mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-02 05:20:32 +00:00
918 lines
26 KiB
C++
918 lines
26 KiB
C++
namespace hr { namespace gp {
|
|
loc param(1, 0);
|
|
|
|
hyperpoint next;
|
|
ld alpha;
|
|
int area;
|
|
|
|
int length(loc p) {
|
|
return eudist(p.first, p.second);
|
|
}
|
|
|
|
loc operator+(loc e1, loc e2) {
|
|
return make_pair(e1.first+e2.first, e1.second+e2.second);
|
|
}
|
|
|
|
loc operator-(loc e1, loc e2) {
|
|
return make_pair(e1.first-e2.first, e1.second-e2.second);
|
|
}
|
|
|
|
loc operator*(loc e1, loc e2) {
|
|
return make_pair(e1.first*e2.first-e1.second*e2.second,
|
|
e1.first*e2.second + e2.first*e1.second + (S3 == 3 ? e1.second*e2.second : 0));
|
|
}
|
|
|
|
loc operator*(loc e1, int i) {
|
|
return loc(e1.first*i, e1.second*i);
|
|
}
|
|
|
|
struct goldberg_mapping_t {
|
|
cellwalker cw;
|
|
signed char rdir;
|
|
signed char mindir;
|
|
loc start;
|
|
};
|
|
|
|
loc eudir(int d) {
|
|
if(S3 == 3) {
|
|
d %= 6; if (d < 0) d += 6;
|
|
switch(d) {
|
|
case 0: return make_pair(1, 0);
|
|
case 1: return make_pair(0, 1);
|
|
case 2: return make_pair(-1, 1);
|
|
case 3: return make_pair(-1, 0);
|
|
case 4: return make_pair(0, -1);
|
|
case 5: return make_pair(1, -1);
|
|
default: return make_pair(0, 0);
|
|
}
|
|
}
|
|
else switch(d&3) {
|
|
case 0: return make_pair(1, 0);
|
|
case 1: return make_pair(0, 1);
|
|
case 2: return make_pair(-1, 0);
|
|
case 3: return make_pair(0, -1);
|
|
default: return make_pair(0, 0);
|
|
}
|
|
}
|
|
|
|
#define SG6 (S3==3?6:4)
|
|
#define SG3 (S3==3?3:2)
|
|
#define SG2 (S3==3?2:1)
|
|
|
|
int fixg6(int x) { return (x + MODFIXER) % SG6; }
|
|
|
|
#define WHD(x) // x
|
|
|
|
int get_code(const local_info& li) {
|
|
return
|
|
((li.relative.first & 15) << 0) +
|
|
((li.relative.second & 15) << 4) +
|
|
((fixg6(li.total_dir)) << 8) +
|
|
((li.last_dir & 15) << 12);
|
|
}
|
|
|
|
local_info get_local_info(cell *c) {
|
|
local_info li;
|
|
if(c == c->master->c7) {
|
|
li.relative = loc(0,0);
|
|
li.first_dir = -1;
|
|
li.last_dir = -1;
|
|
li.total_dir = -1;
|
|
}
|
|
else {
|
|
vector<int> dirs;
|
|
while(c != c->master->c7) {
|
|
dirs.push_back(c->c.spin(0));
|
|
c = c->move(0);
|
|
}
|
|
li.first_dir = dirs[0];
|
|
li.last_dir = dirs.back();
|
|
|
|
loc at(0,0);
|
|
int dir = 0;
|
|
at = at + eudir(dir);
|
|
dirs.pop_back();
|
|
while(dirs.size()) {
|
|
dir += dirs.back() + SG3;
|
|
dirs.pop_back();
|
|
at = at + eudir(dir);
|
|
}
|
|
li.relative = at;
|
|
li.total_dir = dir + SG3;
|
|
}
|
|
return li;
|
|
}
|
|
|
|
int last_dir(cell *c) {
|
|
return get_local_info(c).last_dir;
|
|
}
|
|
|
|
loc get_coord(cell *c) {
|
|
return get_local_info(c).relative;
|
|
}
|
|
|
|
int pseudohept_val(cell *c) {
|
|
loc v = get_coord(c);
|
|
return (v.first - v.second + MODFIXER)%3;
|
|
}
|
|
|
|
// mapping of the local equilateral triangle
|
|
// goldberg_map[y][x].cw is the cellwalker in this triangle at position (x,y)
|
|
// facing local direction 0
|
|
|
|
goldberg_mapping_t goldberg_map[32][32];
|
|
void clear_mapping() {
|
|
for(int y=0; y<32; y++) for(int x=0; x<32; x++) {
|
|
goldberg_map[y][x].cw.at = NULL;
|
|
goldberg_map[y][x].rdir = -1;
|
|
goldberg_map[y][x].mindir = 0;
|
|
}
|
|
}
|
|
|
|
goldberg_mapping_t& get_mapping(loc c) {
|
|
return goldberg_map[c.second&31][c.first&31];
|
|
}
|
|
|
|
const char *disp(loc at) {
|
|
static char bufs[16][16];
|
|
static int bufid;
|
|
bufid++; bufid %= 16;
|
|
snprintf(bufs[bufid], 16, "[%2d,%2d]", at.first, at.second);
|
|
return bufs[bufid];
|
|
}
|
|
|
|
const char *dcw(cellwalker cw) {
|
|
static char bufs[16][32];
|
|
static int bufid;
|
|
bufid++; bufid %= 16;
|
|
snprintf(bufs[bufid], 32, "[%p/%2d:%d:%d]", cw.at, cw.at?cw.at->type:-1, cw.spin, cw.mirrored);
|
|
return bufs[bufid];
|
|
}
|
|
|
|
int spawn;
|
|
|
|
cell*& peek(cellwalker cw) {
|
|
return cw.at->move(cw.spin);
|
|
}
|
|
|
|
cellwalker get_localwalk(const goldberg_mapping_t& wc, int dir) {
|
|
if(dir < wc.mindir) dir += SG6;
|
|
if(dir >= wc.mindir + SG6) dir -= SG6;
|
|
return wc.cw + dir;
|
|
}
|
|
|
|
void set_localwalk(goldberg_mapping_t& wc, int dir, const cellwalker& cw) {
|
|
if(dir < wc.mindir) dir += SG6;
|
|
if(dir >= wc.mindir + SG6) dir -= SG6;
|
|
wc.cw = cw - dir;
|
|
}
|
|
|
|
bool pull(loc at, int dir) {
|
|
auto& wc = get_mapping(at);
|
|
auto at1 = at + eudir(dir);
|
|
int dir1 = fixg6(dir+SG3);
|
|
cellwalker wcw = get_localwalk(wc, dir);
|
|
auto& wc1= get_mapping(at1);
|
|
if(wc1.cw.at) {
|
|
if(peek(wcw)) {
|
|
auto wcw1 = get_localwalk(wc1, dir1);
|
|
if(wcw + wstep != wcw1) {
|
|
WHD( Xprintf("%s : %s / %s (pull error from %s :: %s)\n", disp(at1), dcw(wcw+wstep), dcw(wcw1), disp(at), dcw(wcw)); )
|
|
exit(1);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
if(peek(wcw)) {
|
|
set_localwalk(wc1, dir1, wcw + wstep);
|
|
WHD( Xprintf("%s : %s (pulled from %s :: %s)\n", disp(at1), dcw(wcw + wstep), disp(at), dcw(wcw)); )
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void conn1(loc at, int dir, int dir1) {
|
|
auto& wc = get_mapping(at);
|
|
auto wcw = get_localwalk(wc, dir);
|
|
auto& wc1 = get_mapping(at + eudir(dir));
|
|
WHD( Xprintf(" md:%02d s:%d", wc.mindir, wc.cw.spin); )
|
|
WHD( Xprintf(" connection %s/%d %s=%s ~ %s/%d ", disp(at), dir, dcw(wc.cw+dir), dcw(wcw), disp(at+eudir(dir)), dir1); )
|
|
if(!wc1.cw.at) {
|
|
wc1.start = wc.start;
|
|
if(peek(wcw)) {
|
|
WHD( Xprintf("(pulled) "); )
|
|
set_localwalk(wc1, dir1, wcw + wstep);
|
|
}
|
|
else {
|
|
peek(wcw) = newCell(SG6, wc.cw.at->master);
|
|
wcw.at->c.setspin(wcw.spin, 0, false);
|
|
set_localwalk(wc1, dir1, wcw + wstep);
|
|
spawn++;
|
|
WHD( Xprintf("(created) "); )
|
|
}
|
|
}
|
|
WHD( Xprintf("%s ", dcw(wc1.cw+dir1)); )
|
|
auto wcw1 = get_localwalk(wc1, dir1);
|
|
if(peek(wcw)) {
|
|
if(wcw+wstep != wcw1) {
|
|
WHD( Xprintf("FAIL: %s / %s\n", dcw(wcw), dcw(wcw1)); exit(1); )
|
|
}
|
|
else {
|
|
WHD(Xprintf("(was there)\n");)
|
|
}
|
|
}
|
|
else {
|
|
WHD(Xprintf("ok\n"); )
|
|
peek(wcw) = wcw1.at;
|
|
wcw.at->c.setspin(wcw.spin, wcw1.spin, wcw.mirrored != wcw1.mirrored);
|
|
if(wcw+wstep != wcw1) {
|
|
Xprintf("assertion failed\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void conn(loc at, int dir) {
|
|
conn1(at, fixg6(dir), fixg6(dir+SG3));
|
|
conn1(at + eudir(dir), fixg6(dir+SG3), fixg6(dir));
|
|
}
|
|
|
|
goldberg_mapping_t& set_heptspin(loc at, heptspin hs) {
|
|
auto& ac0 = get_mapping(at);
|
|
ac0.cw = cellwalker(hs.at->c7, hs.spin, hs.mirrored);
|
|
ac0.start = at;
|
|
WHD( Xprintf("%s : %s\n", disp(at), dcw(ac0.cw)); )
|
|
return ac0;
|
|
}
|
|
|
|
void extend_map(cell *c, int d) {
|
|
WHD( Xprintf("EXTEND %p %d\n", c, d); )
|
|
if(c->master->c7 != c) {
|
|
while(c->master->c7 != c) {
|
|
WHD( Xprintf("%p direction 0 corresponds to %p direction %d\n", c, c->move(0), c->c.spin(0)); )
|
|
d = c->c.spin(0);
|
|
c = c->move(0);
|
|
}
|
|
// c move 0 equals c' move spin(0)
|
|
extend_map(c, d);
|
|
extend_map(c, fixdir(d-1, c));
|
|
extend_map(c, fixdir(d+1, c));
|
|
if(S3 == 4 && !c->move(d))
|
|
for(int i=0; i<S7; i++)
|
|
for(int j=0; j<S7; j++)
|
|
extend_map(createStep(c->master, i)->c7, j);
|
|
return;
|
|
}
|
|
|
|
if(S3 == 4 && param.first <= param.second) { d--; if(d<0) d += S7; }
|
|
clear_mapping();
|
|
|
|
// we generate a local map from an Euclidean grid to the
|
|
// hyperbolic grid we build.
|
|
|
|
// we fill the equilateral triangle with the following vertices:
|
|
|
|
loc vc[4];
|
|
vc[0] = loc(0,0);
|
|
vc[1] = param;
|
|
if(S3 == 3)
|
|
vc[2] = param * loc(0,1);
|
|
else
|
|
vc[2] = param * loc(1,1),
|
|
vc[3] = param * loc(0,1);
|
|
|
|
heptspin hs(c->master, d, false);
|
|
|
|
auto& ac0 = set_heptspin(vc[0], hs);
|
|
ac0.mindir = -1;
|
|
auto& ac1 = set_heptspin(vc[1], hs + wstep - SG3);
|
|
ac1.mindir = 0;
|
|
auto& ac2 = set_heptspin(vc[S3-1], S3 == 3 ? hs + 1 + wstep - 4 : hs + 1 + wstep + 1);
|
|
ac2.mindir = S3 == 3 ? 1 : -2;
|
|
if(S3 == 4) {
|
|
set_heptspin(vc[2], hs + wstep - 1 + wstep + 1).mindir = -3;
|
|
}
|
|
|
|
if(S3 == 4 && param == loc(1,1)) {
|
|
conn(loc(0,0), 1);
|
|
conn(loc(0,1), 0);
|
|
conn(loc(0,1), 1);
|
|
conn(loc(0,1), 2);
|
|
conn(loc(0,1), 3);
|
|
return;
|
|
}
|
|
|
|
if(nonorientable && param.first == param.second) {
|
|
int x = param.first;
|
|
if(ac1.cw.mirrored != hs.mirrored) ac1.cw--;
|
|
if(ac2.cw.mirrored != hs.mirrored) ac2.cw--;
|
|
|
|
for(int d=0; d<3; d++) for(int k=0; k<3; k++)
|
|
for(int i=0; i<x; i++) {
|
|
int dd = (2*d+k);
|
|
loc cx = vc[d] + eudir(dd) * i;
|
|
if(!pull(cx, dd)) break;
|
|
}
|
|
|
|
for(int i=0; i<=2*x; i++)
|
|
for(int d=0; d<3; d++) {
|
|
loc cx = vc[d] + eudir(1+2*d) * i;
|
|
if(i < 2*x) conn(cx, 1+2*d);
|
|
int jmax = x-i, drev = 2*d;
|
|
if(jmax < 0) drev += 3, jmax = -jmax;
|
|
for(int j=0; j<jmax; j++) {
|
|
loc cy = cx + eudir(drev) * j;
|
|
conn(cy, drev);
|
|
conn(cy, drev+1);
|
|
conn(cy, drev+2);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// then we set the edges of our big equilateral triangle (in a symmetric way)
|
|
for(int i=0; i<S3; i++) {
|
|
loc start = vc[i];
|
|
loc end = vc[(i+1)%S3];
|
|
WHD( Xprintf("from %s to %s\n", disp(start), disp(end)); )
|
|
loc rel = param;
|
|
auto build = [&] (loc& at, int dx, bool forward) {
|
|
int dx1 = dx + SG2*i;
|
|
WHD( Xprintf("%s %d .. %s %d\n", disp(at), dx1, disp(at + eudir(dx1)), fixg6(dx1+SG3)); )
|
|
conn(at, dx1);
|
|
if(forward) get_mapping(at).rdir = fixg6(dx1);
|
|
else get_mapping(at+eudir(dx1)).rdir = fixg6(dx1+SG3);
|
|
at = at + eudir(dx1);
|
|
};
|
|
while(rel.first >= 2 && (S3 == 3 ? rel.first >= 2 - rel.second : true)) {
|
|
build(start, 0, true);
|
|
build(end, SG3, false);
|
|
rel.first -= 2;
|
|
}
|
|
while(rel.second >= 2) {
|
|
build(start, 1, true);
|
|
build(end, 1+SG3, false);
|
|
rel.second -= 2;
|
|
}
|
|
while(rel.second <= -2 && S3 == 3) {
|
|
build(start, 5, true);
|
|
build(end, 2, false);
|
|
rel.second += 2;
|
|
rel.first -= 2;
|
|
}
|
|
if(S3 == 3) while((rel.first>0 && rel.second > 0) | (rel.first > 1 && rel.second < 0)) {
|
|
build(start, 0, true);
|
|
build(end, 3, false);
|
|
rel.first -= 2;
|
|
}
|
|
if(S3 == 4 && rel == loc(1,1)) {
|
|
if(param == loc(3,1) || param == loc(5,1)) {
|
|
build(start, 1, true);
|
|
build(end, 2, false);
|
|
rel.first--;
|
|
rel.second--;
|
|
}
|
|
else {
|
|
build(start, 0, true);
|
|
build(end, 3, false);
|
|
rel.first--;
|
|
rel.second--;
|
|
}
|
|
}
|
|
for(int k=0; k<SG6; k++)
|
|
if(start + eudir(k+SG2*i) == end)
|
|
build(start, k, true);
|
|
if(start != end) { Xprintf("assertion failed: start %s == end %s\n", disp(start), disp(end)); exit(1); }
|
|
}
|
|
|
|
// now we can fill the interior of our big equilateral triangle
|
|
loc at = vc[0];
|
|
int maxstep = 3000;
|
|
while(true) {
|
|
maxstep--; if(maxstep < 0) { printf("maxstep exceeded\n"); exit(1); }
|
|
auto& wc = get_mapping(at);
|
|
int dx = wc.rdir;
|
|
auto at1 = at + eudir(dx);
|
|
auto& wc1 = get_mapping(at1);
|
|
WHD( Xprintf("%s (%d) %s (%d)\n", disp(at), dx, disp(at1), wc1.rdir); )
|
|
int df = wc1.rdir - dx;
|
|
if(df < 0) df += SG6;
|
|
if(df == SG3) break;
|
|
if(S3 == 3) switch(df) {
|
|
case 0:
|
|
case 4:
|
|
case 5:
|
|
at = at1;
|
|
continue;
|
|
case 2: {
|
|
conn(at, dx+1);
|
|
wc.rdir = (dx+1) % 6;
|
|
break;
|
|
}
|
|
case 1: {
|
|
auto at2 = at + eudir(dx+1);
|
|
auto& wc2 = get_mapping(at2);
|
|
if(wc2.cw.at) { at = at1; continue; }
|
|
wc.rdir = (dx+1) % 6;
|
|
conn(at, (dx+1) % 6);
|
|
conn(at1, (dx+2) % 6);
|
|
conn(at2, (dx+0) % 6);
|
|
wc1.rdir = -1;
|
|
wc2.rdir = dx;
|
|
break;
|
|
}
|
|
default:
|
|
Xprintf("case unhandled %d\n", df);
|
|
exit(1);
|
|
}
|
|
else switch(df) {
|
|
case 0:
|
|
case 3:
|
|
at = at1;
|
|
continue;
|
|
case 1:
|
|
auto at2 = at + eudir(dx+1);
|
|
auto& wc2 = get_mapping(at2);
|
|
if(wc2.cw.at) {
|
|
auto at3 = at1 + eudir(wc1.rdir);
|
|
auto& wc3 = get_mapping(at3);
|
|
auto at4 = at3 + eudir(wc3.rdir);
|
|
if(at4 == at2) {
|
|
wc.rdir = (dx+1)%4;
|
|
wc1.rdir = -1;
|
|
wc3.rdir = -1;
|
|
conn(at, (dx+1)%4);
|
|
}
|
|
else {
|
|
at = at1;
|
|
}
|
|
}
|
|
else {
|
|
wc.rdir = (dx+1)%4;
|
|
wc1.rdir = -1;
|
|
wc2.rdir = dx%4;
|
|
int bdir = -1;
|
|
int bdist = 100;
|
|
for(int d=0; d<4; d++) {
|
|
auto &wcm = get_mapping(at2 + eudir(d));
|
|
if(wcm.cw.at && length(wcm.start - at2) < bdist)
|
|
bdist = length(wcm.start - at2), bdir = d;
|
|
}
|
|
if(bdir != -1) conn(at2 + eudir(bdir), bdir ^ 2);
|
|
conn(at, (dx+1)%4);
|
|
conn(at2, dx%4);
|
|
|
|
at = param * loc(1,0) + at * loc(0, 1);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
WHD( Xprintf("DONE\n\n"); )
|
|
}
|
|
|
|
hyperpoint loctoh_ort(loc at) {
|
|
return hpxyz(at.first, at.second, 1);
|
|
}
|
|
|
|
hyperpoint corner_coords6[7] = {
|
|
hpxyz(2, -1, 0),
|
|
hpxyz(1, 1, 0),
|
|
hpxyz(-1, 2, 0),
|
|
hpxyz(-2, 1, 0),
|
|
hpxyz(-1, -1, 0),
|
|
hpxyz(1, -2, 0),
|
|
hpxyz(0, 0, 0) // center, not a corner
|
|
};
|
|
|
|
hyperpoint corner_coords4[7] = {
|
|
hpxyz(1.5, -1.5, 0),
|
|
// hpxyz(1, 0, 0),
|
|
hpxyz(1.5, 1.5, 0),
|
|
// hpxyz(0, 1, 0),
|
|
hpxyz(-1.5, 1.5, 0),
|
|
// hpxyz(-1, 0, 0),
|
|
hpxyz(-1.5, -1.5, 0),
|
|
// hpxyz(0, -1, 0),
|
|
hpxyz(0, 0, 0),
|
|
hpxyz(0, 0, 0),
|
|
hpxyz(0, 0, 0)
|
|
};
|
|
|
|
#define corner_coords (S3==3 ? corner_coords6 : corner_coords4)
|
|
|
|
hyperpoint cornmul(const transmatrix& corners, const hyperpoint& c) {
|
|
if(sphere) {
|
|
ld cmin = c[0] * c[1] * c[2] * (6 - S7);
|
|
return corners * hpxyz(c[0] + cmin, c[1] + cmin, c[2] + cmin);
|
|
}
|
|
else return corners * c;
|
|
}
|
|
|
|
hyperpoint atz(const transmatrix& T, const transmatrix& corners, loc at, int cornerid = 6, ld cf = 3) {
|
|
int sp = 0;
|
|
again:
|
|
auto corner = corners * hyperpoint_vec::operator+ (loctoh_ort(at), hyperpoint_vec::operator/ (corner_coords[cornerid], cf));
|
|
if(corner[1] < -1e-6 || corner[2] < -1e-6) {
|
|
at = at * eudir(1);
|
|
if(cornerid < SG6) cornerid = (1 + cornerid) % SG6;
|
|
sp++;
|
|
goto again;
|
|
}
|
|
if(sp>SG3) sp -= SG6;
|
|
|
|
return normalize(spin(2*M_PI*sp/S7) * cornmul(T, corner));
|
|
}
|
|
|
|
transmatrix Tf[8][32][32][6];
|
|
|
|
transmatrix corners;
|
|
|
|
transmatrix dir_matrix(int i) {
|
|
cell cc; cc.type = S7;
|
|
return spin(-alpha) * build_matrix(
|
|
C0,
|
|
ddspin(&cc, i) * xpush0(tessf),
|
|
ddspin(&cc, i+1) * xpush0(tessf)
|
|
);
|
|
}
|
|
|
|
void prepare_matrices() {
|
|
corners = inverse(build_matrix(
|
|
loctoh_ort(loc(0,0)),
|
|
loctoh_ort(param),
|
|
loctoh_ort(param * loc(0,1))
|
|
));
|
|
for(int i=0; i<S7; i++) {
|
|
transmatrix T = dir_matrix(i);
|
|
for(int x=-16; x<16; x++)
|
|
for(int y=-16; y<16; y++)
|
|
for(int d=0; d<(S3==3?6:4); d++) {
|
|
loc at = loc(x, y);
|
|
|
|
hyperpoint h = atz(T, corners, at, 6);
|
|
hyperpoint hl = atz(T, corners, at + eudir(d), 6);
|
|
Tf[i][x&31][y&31][d] = rgpushxto0(h) * rspintox(gpushxto0(h) * hl) * spin(M_PI);
|
|
}
|
|
}
|
|
}
|
|
|
|
hyperpoint get_corner_position(const local_info& li, int cid, ld cf = 3) {
|
|
int i = li.last_dir;
|
|
if(i == -1)
|
|
return atz(dir_matrix(cid), corners, li.relative, 0, cf);
|
|
else {
|
|
auto& cellmatrix = Tf[i][li.relative.first&31][li.relative.second&31][fixg6(li.total_dir)];
|
|
return inverse(cellmatrix) * atz(dir_matrix(i), corners, li.relative, fixg6(cid + li.total_dir), cf);
|
|
}
|
|
}
|
|
|
|
hyperpoint get_corner_position(cell *c, int cid, ld cf = 3) {
|
|
return get_corner_position(get_local_info(c), cid, cf);
|
|
}
|
|
|
|
map<pair<int, int>, loc> center_locs;
|
|
|
|
void compute_geometry() {
|
|
center_locs.clear();
|
|
if(GOLDBERG) {
|
|
int x = param.first;
|
|
int y = param.second;
|
|
area = ((2*x+y) * (2*x+y) + y*y*3) / 4;
|
|
next = hpxyz(x+y/2., -y * sqrt(3) / 2, 0);
|
|
ld scale = 1 / hypot2(next);
|
|
crossf *= scale;
|
|
hepvdist *= scale;
|
|
hexhexdist *= scale;
|
|
hexvdist *= scale;
|
|
rhexf *= scale;
|
|
// spin = spintox(next);
|
|
// ispin = rspintox(next);
|
|
alpha = -atan2(next[1], next[0]) * 6 / S7;
|
|
if(S3 == 3)
|
|
base_distlimit = (base_distlimit + log(scale) / log(2.618)) / scale;
|
|
else
|
|
base_distlimit = 3 * max(param.first, param.second) + 2 * min(param.first, param.second);
|
|
if(base_distlimit > SEE_ALL)
|
|
base_distlimit = SEE_ALL;
|
|
prepare_matrices();
|
|
if(debug_geometry)
|
|
Xprintf("scale = " LDF "\n", scale);
|
|
}
|
|
else {
|
|
alpha = 0;
|
|
}
|
|
}
|
|
|
|
loc config;
|
|
|
|
loc internal_representation(loc v) {
|
|
int& x = v.first, &y = v.second;
|
|
while(x < 0 || y < 0 || (x == 0 && y > 0))
|
|
v = v * loc(0, 1);
|
|
if(x > 8) x = 8;
|
|
if(y > 8) y = 8;
|
|
if(S3 == 3 && y > x) v = v * loc(1, -1);
|
|
return v;
|
|
}
|
|
|
|
loc human_representation(loc v) {
|
|
int& x = v.first, &y = v.second;
|
|
if(S3 == 3) while(x < 0 || y < 0 || (x == 0 && y > 0))
|
|
v = v * loc(0, 1);
|
|
return v;
|
|
}
|
|
|
|
string operation_name() {
|
|
if(IRREGULAR)
|
|
return XLAT("irregular");
|
|
else if(DUAL)
|
|
return XLAT("dual");
|
|
else if(PURE)
|
|
return XLAT("OFF");
|
|
else if(BITRUNCATED)
|
|
return XLAT("bitruncated");
|
|
else if(param == loc(1, 0))
|
|
return XLAT("OFF");
|
|
else if(param == loc(1, 1) && S3 == 3)
|
|
return XLAT("bitruncated");
|
|
else if(param == loc(1, 1) && S3 == 4)
|
|
return XLAT("rectified");
|
|
else if(param == loc(2, 0))
|
|
return S3 == 3 ? XLAT("chamfered") : XLAT("expanded");
|
|
else if(param == loc(3, 0) && S3 == 3)
|
|
return XLAT("2x bitruncated");
|
|
else {
|
|
auto p = human_representation(param);
|
|
return "GP(" + its(p.first) + "," + its(p.second) + ")";
|
|
}
|
|
}
|
|
|
|
void whirl_set(loc xy) {
|
|
xy = internal_representation(xy);
|
|
if(xy.second && xy.second != xy.first && nonorientable) {
|
|
addMessage(XLAT("This does not work in non-orientable geometries"));
|
|
xy.second = 0;
|
|
}
|
|
config = human_representation(xy);
|
|
auto g = screens;
|
|
if(xy.first == 0 && xy.second == 0) xy.first = 1;
|
|
if(xy.first == 1 && xy.second == 0) {
|
|
stop_game(); set_variation(eVariation::pure);
|
|
}
|
|
else if(xy.first == 1 && xy.second == 1 && S3 == 3) {
|
|
stop_game(); set_variation(eVariation::bitruncated);
|
|
}
|
|
else {
|
|
if(param != xy) need_reset_geometry = true;
|
|
param = xy;
|
|
stop_game(); set_variation(eVariation::goldberg);
|
|
}
|
|
start_game();
|
|
screens = g;
|
|
}
|
|
|
|
string helptext() {
|
|
return XLAT(
|
|
"Goldberg polyhedra are obtained by adding extra hexagons to a dodecahedron. "
|
|
"GP(x,y) means that, to get to a nearest non-hex from any non-hex, you should move x "
|
|
"cells in any direction, turn right 60 degrees, and move y cells. "
|
|
"HyperRogue generalizes this to any tesselation with 3 faces per vertex. "
|
|
"By default HyperRogue uses bitruncation, which corresponds to GP(1,1)."
|
|
);
|
|
}
|
|
|
|
void show() {
|
|
cmode = sm::SIDE;
|
|
gamescreen(0);
|
|
dialog::init(XLAT("variations"));
|
|
|
|
int min_quality_chess = 0;
|
|
|
|
int min_quality = 0;
|
|
#if CAP_TEXTURE
|
|
if((texture::config.tstate == texture::tsActive) && (S7 % 2 == 1)) {
|
|
if(texture::cgroup == cpFootball || texture::cgroup == cpThree) min_quality = 1;
|
|
}
|
|
|
|
if((texture::config.tstate == texture::tsActive) && (S7 % 2 == 1) && (S3 == 4)) {
|
|
if(texture::cgroup == cpChess) min_quality = 1;
|
|
}
|
|
#endif
|
|
if(min_quality == 0 && min_quality_chess == 0) {
|
|
dialog::addBoolItem(XLAT("OFF"), param == loc(1,0) && !IRREGULAR, 'a');
|
|
dialog::lastItem().value = "GP(1,0)";
|
|
}
|
|
|
|
if(min_quality_chess == 0)
|
|
dialog::addBoolItem(XLAT("bitruncated"), param == loc(1,1) && BITRUNCATED, 'b');
|
|
dialog::lastItem().value = S3 == 3 ? "GP(1,1)" : XLAT(BITRUNCATED ? "ON" : "OFF");
|
|
|
|
if(min_quality == 0 || min_quality_chess) {
|
|
dialog::addBoolItem(XLAT(S3 == 3 ? "chamfered" : "expanded"), param == loc(2,0), 'c');
|
|
dialog::lastItem().value = "GP(2,0)";
|
|
}
|
|
|
|
if(S3 == 3) {
|
|
dialog::addBoolItem(XLAT("2x bitruncated"), param == loc(3,0), 'd');
|
|
dialog::lastItem().value = "GP(3,0)";
|
|
}
|
|
else {
|
|
dialog::addBoolItem(XLAT("rectified"), param == loc(1,1) && GOLDBERG, 'd');
|
|
dialog::lastItem().value = "GP(1,1)";
|
|
}
|
|
|
|
dialog::addBreak(100);
|
|
dialog::addSelItem("x", its(config.first), 'x');
|
|
dialog::addSelItem("y", its(config.second), 'y');
|
|
|
|
if(config.second && config.second != config.first && nonorientable) {
|
|
dialog::addInfo(XLAT("This does not work in non-orientable geometries"));
|
|
}
|
|
else if((config.first-config.second)%3 && min_quality)
|
|
dialog::addInfo(XLAT("This pattern needs x-y divisible by 3"));
|
|
else if((config.first-config.second)%2 && min_quality_chess)
|
|
dialog::addInfo(XLAT("This pattern needs x-y divisible by 2"));
|
|
else
|
|
dialog::addBoolItem(XLAT("select"), param == internal_representation(config) && !IRREGULAR, 'f');
|
|
|
|
if(irr::supports(geometry)) {
|
|
dialog::addBoolItem(XLAT("irregular"), IRREGULAR, 'i');
|
|
dialog::add_action([=] () {
|
|
if(min_quality && !irr::bitruncations_requested) irr::bitruncations_requested++;
|
|
if(!IRREGULAR) irr::visual_creator();
|
|
});
|
|
}
|
|
|
|
dialog::addBreak(100);
|
|
dialog::addHelp();
|
|
dialog::addBack();
|
|
dialog::display();
|
|
|
|
keyhandler = [] (int sym, int uni) {
|
|
dialog::handleNavigation(sym, uni);
|
|
if(uni == 'a')
|
|
whirl_set(loc(1, 0));
|
|
else if(uni == 'b') {
|
|
if(S3 == 4) {
|
|
if(!BITRUNCATED) {
|
|
stop_game();
|
|
set_variation(eVariation::bitruncated);
|
|
start_game();
|
|
}
|
|
}
|
|
else
|
|
whirl_set(loc(1, 1));
|
|
}
|
|
else if(uni == 'c')
|
|
whirl_set(loc(2, 0));
|
|
else if(uni == 'd')
|
|
whirl_set(S3 == 3 ? loc(3, 0) : loc(1,1));
|
|
else if(uni == 'f')
|
|
whirl_set(config);
|
|
else if(uni == 'x')
|
|
dialog::editNumber(config.first, 0, 8, 1, 1, "x", helptext());
|
|
else if(uni == 'y')
|
|
dialog::editNumber(config.second, 0, 8, 1, 1, "y", helptext());
|
|
else if(uni == 'z')
|
|
swap(config.first, config.second);
|
|
else if(uni == '?' || sym == SDLK_F1 || uni == 'h' || uni == '2')
|
|
gotoHelp(helptext());
|
|
else if(doexiton(sym, uni))
|
|
popScreen();
|
|
};
|
|
}
|
|
|
|
loc univ_param() {
|
|
if(GOLDBERG) return param;
|
|
else if(PURE) return loc(1,0);
|
|
else return loc(1,1);
|
|
}
|
|
|
|
void configure() {
|
|
auto l = univ_param();
|
|
param = l;
|
|
config = human_representation(l);
|
|
pushScreen(gp::show);
|
|
}
|
|
|
|
void be_in_triangle(local_info& li) {
|
|
int sp = 0;
|
|
auto& at = li.relative;
|
|
again:
|
|
auto corner = corners * loctoh_ort(at);
|
|
if(corner[1] < -1e-6 || corner[2] < -1e-6) {
|
|
at = at * eudir(1);
|
|
sp++;
|
|
goto again;
|
|
}
|
|
if(sp>SG3) sp -= SG6;
|
|
li.last_dir = fix7(li.last_dir - sp);
|
|
}
|
|
|
|
// from some point X, (0,0) is in distance dmain, param is in distance d0, and param*z is in distance d1
|
|
// what is the distance of at from X?
|
|
|
|
int solve_triangle(int dmain, int d0, int d1, loc at) {
|
|
loc centerloc(0, 0);
|
|
auto rel = make_pair(d0-dmain, d1-dmain);
|
|
if(center_locs.count(rel))
|
|
centerloc = center_locs[rel];
|
|
else {
|
|
bool found = false;
|
|
for(int y=-20; y<=20; y++)
|
|
for(int x=-20; x<=20; x++) {
|
|
loc c(x, y);
|
|
int cc = length(c);
|
|
int c0 = length(c - param);
|
|
int c1 = length(c - param*loc(0,1));
|
|
if(c0-cc == d0-dmain && c1-cc == d1-dmain)
|
|
found = true, centerloc = c;
|
|
}
|
|
if(!found && !quotient) {
|
|
Xprintf("Warning: centerloc not found: %d,%d,%d\n", dmain, d0, d1);
|
|
}
|
|
center_locs[rel] = centerloc;
|
|
}
|
|
|
|
return dmain + length(centerloc-at) - length(centerloc);
|
|
}
|
|
|
|
int solve_quad(int dmain, int d0, int d1, int dx, loc at) {
|
|
loc centerloc(0, 0);
|
|
auto rel = make_pair(d0-dmain, (d1-dmain) + 1000 * (dx-dmain) + 1000000);
|
|
if(center_locs.count(rel))
|
|
centerloc = center_locs[rel];
|
|
else {
|
|
bool found = false;
|
|
for(int y=-20; y<=20; y++)
|
|
for(int x=-20; x<=20; x++) {
|
|
loc c(x, y);
|
|
int cc = length(c);
|
|
int c0 = length(c - param);
|
|
int c1 = length(c - param*loc(0,1));
|
|
int c2 = length(c - param*loc(1,1));
|
|
if(c0-cc == d0-dmain && c1-cc == d1-dmain && c2-cc == dx-dmain)
|
|
found = true, centerloc = c;
|
|
}
|
|
if(!found && !quotient) {
|
|
Xprintf("Warning: centerloc not found: %d,%d,%d,%d\n", dmain, d0, d1, dx);
|
|
}
|
|
center_locs[rel] = centerloc;
|
|
}
|
|
|
|
return dmain + length(centerloc-at) - length(centerloc);
|
|
}
|
|
|
|
array<heptagon*, 3> get_masters(cell *c) {
|
|
if(GOLDBERG) {
|
|
auto li = get_local_info(c);
|
|
be_in_triangle(li);
|
|
auto cm = c->master;
|
|
int i = li.last_dir;
|
|
return make_array(cm, createStep(cm, i), createStep(cm, fix7(i+1)));
|
|
}
|
|
else if(IRREGULAR)
|
|
return irr::get_masters(c);
|
|
else
|
|
return make_array(c->move(0)->master, c->move(2)->master, c->move(4)->master);
|
|
}
|
|
|
|
int compute_dist(cell *c, int master_function(cell*)) {
|
|
auto li = get_local_info(c);
|
|
be_in_triangle(li);
|
|
|
|
cell *cm = c->master->c7;
|
|
|
|
int i = li.last_dir;
|
|
auto at = li.relative;
|
|
|
|
auto dmain = master_function(cm);
|
|
auto d0 = master_function(createStep(cm->master, i)->c7);
|
|
auto d1 = master_function(createStep(cm->master, fixdir(i+1, cm))->c7);
|
|
|
|
if(S3 == 4) {
|
|
heptspin hs(cm->master, i);
|
|
hs += wstep; hs+=-1; hs += wstep;
|
|
auto d2 = master_function(hs.at->c7);
|
|
return solve_quad(dmain, d0, d1, d2, at);
|
|
}
|
|
|
|
return solve_triangle(dmain, d0, d1, at);
|
|
}
|
|
|
|
int dist_2() {
|
|
return length(univ_param());
|
|
}
|
|
|
|
int dist_3() {
|
|
return length(univ_param() * loc(1,1));
|
|
}
|
|
|
|
int dist_1() {
|
|
return dist_3() - dist_2();
|
|
}
|
|
|
|
}}
|