pconf.yposition = -0.9;
|
|
vid.fixed_facing = true;
|
|
vid.fixed_facing_dir = 90;
|
|
}
|
|
}
|
|
|
|
EX void switch_fpp() {
|
|
#if MAXMDIM >= 4
|
|
#if CAP_GL && CAP_RUG
|
|
if(rug::rugged) rug::close();
|
|
#endif
|
|
if(dual::split(switch_fpp)) return;
|
|
check_cgi(); cgi.require_basics();
|
|
View = iso_inverse(models::rotmatrix()) * View;
|
|
if(!vid.always3) {
|
|
vid.always3 = true;
|
|
apply_always3();
|
|
ld ms = min<ld>(cgi.scalefactor, 1);
|
|
vid.depth = ms;
|
|
vid.wall_height = 1.5 * ms;
|
|
if(sphere && same_in_same()) {
|
|
vid.depth = 30 * degree;
|
|
vid.wall_height = 60 * degree;
|
|
}
|
|
vid.human_wall_ratio = 0.8;
|
|
if(mgclass() == gcEuclid && allowIncreasedSight() && vid.use_smart_range == 0) {
|
|
genrange_bonus = gamerange_bonus = sightrange_bonus = cgi.base_distlimit * 3/2;
|
|
}
|
|
vid.camera = 0;
|
|
vid.eye = 0;
|
|
if(sph_in_euc() || sph_in_hyp()) {
|
|
vid.depth = 0;
|
|
vid.wall_height = -1;
|
|
vid.eye = 0.5;
|
|
if(inverted_embedding) {
|
|
vid.wall_height = 1.4;
|
|
vid.eye = -0.2;
|
|
vid.depth = 0.5;
|
|
}
|
|
}
|
|
if(spatial_embedding == seDefault && flat_embedding) {
|
|
vid.eye -= vid.depth / 2;
|
|
vid.depth = 0;
|
|
}
|
|
if(spatial_embedding == seDefault && !flat_embedding && inverted_embedding) {
|
|
vid.eye -= vid.depth * 1.5;
|
|
vid.depth *= -1;
|
|
}
|
|
if((euc_in_hyp() || euc_in_noniso()) && inverted_embedding) {
|
|
vid.wall_height *= -1;
|
|
vid.eye = 2 * vid.depth;
|
|
}
|
|
if(msphere && spatial_embedding == seProduct) {
|
|
vid.depth = 0;
|
|
vid.wall_height = 2;
|
|
vid.eye = -2;
|
|
}
|
|
if(pmodel == mdDisk) pmodel = nonisotropic ? mdGeodesic : mdPerspective;
|
|
swapmatrix(View);
|
|
swapmatrix(current_display->which_copy);
|
|
callhooks(hooks_swapdim);
|
|
for(auto m: allmaps) m->on_dim_change();
|
|
if(cgflags & qIDEAL && vid.texture_step < 32)
|
|
vid.texture_step = 32;
|
|
#if CAP_RACING
|
|
racing::player_relative = true;
|
|
#endif
|
|
check_cgi();
|
|
cgi.prepare_basics();
|
|
}
|
|
else {
|
|
vid.always3 = false;
|
|
apply_always3();
|
|
vid.wall_height = .3;
|
|
vid.human_wall_ratio = .7;
|
|
vid.camera = 1;
|
|
vid.depth = 1;
|
|
if(pmodel == mdPerspective) pmodel = mdDisk;
|
|
swapmatrix(View);
|
|
swapmatrix(current_display->which_copy);
|
|
callhooks(hooks_swapdim);
|
|
for(auto m: allmaps) m->on_dim_change();
|
|
}
|
|
View = models::rotmatrix() * View;
|
|
#endif
|
|
}
|
|
|
|
EX }
|
|
|
|
EX geometry_information *cgip;
|
|
EX map<string, geometry_information> cgis;
|
|
|
|
#if HDR
|
|
#define cgi (*cgip)
|
|
#endif
|
|
|
|
EX int last_texture_step;
|
|
|
|
int ntimestamp;
|
|
|
|
EX hookset<void(string&)> hooks_cgi_string;
|
|
|
|
EX string cgi_string() {
|
|
string s;
|
|
auto V = [&] (string a, string b) { s += a; s += ": "; s += b; s += "; "; };
|
|
V("GEO", its(int(geometry)));
|
|
V("VAR", its(int(variation)));
|
|
|
|
if(arb::in()) {
|
|
for(auto& sl: arb::current.sliders)
|
|
V("AS", fts(sl.current));
|
|
for(auto& sl: arb::current.intsliders)
|
|
V("AS", its(sl.current));
|
|
}
|
|
|
|
if(fake::in()) {
|
|
if(hyperbolic) V("H", fts(fake::around));
|
|
if(euclid) V("E", fts(fake::around));
|
|
if(sphere) V("S", fts(fake::around));
|
|
V("G", FPIU(cgi_string()));
|
|
return s;
|
|
}
|
|
|
|
if(GOLDBERG_INV) V("GP", its(gp::param.first) + "," + its(gp::param.second));
|
|
if(IRREGULAR) V("IRR", its(irr::irrid));
|
|
#if MAXMDIM >= 4
|
|
if(is_subcube_based(variation)) V("SC", its(reg3::subcube_count));
|
|
if(variation == eVariation::coxeter) V("COX", its(reg3::coxeter_param));
|
|
#endif
|
|
|
|
#if CAP_ARCM
|
|
if(arcm::in()) V("ARCM", arcm::current.symbol);
|
|
#endif
|
|
|
|
if(arb::in()) V("ARB", its(arb::current.order));
|
|
|
|
if(arb::in()) V("AP", its(arb::apeirogon_simplified_display));
|
|
|
|
if(arb::in()) V("F", its(arb::extended_football));
|
|
|
|
V("BR", fts(global_boundary_ratio));
|
|
|
|
if(cryst) V("CRYSTAL", its(ginf[gCrystal].sides) + its(ginf[gCrystal].vertex));
|
|
|
|
if(bt::in() || GDIM == 3) V("WQ", its(vid.texture_step));
|
|
|
|
if(mhybrid) {
|
|
V("U", PIU(cgi_string()));
|
|
}
|
|
|
|
if(mproduct) V("PL", fts(vid.plevel_factor));
|
|
|
|
if(geometry == gFieldQuotient) { V("S3=", its(S3)); V("S7=", its(S7)); }
|
|
if(nil) V("NIL", its(S7));
|
|
|
|
if(bt::in()) V("BT", fts(vid.binary_width));
|
|
|
|
if(nil) V("NILW", fts(nilv::nilwidth));
|
|
|
|
if(GDIM == 2) {
|
|
V("CAMERA", fts(vid.camera));
|
|
}
|
|
|
|
if(WDIM == 2) {
|
|
V("WH", fts(vid.wall_height));
|
|
V("HW", fts(vid.human_wall_ratio));
|
|
V("RW", fts(vid.rock_wall_ratio));
|
|
V("DEPTH", fts(vid.depth));
|
|
V("ASH", ONOFF(vid.gp_autoscale_heights));
|
|
V("LT", fts(vid.lake_top));
|
|
V("LB", fts(vid.lake_bottom));
|
|
if(GDIM == 3 && vid.pseudohedral)
|
|
V("PS", fts(vid.depth_bonus));
|
|
}
|
|
|
|
V("3D", ONOFF(vid.always3));
|
|
|
|
if(embedded_plane) V("X:", its(geom3::ggclass()));
|
|
|
|
if(embedded_plane && meuclid) V("XS:", fts(geom3::euclid_embed_scale));
|
|
|
|
if(scale_used()) V("CS", fts(vid.creature_scale));
|
|
|
|
if(WDIM == 3) V("HTW", fts(vid.height_width));
|
|
|
|
V("LQ", its(vid.linequality));
|
|
|
|
callhooks(hooks_cgi_string, s);
|
|
|
|
return s;
|
|
}
|
|
|
|
#if MAXMDIM >= 4 && CAP_RAY
|
|
#define IFINTRA(x,y) x
|
|
#else
|
|
#define IFINTRA(x,y) y
|
|
#endif
|
|
|
|
EX void check_cgi() {
|
|
string s = cgi_string();
|
|
|
|
cgip = &cgis[s];
|
|
cgi.timestamp = ++ntimestamp;
|
|
if(mhybrid) hybrid::underlying_cgip->timestamp = ntimestamp;
|
|
if(fake::in()) fake::underlying_cgip->timestamp = ntimestamp;
|
|
#if CAP_ARCM
|
|
if(arcm::alt_cgip) arcm::alt_cgip->timestamp = ntimestamp;
|
|
#endif
|
|
|
|
int limit = 4;
|
|
for(auto& t: cgis) if(t.second.use_count) limit++;
|
|
if(isize(cgis) > limit) {
|
|
vector<pair<int, string>> timestamps;
|
|
for(auto& t: cgis) if(!t.second.use_count) timestamps.emplace_back(-t.second.timestamp, t.first);
|
|
sort(timestamps.begin(), timestamps.end());
|
|
while(isize(timestamps) > 4) {
|
|
DEBB(DF_GEOM, ("erasing geometry ", timestamps.back().second));
|
|
cgis.erase(timestamps.back().second);
|
|
timestamps.pop_back();
|
|
}
|
|
}
|
|
|
|
if(floor_textures && last_texture_step != vid.texture_step) {
|
|
println(hlog, "changed ", last_texture_step, " to ", vid.texture_step);
|
|
delete floor_textures;
|
|
floor_textures = NULL;
|
|
}
|
|
|
|
#if MAXMDIM >= 4 && CAP_GL
|
|
if(!floor_textures && GDIM == 3 && (cgi.state & 2))
|
|
make_floor_textures();
|
|
#endif
|
|
|
|
}
|
|
|
|
void clear_cgis() {
|
|
printf("clear_cgis\n");
|
|
for(auto& p: cgis) if(&p.second != &cgi) { cgis.erase(p.first); return; }
|
|
}
|
|
|
|
auto ah_clear_geo = addHook(hooks_clear_cache, 0, clear_cgis);
|
|
|
|
}
|