1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-27 14:37:16 +00:00
hyperrogue/cell.cpp
2017-09-30 11:20:50 +02:00

1565 lines
40 KiB
C++

// Hyperbolic Rogue -- cells
// Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details
// cells the game is played on
#define DEBMEM(x) // { x fflush(stdout); }
int fix6(int a) { return (a+96)% 6; }
int fix7(int a) { return (a+420)%S7; }
int dirdiff(int dd, int t) {
dd %= t;
if(dd<0) dd += t;
if(t-dd < dd) dd = t-dd;
return dd;
}
struct cell : gcell {
char type; // 6 for hexagons, 7 for heptagons
// wall parameter, used for remaining power of Bonfires and Thumpers
char wparam;
// 'tmp' is used for:
// pathfinding algorithm used by monsters with atypical movement (which do not use pathdist)
// bugs' pathfinding algorithm
short aitmp;
uint32_t spintable;
int spin(int d) { return tspin(spintable, d); }
int spn(int d) { return tspin(spintable, d); }
int mirror(int d) { return tmirror(spintable, d); }
heptagon *master;
cell *mov[7]; // meaning very similar to heptagon::move
};
int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; }
int cellcount = 0;
void initcell(cell *c); // from game.cpp
cell *newCell(int type, heptagon *master) {
cell *c = new cell;
cellcount++;
c->type = type;
c->master = master;
for(int i=0; i<7; i++) c->mov[i] = NULL;
initcell(c);
return c;
}
void merge(cell *c, int d, cell *c2, int d2, bool mirrored = false) {
c->mov[d] = c2;
tsetspin(c->spintable, d, d2 + (mirrored?8:0));
c2->mov[d2] = c;
tsetspin(c2->spintable, d2, d + (mirrored?8:0));
}
typedef unsigned short eucoord;
struct cdata {
int val[4];
int bits;
};
// list all cells in distance at most maxdist, or until when maxcount cells are reached
struct celllister {
vector<cell*> lst;
vector<int> tmps;
vector<int> dists;
void add(cell *c, int d) {
if(eq(c->aitmp, sval)) return;
c->aitmp = sval;
tmps.push_back(c->aitmp);
lst.push_back(c);
dists.push_back(d);
}
~celllister() {
for(int i=0; i<size(lst); i++) lst[i]->aitmp = tmps[i];
}
celllister(cell *orig, int maxdist, int maxcount, cell *breakon) {
lst.clear();
tmps.clear();
dists.clear();
sval++;
add(orig, 0);
cell *last = orig;
for(int i=0; i<size(lst); i++) {
cell *c = lst[i];
if(maxdist) forCellCM(c2, c) {
add(c2, dists[i]+1);
if(c2 == breakon) return;
}
if(c == last) {
if(size(lst) >= maxcount || dists[i]+1 == maxdist) break;
last = lst[size(lst)-1];
}
}
}
void prepare() {
for(int i=0; i<size(lst); i++) lst[i]->aitmp = i;
}
int getdist(cell *c) { return dists[c->aitmp]; }
bool listed(cell *c) {
return c->aitmp >= 0 && c->aitmp < size(lst) && lst[c->aitmp] == c;
}
};
// -- hrmap ---
struct hrmap {
virtual heptagon *getOrigin() { return NULL; }
virtual cell *gamestart() { return getOrigin()->c7; }
virtual ~hrmap() { };
virtual vector<cell*>& allcells() { return dcal; }
virtual void verify() { }
};
hrmap *currentmap;
vector<hrmap*> allmaps;
// --- auxiliary hyperbolic map for horocycles ---
struct hrmap_alternate : hrmap {
heptagon *origin;
hrmap_alternate(heptagon *o) { origin = o; }
~hrmap_alternate() { clearfrom(origin); }
};
// --- hyperbolic geometry ---
struct hrmap_hyperbolic : hrmap {
heptagon *origin;
bool ispurehepta;
hrmap_hyperbolic() {
// printf("Creating hyperbolic map: %p\n", this);
origin = new heptagon;
heptagon& h = *origin;
h.s = hsOrigin;
h.emeraldval = 98;
h.zebraval = 40;
h.fiftyval = 0;
h.fieldval = 0;
h.rval0 = h.rval1 = 0;
h.cdata = NULL;
for(int i=0; i<7; i++) h.move[i] = NULL;
h.spintable = 0;
h.alt = NULL;
h.distance = 0;
ispurehepta = purehepta;
h.c7 = newCell(7, origin);
}
heptagon *getOrigin() { return origin; }
~hrmap_hyperbolic() {
DEBMEM ( verifycells(origin); )
// printf("Deleting hyperbolic map: %p\n", this);
dynamicval<bool> ph(purehepta, ispurehepta);
clearfrom(origin);
}
void verify() { verifycells(origin); }
};
// --- spherical geometry ---
int spherecells() {
if(S7 == 5) return (elliptic?6:12);
if(S7 == 4) return (elliptic?3:6);
if(S7 == 3) return 4;
if(S7 == 2) return (elliptic?1:2);
if(S7 == 1) return 1;
return 12;
}
struct hrmap_spherical : hrmap {
heptagon *dodecahedron[12];
bool ispurehepta;
hrmap_spherical() {
ispurehepta = purehepta;
for(int i=0; i<spherecells(); i++) {
heptagon& h = *(dodecahedron[i] = new heptagon);
h.s = hsOrigin;
h.emeraldval = i;
h.zebraval = i;
h.fiftyval = i;
h.rval0 = h.rval1 = 0;
h.alt = NULL;
h.cdata = NULL;
h.spintable = 0;
for(int i=0; i<S7; i++) h.move[i] = NULL;
h.c7 = newCell(S7, &h);
}
for(int i=0; i<S7; i++) {
dodecahedron[0]->move[i] = dodecahedron[i+1];
dodecahedron[0]->setspin(i, 0);
dodecahedron[i+1]->move[0] = dodecahedron[0];
dodecahedron[i+1]->setspin(0, i);
dodecahedron[i+1]->move[1] = dodecahedron[(i+S7-1)%S7+1];
dodecahedron[i+1]->setspin(1, S7-1);
dodecahedron[i+1]->move[S7-1] = dodecahedron[(i+1)%S7+1];
dodecahedron[i+1]->setspin(S7-1, 1);
if(S7 == 5 && elliptic) {
dodecahedron[i+1]->move[2] = dodecahedron[(i+2)%S7+1];
dodecahedron[i+1]->setspin(2, 3 + 8);
dodecahedron[i+1]->move[3] = dodecahedron[(i+3)%S7+1];
dodecahedron[i+1]->setspin(3, 2 + 8);
}
else if(S7 == 5) {
dodecahedron[6]->move[i] = dodecahedron[7+i];
dodecahedron[6]->setspin(i, 0);
dodecahedron[7+i]->move[0] = dodecahedron[6];
dodecahedron[7+i]->setspin(0, i);
dodecahedron[i+7]->move[1] = dodecahedron[(i+4)%5+7];
dodecahedron[i+7]->setspin(1, 4);
dodecahedron[i+7]->move[4] = dodecahedron[(i+1)%5+7];
dodecahedron[i+7]->setspin(4, 1);
dodecahedron[i+1]->move[2] = dodecahedron[7+(10-i)%5];
dodecahedron[i+1]->setspin(2, 2);
dodecahedron[7+(10-i)%5]->move[2] = dodecahedron[1+i];
dodecahedron[7+(10-i)%5]->setspin(2, 2);
dodecahedron[i+1]->move[3] = dodecahedron[7+(9-i)%5];
dodecahedron[i+1]->setspin(3, 3);
dodecahedron[7+(9-i)%5]->move[3] = dodecahedron[i+1];
dodecahedron[7+(9-i)%5]->setspin(3, 3);
}
if(S7 == 4) {
dodecahedron[5]->move[3-i] = dodecahedron[i+1];
dodecahedron[5]->setspin(3-i, 2);
dodecahedron[i+1]->move[2] = dodecahedron[5];
dodecahedron[i+1]->setspin(2, 3-i);
}
}
}
heptagon *getOrigin() { return dodecahedron[0]; }
~hrmap_spherical() {
dynamicval<bool> ph(purehepta, ispurehepta);
for(int i=0; i<spherecells(); i++) clearHexes(dodecahedron[i]);
for(int i=0; i<spherecells(); i++) delete dodecahedron[i];
}
void verify() {
for(int i=0; i<spherecells(); i++) for(int k=0; k<S7; k++) {
heptspin hs;
hs.h = dodecahedron[i];
hs.spin = k;
hs = hsstep(hs, 0);
hs = hsspin(hs, S7-1);
hs = hsstep(hs, 0);
hs = hsspin(hs, S7-1);
hs = hsstep(hs, 0);
hs = hsspin(hs, S7-1);
if(hs.h != dodecahedron[i]) printf("error %d,%d\n", i, k);
}
for(int i=0; i<spherecells(); i++) verifycells(dodecahedron[i]);
}
};
heptagon *getDodecahedron(int i) {
hrmap_spherical *s = dynamic_cast<hrmap_spherical*> (currentmap);
if(!s) return NULL;
return s->dodecahedron[i];
}
// --- euclidean geometry ---
cell*& euclideanAtCreate(eucoord x, eucoord y);
namespace torusconfig {
// the configuration of the torus topology.
// torus cells are indexed [0..qty),
// where the cell to the right from i is indexed i+dx,
// and the cell to the down-rightis numbered i+dy
// changed with command line option: -tpar <qty>,<dx>,<dy>
int qty = 127*3, dx = -1, dy = 11*2;
}
int decodeId(heptagon* h);
heptagon* encodeId(int id);
struct hrmap_torus : hrmap {
vector<cell*> all;
vector<int> dists;
virtual vector<cell*>& allcells() { return all; }
cell *gamestart() {
return all[0];
}
hrmap_torus() {
using namespace torusconfig;
all.resize(qty);
for(int i=0; i<qty; i++) {
all[i] = newCell(6, NULL);
all[i]->master = encodeId(i);
}
dx %= qty;
dy %= qty;
for(int i=0; i<qty; i++) {
all[i]->mov[0] = all[(i+dx+2*qty)%qty];
all[i]->mov[1] = all[(i+dy+2*qty)%qty];
all[i]->mov[2] = all[(i+dy-dx+2*qty)%qty];
all[i]->mov[3] = all[(i-dx+2*qty)%qty];
all[i]->mov[4] = all[(i-dy+2*qty)%qty];
all[i]->mov[5] = all[(i-dy+dx+2*qty)%qty];
for(int j=0; j<6; j++)
tsetspin(all[i]->spintable, j, (j+3) % 6);
}
celllister cl(gamestart(), 100, 100000000, NULL);
dists.resize(qty);
for(int i=0; i<size(cl.lst); i++)
dists[decodeId(cl.lst[i]->master)] = cl.dists[i];
}
~hrmap_torus() {
for(cell *c: all) delete c;
}
};
int toridMod(int id) {
using namespace torusconfig;
id %= qty; if(id < 0) id += qty;
return id;
}
hrmap_torus *torusmap() {
return dynamic_cast<hrmap_torus*> (currentmap);
}
cell *getTorusId(int id) {
hrmap_torus *cur = torusmap();
if(!cur) return NULL;
return cur->all[toridMod(id)];
}
struct hrmap_euclidean : hrmap {
cell *gamestart() {
return euclideanAtCreate(0,0);
}
struct euclideanSlab {
cell* a[256][256];
euclideanSlab() {
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
a[y][x] = NULL;
}
~euclideanSlab() {
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
if(a[y][x]) delete a[y][x];
}
};
euclideanSlab* euclidean[256][256];
hrmap_euclidean() {
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
euclidean[y][x] = NULL;
}
cell*& at(eucoord x, eucoord y) {
euclideanSlab*& slab = euclidean[y>>8][x>>8];
if(!slab) slab = new hrmap_euclidean::euclideanSlab;
return slab->a[y&255][x&255];
}
map<heptagon*, struct cdata> eucdata;
~hrmap_euclidean() {
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
if(euclidean[y][x]) {
delete euclidean[y][x];
euclidean[y][x] = NULL;
}
eucdata.clear();
}
};
union heptacoder {
heptagon *h;
struct { eucoord x; eucoord y; } c;
int id;
};
void decodeMaster(heptagon *h, eucoord& x, eucoord& y) {
if(torus) { printf("decodeMaster on torus\n"); exit(1); }
heptacoder u;
u.h = h; x = u.c.x; y = u.c.y;
}
int decodeId(heptagon* h) {
heptacoder u;
u.h = h; return u.id;
}
heptagon* encodeMaster(eucoord x, eucoord y) {
if(torus) { printf("encodeMaster on torus\n"); exit(1); }
heptacoder u;
u.c.x = x; u.c.y = y;
return u.h;
}
heptagon* encodeId(int id) {
heptacoder u;
u.id = id;
return u.h;
}
// --- quotient geometry ---
namespace quotientspace {
struct code {
int c[8];
};
bool operator == (const code& c1, const code &c2) {
for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return false;
return true;
}
bool operator < (const code& c1, const code &c2) {
for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i];
return false;
}
int cod(heptagon *h) {
return zebra40(h->c7);
}
code get(heptspin hs) {
code res;
res.c[0] = cod(hs.h);
for(int i=1; i<8; i++) {
res.c[i] = cod(hsstep(hs, 0).h);
hs = hsspin(hs, 1);
}
return res;
}
int rvadd = 0, rvdir = 1;
int rv(int x) { return (rvadd+x*rvdir) % 7; }
struct hrmap_quotient : hrmap {
hrmap_hyperbolic base;
vector<cell*> celllist;
cell *origin;
map<quotientspace::code, int> reachable;
vector<heptspin> bfsq;
vector<int> connections;
void add(const heptspin& hs) {
code g = get(hs);
if(!reachable.count(g)) {
reachable[g] = bfsq.size();
bfsq.push_back(hs);
add(hsspin(hs, 1));
}
}
vector<heptagon*> allh;
hrmap_quotient() {
if(quotient == 2) {
connections = fp43.connections;
}
else {
heptspin hs; hs.h = base.origin; hs.spin = 0;
reachable.clear();
bfsq.clear();
connections.clear();
add(hs);
for(int i=0; i<(int)bfsq.size(); i++) {
hs = hsstep(bfsq[i], 0);
add(hs);
connections.push_back(reachable[get(hs)]);
}
}
int TOT = connections.size() / 7;
printf("heptagons = %d\n", TOT);
printf("all cells = %d\n", TOT*10/3);
if(!TOT) exit(1);
allh.resize(TOT);
for(int i=0; i<TOT; i++) allh[i] = new heptagon;
// heptagon *oldorigin = origin;
allh[0]->alt = base.origin;
for(int i=0; i<TOT; i++) {
heptagon *h = allh[i];
if(i) {
h->alt = NULL;
}
if(true) {
h->s = hsOrigin;
h->emeraldval = 0;
h->zebraval = 0;
h->fiftyval = 0;
h->fieldval = 7*i;
h->rval0 = h->rval1 = 0; h->cdata = NULL;
h->distance = 0;
h->c7 = newCell(7, h);
}
for(int j=0; j<7; j++) {
h->move[rv(j)] = allh[connections[i*7+j]/7];
h->setspin(rv(j), rv(connections[i*7+j]%7));
}
}
for(int i=0; i<TOT; i++) {
generateAlts(allh[i]);
allh[i]->emeraldval = allh[i]->alt->emeraldval;
allh[i]->zebraval = allh[i]->alt->zebraval;
allh[i]->fiftyval = allh[i]->alt->fiftyval;
allh[i]->distance = allh[i]->alt->distance;
/* for(int j=0; j<7; j++)
allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */
}
celllister cl(gamestart(), 100, 100000000, NULL);
celllist = cl.lst;
}
heptagon *getOrigin() { return allh[0]; }
~hrmap_quotient() {
for(int i=0; i<size(allh); i++) {
clearHexes(allh[i]);
delete allh[i];
}
}
vector<cell*>& allcells() { return celllist; }
};
};
// --- general ---
// very similar to createMove in heptagon.cpp
cell *createMov(cell *c, int d) {
if(euclid && !c->mov[d]) {
eucoord x, y;
decodeMaster(c->master, x, y);
for(int dx=-1; dx<=1; dx++)
for(int dy=-1; dy<=1; dy++)
euclideanAtCreate(x+dx, y+dy);
if(!c->mov[d]) { printf("fail!\n"); }
}
if(c->mov[d]) return c->mov[d];
else if(purehepta) {
heptagon *h2 = createStep(c->master, d);
merge(c,d,h2->c7,c->master->spin(d),false);
}
else if(c->type != 6) {
cell *n = newCell(6, c->master);
merge(c,d,n,0,false);
heptspin hs; hs.h = c->master; hs.spin = d; hs.mirrored = false;
int a3 = c->type/2;
int a4 = a3+1;
heptspin hs2 = hsstep(hsspin(hs, a3), a3);
merge(hs2.h->c7, hs2.spin, n, 2, hs2.mirrored);
heptspin hs3 = hsstep(hsspin(hs, a4), a4);
merge(hs3.h->c7, hs3.spin, n, 4, hs3.mirrored);
extern void verifycell(cell *c);
verifycell(n);
}
else if(d == 5) {
int di = fixrot(c->spin(0)+1);
cell *c2 = createMov(c->mov[0], di);
bool mirr = c->mov[0]->mirror(di);
merge(c, 5, c2, fix6(c->mov[0]->spn(di) + (mirr?-1:1)), mirr);
// c->mov[5] = c->mov[0]->mov[fixrot(c->spn[0]+1)];
// c->spn[5] = fix6(c->mov[0]->spn[fixrot(c->spn[0]+1)] + 1);
}
else if(d == 1) {
int di = fixrot(c->spn(0)-1);
cell *c2 = createMov(c->mov[0], di);
bool mirr = c->mov[0]->mirror(di);
merge(c, 1, c2, fix6(c->mov[0]->spn(di) - (mirr?-1:1)), mirr);
// c->mov[1] = c->mov[0]->mov[fixrot(c->spn[0]-1)];
// c->spn[1] = fix6(c->mov[0]->spn[fixrot(c->spn[0]-1)] - 1);
}
else if(d == 3) {
bool mirr = c->mirror(2);
int di = fixrot(c->spn(2)-(mirr?-1:1));
cell *c2 = createMov(c->mov[2], di);
bool nmirr = mirr ^ c->mov[2]->mirror(di);
merge(c, 3, c2, fix6(c->mov[2]->spn(di) - (nmirr?-1:1)), nmirr);
// c->mov[3] = c->mov[2]->mov[fixrot(c->spn[2]-1)];
// c->spn[3] = fix6(c->mov[2]->spn[fixrot(c->spn[2]-1)] - 1);
}
return c->mov[d];
}
cell *createMovR(cell *c, int d) {
d %= 420; d += 420; d %= c->type;
return createMov(c, d);
}
cell *getMovR(cell *c, int d) {
d %= 420; d += 420; d %= c->type;
return c->mov[d];
}
// similar to heptspin from heptagon.cpp
struct cellwalker {
cell *c;
int spin;
bool mirrored;
cellwalker(cell *c, int spin, bool m=false) : c(c), spin(spin), mirrored(m) { }
cellwalker() { mirrored = false; }
};
void cwspin(cellwalker& cw, int d) {
cw.spin = (cw.spin+(MIRR(cw)?-d:d) + 420) % cw.c->type;
}
bool cwstepcreates(cellwalker& cw) {
return cw.c->mov[cw.spin] == NULL;
}
cell *cwpeek(cellwalker cw, int dir) {
return createMov(cw.c, (cw.spin+420+dir) % cw.c->type);
}
void cwmirrorat(cellwalker& cw, int d) {
cw.spin = (d+d - cw.spin + 420) % cw.c->type;
cw.mirrored = !cw.mirrored;
}
void cwstep(cellwalker& cw) {
createMov(cw.c, cw.spin);
int nspin = cw.c->spn(cw.spin);
if(cw.c->mirror(cw.spin)) cw.mirrored = !cw.mirrored;
cw.c = cw.c->mov[cw.spin];
cw.spin = nspin;
}
void cwrev(cellwalker& cw) {
cwspin(cw, cw.c->type/2 + ((cw.c->type&1)?hrand(2):0));
}
void cwrevstep(cellwalker& cw) {
cwrev(cw); cwstep(cw);
}
void eumerge(cell* c1, cell *c2, int s1, int s2) {
if(!c2) return;
c1->mov[s1] = c2; tsetspin(c1->spintable, s1, s2);
c2->mov[s2] = c1; tsetspin(c2->spintable, s2, s1);
}
// map<pair<eucoord, eucoord>, cell*> euclidean;
cell*& euclideanAt(eucoord x, eucoord y) {
if(torus) { printf("euclideanAt called\n"); exit(1); }
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
return euc->at(x, y);
}
cell*& euclideanAtCreate(eucoord x, eucoord y) {
cell*& c = euclideanAt(x,y);
if(!c) {
c = newCell(6, NULL);
c->master = encodeMaster(x,y);
euclideanAt(x,y) = c;
eumerge(c, euclideanAt(x+1,y), 0, 3);
eumerge(c, euclideanAt(x,y+1), 1, 4);
eumerge(c, euclideanAt(x-1,y+1), 2, 5);
eumerge(c, euclideanAt(x-1,y), 3, 0);
eumerge(c, euclideanAt(x,y-1), 4, 1);
eumerge(c, euclideanAt(x+1,y-1), 5, 2);
}
return c;
}
// initializer (also inits origin from heptagon.cpp)
void initcells() {
DEBB(DF_INIT, (debugfile,"initcells\n"));
if(torus) currentmap = new hrmap_torus;
else if(euclid) currentmap = new hrmap_euclidean;
else if(sphere) currentmap = new hrmap_spherical;
else if(quotient) currentmap = new quotientspace::hrmap_quotient;
else currentmap = new hrmap_hyperbolic;
allmaps.push_back(currentmap);
windmap::create();
// origin->emeraldval =
}
void clearcell(cell *c) {
if(!c) return;
DEBMEM ( printf("c%d %p\n", c->type, c); )
for(int t=0; t<c->type; t++) if(c->mov[t]) {
DEBMEM ( printf("mov %p [%p] S%d\n", c->mov[t], c->mov[t]->mov[c->spn(t)], c->spn(t)); )
if(c->mov[t]->mov[c->spn(t)] != NULL &&
c->mov[t]->mov[c->spn(t)] != c) {
printf("cell error\n");
exit(1);
}
c->mov[t]->mov[c->spn(t)] = NULL;
}
DEBMEM ( printf("DEL %p\n", c); )
delete c;
}
heptagon deletion_marker;
void clearHexes(heptagon *at) {
if(at->c7) {
if(!purehepta) for(int i=0; i<7; i++)
clearcell(at->c7->mov[i]);
clearcell(at->c7);
}
}
void clearfrom(heptagon *at) {
queue<heptagon*> q;
q.push(at);
at->alt = &deletion_marker;
//int maxq = 0;
while(!q.empty()) {
at = q.front();
// if(q.size() > maxq) maxq = q.size();
q.pop();
DEBMEM ( printf("from %p\n", at); )
for(int i=0; i<7; i++) if(at->move[i]) {
if(at->move[i]->alt != &deletion_marker)
q.push(at->move[i]);
at->move[i]->alt = &deletion_marker;
DEBMEM ( printf("!mov %p [%p]\n", at->move[i], at->move[i]->move[at->spin(i)]); )
if(at->move[i]->move[at->spin(i)] != NULL &&
at->move[i]->move[at->spin(i)] != at) {
printf("hept error\n");
exit(1);
}
at->move[i]->move[at->spin(i)] = NULL;
at->move[i] = NULL;
}
clearHexes(at);
delete at;
}
//printf("maxq = %d\n", maxq);
}
void verifycell(cell *c) {
int t = c->type;
for(int i=0; i<t; i++) {
cell *c2 = c->mov[i];
if(c2) {
if(t != 6 && !purehepta) verifycell(c2);
if(c2->mov[c->spn(i)] && c2->mov[c->spn(i)] != c) {
printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->spn(i), c2->type);
exit(1);
}
}
}
}
void verifycells(heptagon *at) {
for(int i=0; i<S7; i++) if(at->move[i] && at->move[i]->move[at->spin(i)] && at->move[i]->move[at->spin(i)] != at) {
printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->spin(i), at->move[i], at->move[i]->move[at->spin(i)]);
}
if(!sphere && !quotient)
for(int i=0; i<7; i++) if(at->move[i] && at->spin(i) == 0 && at->s != hsOrigin)
verifycells(at->move[i]);
verifycell(at->c7);
}
int eupattern(cell *c) {
if(torus) return decodeId(c->master) % 3;
eucoord x, y;
decodeMaster(c->master, x, y);
short z = (short(y+2*x))%3;
z %= 3;
if(z<0) z += 3;
return z;
}
bool ishept(cell *c) {
// EUCLIDEAN
if(euclid) return eupattern(c) == 0;
else return c->type != 6;
}
bool ishex1(cell *c) {
// EUCLIDEAN
if(euclid) return eupattern(c) == 1;
else return c->type == 7;
}
int emeraldval(cell *c) {
if(euclid) return eupattern(c);
if(sphere) return 0;
if(c->type == 7)
return c->master->emeraldval >> 3;
else {
return emerald_hexagon(
emeraldval(createMov(c,0)),
emeraldval(createMov(c,2)),
emeraldval(createMov(c,4))
);
}
}
int eudist(short sx, short sy) {
int z0 = abs(sx);
int z1 = abs(sy);
int z2 = abs(sx+sy);
return max(max(z0,z1), z2);
}
int compdist(int dx[3]) {
int mi = min(min(dx[0], dx[1]), dx[2]);
if(dx[0] > mi+2 || dx[1] > mi+2 || dx[2] > mi+2)
return -1; // { printf("cycle error!\n"); exit(1); }
if(dx[0] == mi+2 || dx[1] == mi+2 || dx[2] == mi+2)
return mi+1;
if((dx[0] == mi+1) + (dx[1] == mi+1) + (dx[2] == mi+1) >= 2)
return mi+1;
return mi;
}
int celldist(cell *c) {
if(euclid) {
if(torus)
return torusmap()->dists[decodeId(c->master)];
eucoord x, y;
decodeMaster(c->master, x, y);
return eudist(x, y);
}
if(sphere) return celldistance(c, currentmap->gamestart());
if(c->type == 7) return c->master->distance;
int dx[3];
for(int u=0; u<3; u++)
dx[u] = createMov(c, u+u)->master->distance;
return compdist(dx);
}
#define ALTDIST_BOUNDARY 99999
#define ALTDIST_UNKNOWN 99998
#define ALTDIST_ERROR 90000
// defined in 'game'
int euclidAlt(short x, short y);
int celldistAlt(cell *c) {
if(euclid) {
if(torus) return celldist(c);
eucoord x, y;
decodeMaster(c->master, x, y);
return euclidAlt(x, y);
}
if(!c->master->alt) return 0;
if(c->type == 7) return c->master->alt->distance;
int dx[3];
for(int u=0; u<3; u++) if(createMov(c, u+u)->master->alt == NULL)
return ALTDIST_UNKNOWN;
for(int u=0; u<3; u++)
dx[u] = createMov(c, u+u)->master->alt->distance;
int mi = min(min(dx[0], dx[1]), dx[2]);
if(dx[0] > mi+2 || dx[1] > mi+2 || dx[2] > mi+2)
return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
if(dx[0] == mi+2 || dx[1] == mi+2 || dx[2] == mi+2)
return mi+1;
return mi;
}
#define GRAIL_FOUND 0x4000
#define GRAIL_RADIUS_MASK 0x3FFF
int dirfromto(cell *cfrom, cell *cto) {
for(int i=0; i<cfrom->type; i++) if(cfrom->mov[i] == cto) return i;
return -1;
}
// === FIFTYVALS ===
unsigned bitmajority(unsigned a, unsigned b, unsigned c) {
return (a&b) | ((a^b)&c);
}
int eufifty(cell *c) {
eucoord x, y;
if(torus) {
if(c->land == laWildWest) return decodeId(c->master) % 37;
else return decodeId(c->master) % 27;
}
decodeMaster(c->master, x, y);
int ix = short(x) + 99999 + short(y);
int iy = short(y) + 99999;
if(c->land == laWildWest)
return (ix + iy * 26 + 28) % 37;
else {
ix += (iy/3) * 3;
iy %= 3; ix %= 9;
return iy * 9 + ix;
}
}
int fiftyval(cell *c) {
if(euclid) return eufifty(c) * 32;
if(sphere) return 0;
if(c->type == 7)
return c->master->fiftyval;
else {
return bitmajority(
fiftyval(createMov(c,0)),
fiftyval(createMov(c,2)),
fiftyval(createMov(c,4))) + 512;
}
}
int cdist50(cell *c) {
if(sphere) return 0;
if(euclid) {
if(c->land == laWildWest)
return "0123333332112332223322233211233333322"[eufifty(c)] - '0';
else return "012333321112322232222321123"[eufifty(c)] - '0';
}
if(c->type == 7) return cdist50(fiftyval(c));
int a0 = cdist50(createMov(c,0));
int a1 = cdist50(createMov(c,2));
int a2 = cdist50(createMov(c,4));
if(a0 == 0 || a1 == 0 || a2 == 0) return 1;
return a0+a1+a2-5;
}
int land50(cell *c) {
if(c->type == 7) return land50(fiftyval(c));
else if(sphere || euclid) return 0;
else {
if(cdist50(createMov(c,0)) < 3) return land50(createMov(c,0));
if(cdist50(createMov(c,2)) < 3) return land50(createMov(c,2));
if(cdist50(createMov(c,4)) < 3) return land50(createMov(c,4));
return 0;
}
}
int polara50(cell *c) {
if(c->type == 7) return polara50(fiftyval(c));
else if(sphere || euclid) return 0;
else {
if(cdist50(createMov(c,0)) < 3) return polara50(createMov(c,0));
if(cdist50(createMov(c,2)) < 3) return polara50(createMov(c,2));
if(cdist50(createMov(c,4)) < 3) return polara50(createMov(c,4));
return 0;
}
}
int polarb50(cell *c) {
if(euclid) return true;
if(c->type == 7) return polarb50(fiftyval(c));
else if(sphere || euclid) return true;
else {
if(cdist50(createMov(c,0)) < 3) return polarb50(createMov(c,0));
if(cdist50(createMov(c,2)) < 3) return polarb50(createMov(c,2));
if(cdist50(createMov(c,4)) < 3) return polarb50(createMov(c,4));
return 0;
}
}
int elhextable[28][3] = {
{0,1,2}, {1,2,9}, {1,9,-1}, {1,8,-1}, {1,-1,-1}
};
int fiftyval049(cell *c) {
if(c->type == 7 || euclid) return fiftyval(c) / 32;
else if(sphere) return 0;
else {
int a[3], qa=0;
int pa = polara50(c), pb = polarb50(c);
for(int i=0; i<6; i+=2) {
cell *c2 = c->mov[i];
if(polara50(c2) == pa && polarb50(c2) == pb)
a[qa++] = fiftyval049(c2);
}
// 0-1-2
sort(a, a+qa);
if(qa == 1) return 43+a[0]-1;
if(qa == 2 && a[1] == a[0]+7) return 36+a[0]-1;
if(qa == 2 && a[1] != a[0]+7) return 29+a[0]-1;
if(a[1] == 1 && a[2] == 7)
return 15 + 6;
if(a[2] >= 1 && a[2] <= 7)
return 15 + a[1]-1;
if(a[0] == 1 && a[1] == 7 && a[2] == 8)
return 22;
if(a[1] <= 7 && a[2] >= 8)
return 22 + a[1]-1;
return 0;
}
}
/*
{0,1,2} 15+0..15+6
{1,2,9},22+0..22+6
{1,9} 29+0..29+6
{1,8} 36+0..36+6
{1} 43+0..43+6
*/
// zebraval
int zebra40(cell *c) {
if(c->type == 7) return (c->master->zebraval/10);
else if(sphere) return 0;
else if(euclid) return eupattern(c);
else {
int ii[3], z;
ii[0] = (c->mov[0]->master->zebraval/10);
ii[1] = (c->mov[2]->master->zebraval/10);
ii[2] = (c->mov[4]->master->zebraval/10);
for(int r=0; r<2; r++)
if(ii[1] < ii[0] || ii[2] < ii[0])
z = ii[0], ii[0] = ii[1], ii[1] = ii[2], ii[2] = z;
for(int i=0; i<28; i++)
if(zebratable6[i][0] == ii[0] && zebratable6[i][1] == ii[1] &&
zebratable6[i][2] == ii[2]) {
int ans = 16+i;
// if(ans >= 40) ans ^= 2;
// if(ans >= 4 && ans < 16) ans ^= 2;
return ans;
}
return 0;
}
}
int zebra3(cell *c) {
if(c->type == 7) return (c->master->zebraval/10)/4;
else if(sphere) return 0;
else {
int ii[3];
ii[0] = (c->mov[0]->master->zebraval/10)/4;
ii[1] = (c->mov[2]->master->zebraval/10)/4;
ii[2] = (c->mov[4]->master->zebraval/10)/4;
if(ii[0] == ii[1]) return ii[0];
if(ii[1] == ii[2]) return ii[1];
if(ii[2] == ii[0]) return ii[2];
return 0;
}
}
#define RPV_MODULO 5
#define RPV_RAND 0
#define RPV_ZEBRA 1
#define RPV_EMERALD 2
#define RPV_PALACE 3
#define RPV_CYCLE 4
int getCdata(cell *c, int j);
// x mod 5 = pattern type
// x mod (powers of 2) = pattern type specific
// (x/5) mod 15 = picture for drawing floors
// x mod 7 = chance of pattern-specific pic
// whole = randomization
bool randpattern(cell *c, int rval) {
int i, sw=0;
switch(rval%5) {
case 0:
if(rval&1) {
return hrandpos() < rval;
}
else {
int cd = getCdata(c, 0);
return !((cd/(((rval/2)&15)+1))&1);
}
case 1:
i = zebra40(c);
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
i >>= 2;
i--; i /= 3;
if(rval & (16<<i)) sw^=1;
return sw;
case 2:
i = emeraldval(c);
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
i >>= 2; i--;
if(rval & (16<<i)) sw^=1;
return sw;
case 3:
if(polara50(c)) { if(rval&4) sw^=1; }
if(polarb50(c)) { if(rval&8) sw^=1; }
i = fiftyval049(c); i += 6; i /= 7;
if(rval & (16<<i)) sw^=1;
return sw;
case 4:
i = (rval&3);
if(i == 1 && (celldist(c)&1)) sw ^= 1;
if(i == 2 && (celldist(c)&2)) sw ^= 1;
if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
if(rval & (4<<towerval(c, celldist))) sw ^= 1;
return sw;
}
return 0;
}
extern int randompattern[landtypes];
string describeRPM(eLand l) {
int rval = randompattern[l];
switch(rval%5) {
case 0:
if(rval&1)
return "R:"+its(rval/(HRANDMAX/100))+"%";
else
return "Landscape/"+its(((rval/2)&15)+1);
case 1:
return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
case 2:
return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
case 3:
return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
case 4:
return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
}
return "?";
}
int randpatternCode(cell *c, int rval) {
switch(rval % RPV_MODULO) {
case 1:
return zebra40(c);
case 2:
return emeraldval(c);
case 3:
return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
case 4:
return towerval(c, celldist) * 6 + celldist(c) % 6;
}
return 0;
}
#define RANDITER 31
char rpm_memoize[3][256][RANDITER+1];
void clearMemoRPM() {
for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
rpm_memoize[a][b][i] = 2;
}
bool randpatternMajority(cell *c, int ival, int iterations) {
int rval = 0;
if(ival == 0) rval = randompattern[laCaves];
if(ival == 1) rval = randompattern[laLivefjord];
if(ival == 2) rval = randompattern[laEmerald];
if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
int code = randpatternCode(c, rval);
char& memo(rpm_memoize[ival][code][iterations]);
if(memo < 2) return memo;
int z = 0;
if(iterations) for(int i=0; i<c->type; i++) {
if(randpatternMajority(createMov(c,i), ival, iterations-1))
z++;
else
z--;
}
if(z!=0) memo = (z>0);
else memo = randpattern(c, rval);
// printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
return memo;
}
map<heptagon*, int> spins;
#define RVAL_MASK 0x10000000
#define DATA_MASK 0x20000000
cdata orig_cdata;
void affect(cdata& d, short rv, signed char signum) {
if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
int id = (rv>>4) & 63;
if(id < 32)
d.bits ^= (1 << id);
}
void setHeptagonRval(heptagon *h) {
if(!(h->rval0 || h->rval1)) {
h->rval0 = hrand(0x10000);
h->rval1 = hrand(0x10000);
}
}
cdata *getHeptagonCdata(heptagon *h) {
if(h->cdata) return h->cdata;
if(sphere || quotient) h = currentmap->gamestart()->master;
if(h == currentmap->gamestart()->master) {
return h->cdata = new cdata(orig_cdata);
}
cdata mydata = *getHeptagonCdata(h->move[0]);
for(int di=3; di<5; di++) {
heptspin hs; hs.h = h; hs.spin = di;
int signum = +1;
while(true) {
heptspin hstab[15];
hstab[7] = hs;
for(int i=8; i<12; i++) {
hstab[i] = hsspin(hstab[i-1], (i&1) ? 4 : 3);
hstab[i] = hsstep(hstab[i], 0);
hstab[i] = hsspin(hstab[i], (i&1) ? 3 : 4);
}
for(int i=6; i>=3; i--) {
hstab[i] = hsspin(hstab[i+1], (i&1) ? 3 : 4);
hstab[i] = hsstep(hstab[i], 0);
hstab[i] = hsspin(hstab[i], (i&1) ? 4 : 3);
}
if(hstab[3].h->distance < hstab[7].h->distance) {
hs = hstab[3]; continue;
}
if(hstab[11].h->distance < hstab[7].h->distance) {
hs = hstab[11]; continue;
}
int jj = 7;
for(int k=3; k<12; k++) if(hstab[k].h->distance < hstab[jj].h->distance) jj = k;
int ties = 0, tiespos = 0;
for(int k=3; k<12; k++) if(hstab[k].h->distance == hstab[jj].h->distance)
ties++, tiespos += (k-jj);
// printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
if(ties == 2) jj += tiespos/2;
if(jj&1) signum = -1;
hs = hstab[jj];
break;
}
hs = hsstep(hsspin(hs, 3), 0);
setHeptagonRval(hs.h);
affect(mydata, hs.spin ? hs.h->rval0 : hs.h->rval1, signum);
/* if(!(spins[hs.h] & hs.spin)) {
spins[hs.h] |= (1<<hs.spin);
int t = 0;
for(int k=0; k<7; k++) if(spins[hs.h] & (1<<k)) t++;
static bool wast[256];
if(!wast[spins[hs.h]]) {
printf("%p %4x\n", hs.h, spins[hs.h]);
wast[spins[hs.h]] = true;
}
} */
}
return h->cdata = new cdata(mydata);
}
cdata *getEuclidCdata(heptagon *h) {
if(torus) {
static cdata xx;
return &xx;
}
eucoord x, y;
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
if(euc->eucdata.count(h)) return &(euc->eucdata[h]);
decodeMaster(h, x, y);
if(x == 0 && y == 0) {
cdata xx;
for(int i=0; i<4; i++) xx.val[i] = 0;
xx.bits = 0;
return &(euc->eucdata[h] = xx);
}
int ord = 1, bid = 0;
while(!((x|y)&ord)) ord <<= 1, bid++;
for(int k=0; k<3; k++) {
eucoord x1 = x + (k<2 ? ord : 0);
eucoord y1 = y - (k>0 ? ord : 0);
if((x1&ord) || (y1&ord)) continue;
eucoord x2 = x - (k<2 ? ord : 0);
eucoord y2 = y + (k>0 ? ord : 0);
cdata *d1 = getEuclidCdata(encodeMaster(x1,y1));
cdata *d2 = getEuclidCdata(encodeMaster(x2,y2));
cdata xx;
double disp = pow(2, bid/2.) * 6;
for(int i=0; i<4; i++) {
double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
xx.val[i] = floor(dv);
if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
}
xx.bits = 0;
for(int b=0; b<32; b++) {
bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
int flipchance = (1<<bid);
if(flipchance > 512) flipchance = 512;
if(hrand(1024) < flipchance) gbit = !gbit;
if(gbit) xx.bits |= (1<<b);
}
return &(euc->eucdata[h] = xx);
}
// impossible!
return NULL;
}
int getCdata(cell *c, int j) {
if(euclid) return getEuclidCdata(c->master)->val[j];
else if(c->type == 7) return getHeptagonCdata(c->master)->val[j]*3;
else {
int jj = 0;
for(int k=0; k<6; k++) if(c->mov[k] && c->mov[k]->type == 7)
jj += getHeptagonCdata(c->mov[k]->master)->val[j];
return jj;
}
}
int getBits(cell *c) {
if(euclid) return getEuclidCdata(c->master)->bits;
else if(c->type == 7) return getHeptagonCdata(c->master)->bits;
else {
int b0 = getHeptagonCdata(createMov(c, 0)->master)->bits;
int b1 = getHeptagonCdata(createMov(c, 2)->master)->bits;
int b2 = getHeptagonCdata(createMov(c, 4)->master)->bits;
return (b0 & b1) | (b1 & b2) | (b2 & b0);
}
}
eLand getCLand(cell *c) {
int b = getBits(c);
b = (b&31) ^ (b>>5);
return land_scape[b & 31];
}
cell *heptatdir(cell *c, int d) {
if(d&1) {
cell *c2 = createMov(c, d);
int s = c->spin(d);
s += 3; s %= 6;
return createMov(c2, s);
}
else return createMov(c, d);
}
namespace fieldpattern {
pair<int, bool> fieldval(cell *c) {
if(c->type == 7) return make_pair(c->master->fieldval, false);
else return make_pair(btspin(c->master->fieldval, c->spin(0)), true);
}
int fieldval_uniq(cell *c) {
if(sphere) {
if(c->type == 5) return c->master->fieldval;
else return createMov(c, 0)->master->fieldval + 256 * createMov(c,2)->master->fieldval + (1<<16) * createMov(c,4)->master->fieldval;
}
else if(torus) {
return decodeId(c->master);
}
else if(euclid) {
eucoord x, y;
decodeMaster(c->master, x, y);
int i = (short int)(x) * torusconfig::dx + (short int)(y) * torusconfig::dy;
i %= torusconfig::qty;
if(i<0) i += torusconfig::qty;
return i;
}
if(c->type == 7) return c->master->fieldval/7;
else {
int z = 0;
for(int u=0; u<6; u+=2)
z = max(z, btspin(createMov(c, u)->master->fieldval, c->spin(u)));
return -1-z;
}
}
int subpathid = fp43.matcode[fp43.strtomatrix("RRRPRRRRRPRRRP")];
int subpathorder = fp43.order(fp43.matrices[subpathid]);
pair<int, int> subval(cell *c, int _subpathid = subpathid, int _subpathorder = subpathorder) {
if(c->type == 6)
return min(min(subval(createMov(c, 0)),subval(createMov(c, 2))), subval(createMov(c, 4)));
else {
pair<int, int> pbest, pcur;
pcur.first = c->master->fieldval;
pcur.second = 0;
pbest = pcur;
for(int i=0; i<_subpathorder; i++) {
pcur.first = fp43.gmul(pcur.first, _subpathid);
pcur.second++;
if(pcur < pbest) pbest = pcur;
}
return pbest;
}
}
}
int celldistance(cell *c1, cell *c2) {
int d = 0;
if(euclid) {
if(torus)
return torusmap()->dists[toridMod(decodeId(c1->master)-decodeId(c2->master))];
eucoord x1, y1, x2, y2;
decodeMaster(c1->master, x1, y1);
decodeMaster(c2->master, x2, y2);
return eudist(x1-x2, y1-y2);
}
if(sphere || quotient == 1) {
celllister cl(c1, 64, 1000, c2);
for(int i=0; i<size(cl.lst); i++)
if(cl.lst[i] == c2) return cl.dists[i];
}
if(quotient == 2)
return fp43.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2));
int d1 = celldist(c1), d2 = celldist(c2);
cell *cl1=c1, *cr1=c1, *cl2=c2, *cr2=c2;
while(true) {
/* if(cl1 == cl2) return d;
if(cl1 == cr2) return d;
if(cr1 == cl2) return d;
if(cr1 == cr2) return d; */
//if(isNeighbor(cl1, cl2)) return d+1;
//if(isNeighbor(cl1, cr2)) return d+1;
//if(isNeighbor(cr1, cl2)) return d+1;
//if(isNeighbor(cr1, cr2)) return d+1;
if(d1 == d2) for(int u=0; u<2; u++) {
cell *ac0 = u ? cr1 : cr2, *ac = ac0;
cell *tgt = u ? cl2 : cl1;
cell *xtgt = u ? cr2 : cr1;
if(ac == tgt) return d;
ac = chosenDown(ac, 1, 1, celldist);
if(ac == tgt) return d+1;
if(ac == xtgt) return d;
ac = chosenDown(ac, 1, 1, celldist);
if(ac == tgt) return d+2;
if(!purehepta) {
ac = chosenDown(ac, 1, 1, celldist);
if(ac == tgt) {
if(chosenDown(ac0, 1, 0, celldist) ==
chosenDown(tgt, -1, 0, celldist))
return d+2;
return d+3;
}
}
}
/* forCellEx(c, cl2) if(isNeighbor(c, cr1)) return d+2;
forCellEx(c, cl1) if(isNeighbor(c, cr2)) return d+2;
forCellEx(ca, cl2) forCellEx(cb, cr1) if(isNeighbor(ca, cb)) return d+3;
forCellEx(ca, cl1) forCellEx(cb, cr2) if(isNeighbor(ca, cb)) return d+3; */
if(d1 >= d2) {
cl1 = chosenDown(cl1, -1, 0, celldist);
// cl1->item = eItem(rand() % 10);
cr1 = chosenDown(cr1, 1, 0, celldist);
// cr1->item = eItem(rand() % 10);
d++; d1--;
}
if(d1 < d2) {
cl2 = chosenDown(cl2, -1, 0, celldist);
// cl2->item = eItem(rand() % 10);
cr2 = chosenDown(cr2, 1, 0, celldist);
// cr2->item = eItem(rand() % 10);
d++; d2--;
}
}
}
void clearCellMemory() {
for(int i=0; i<size(allmaps); i++) delete allmaps[i];
allmaps.clear();
}
auto cellhooks = addHook(clearmemory, 500, clearCellMemory);
int getHemisphere(cell *c, int which) {
if(torus) return 0;
if(c->type != 6) {
int id = c->master->fiftyval;
int hemitable[3][12] = {
{ 6, 3, 3, 3, 3, 3,-6,-3,-3,-3,-3,-3},
{ 6, 3, 6, 3, 0, 0,-6,-3,-6,-3, 0, 0},
{-3, 0, 3, 0,-6,-6, 3, 0,-3, 0, 6, 6}
};
return hemitable[which][id];
}
else {
int score = 0;
for(int i=0; i<6; i+=2)
score += getHemisphere(c->mov[i], which);
return score/3;
}
}