mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-24 21:37:18 +00:00
1314 lines
34 KiB
C++
1314 lines
34 KiB
C++
// Hyperbolic Rogue
|
|
// Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// implementation of the Hypersian Rug mode
|
|
|
|
|
|
#if CAP_RUG
|
|
|
|
#define TEXTURESIZE (texturesize)
|
|
#define HTEXTURESIZE (texturesize/2)
|
|
|
|
#if !CAP_GLEW
|
|
#if ISLINUX
|
|
extern "C" {
|
|
GLAPI void APIENTRY glGenFramebuffers (GLsizei n, GLuint *framebuffers);
|
|
GLAPI void APIENTRY glBindFramebuffer (GLenum target, GLuint framebuffer);
|
|
GLAPI void APIENTRY glFramebufferTexture (GLenum target, GLenum attachment, GLuint texture, GLint level);
|
|
GLAPI GLenum APIENTRY glCheckFramebufferStatus (GLenum target);
|
|
GLAPI void APIENTRY glDrawBuffers (GLsizei n, const GLenum *bufs);
|
|
GLAPI void APIENTRY glGenRenderbuffers (GLsizei n, GLuint *renderbuffers);
|
|
GLAPI void APIENTRY glBindRenderbuffer (GLenum target, GLuint renderbuffer);
|
|
GLAPI void APIENTRY glRenderbufferStorage (GLenum target, GLenum internalformat, GLsizei width, GLsizei height);
|
|
GLAPI void APIENTRY glFramebufferRenderbuffer (GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer);
|
|
GLAPI void APIENTRY glDeleteRenderbuffers (GLsizei n, const GLuint *renderbuffers);
|
|
GLAPI void APIENTRY glDeleteFramebuffers (GLsizei n, const GLuint *framebuffers);
|
|
}
|
|
#endif
|
|
|
|
#if ISMAC
|
|
#define glFramebufferTexture glFramebufferTextureEXT
|
|
#endif
|
|
#endif
|
|
|
|
namespace rug {
|
|
|
|
bool fast_euclidean = true;
|
|
bool keep_shape = true;
|
|
bool good_shape;
|
|
|
|
ld modelscale = 1;
|
|
|
|
eGeometry gwhere = gEuclid;
|
|
|
|
// hypersian rug datatypes and globals
|
|
//-------------------------------------
|
|
|
|
bool rugged = false;
|
|
bool genrug = false;
|
|
bool glew = false;
|
|
|
|
int vertex_limit = 20000;
|
|
|
|
bool renderonce = false;
|
|
bool rendernogl = false;
|
|
int texturesize = 1024;
|
|
ld scale = 1;
|
|
|
|
ld err_zero = 1e-3, err_zero_current, current_total_error;
|
|
|
|
int queueiter, qvalid, dt;
|
|
|
|
struct edge {
|
|
struct rugpoint *target;
|
|
double len;
|
|
};
|
|
|
|
struct rugpoint {
|
|
double x1, y1;
|
|
bool valid;
|
|
bool inqueue;
|
|
double dist;
|
|
hyperpoint h;
|
|
hyperpoint flat;
|
|
vector<edge> edges;
|
|
// Find-Union algorithm
|
|
rugpoint *glue = NULL;
|
|
rugpoint *getglue() {
|
|
return glue ? (glue = glue->getglue()) : this;
|
|
}
|
|
hyperpoint& glueflat() {
|
|
return glue->flat;
|
|
}
|
|
void glueto(rugpoint *x) {
|
|
x = x->getglue();
|
|
auto y = getglue();
|
|
if(x != y) y->glue = x;
|
|
}
|
|
};
|
|
|
|
struct triangle {
|
|
rugpoint *m[3];
|
|
triangle(rugpoint *m1, rugpoint *m2, rugpoint *m3) {
|
|
m[0] = m1; m[1] = m2; m[2] = m3;
|
|
}
|
|
};
|
|
|
|
vector<rugpoint*> points;
|
|
vector<triangle> triangles;
|
|
|
|
bool rug_perspective = false;
|
|
|
|
// extra geometry functions
|
|
//--------------------------
|
|
|
|
// returns a matrix M
|
|
// such that inverse(M) * h1 = ( |h1|, 0, 0) and inverse(M) * h2 = ( .., .., 0)
|
|
|
|
transmatrix orthonormalize(hyperpoint h1, hyperpoint h2) {
|
|
using namespace hyperpoint_vec;
|
|
|
|
hyperpoint vec[3] = {h1, h2, h1 ^ h2};
|
|
|
|
for(int i=0; i<3; i++) {
|
|
for(int j=0; j<i; j++) vec[i] -= vec[j] * (vec[i] | vec[j]);
|
|
if(zero3(vec[i])) {
|
|
// 'random' direction
|
|
vec[i] = hpxyz(1.12, 1.512+i, 1.12904+i);
|
|
for(int j=0; j<i; j++) vec[i] -= vec[j] * (vec[i] | vec[j]);
|
|
}
|
|
vec[i] /= hypot3(vec[i]);
|
|
}
|
|
|
|
transmatrix M;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
M[i][j] = vec[j][i];
|
|
|
|
return M;
|
|
}
|
|
|
|
hyperpoint azeq_to_hyperboloid(hyperpoint h) {
|
|
if(abs(h[2])>1e-4) printf("Error: h[2] = %lf\n", h[2]);
|
|
if(euclid) {
|
|
h[2] = 1;
|
|
return h;
|
|
}
|
|
ld d = hypot(h[0], h[1]);
|
|
if(d == 0) {
|
|
h[2] = 1;
|
|
return h;
|
|
}
|
|
if(sphere) {
|
|
ld d0 = d ? d : 1;
|
|
h[0] = sin(d) * h[0]/d0;
|
|
h[1] = sin(d) * h[1]/d0;
|
|
h[2] = cos(d);
|
|
}
|
|
else {
|
|
ld d0 = d ? d : 1;
|
|
h[0] = sinh(d) * h[0]/d0;
|
|
h[1] = sinh(d) * h[1]/d0;
|
|
h[2] = cosh(d);
|
|
}
|
|
return h;
|
|
}
|
|
|
|
hyperpoint hyperboloid_to_azeq(hyperpoint h) {
|
|
if(euclid) {
|
|
h[2] = 0;
|
|
return h;
|
|
}
|
|
else {
|
|
ld d = hdist0(h);
|
|
if(d == 0) { h[2] = 0; return h; }
|
|
ld d2 = hypot2(h);
|
|
if(d2 == 0) { h[2] = 0; return h; }
|
|
h[0] = d * h[0] / d2;
|
|
h[1] = d * h[1] / d2;
|
|
h[2] = 0;
|
|
return h;
|
|
}
|
|
}
|
|
|
|
void push_point(hyperpoint& h, int coord, ld val) {
|
|
if(fast_euclidean && gwhere == gEuclid)
|
|
h[coord] += val;
|
|
else if(!val) return;
|
|
else {
|
|
// if(zero3(h)) { h[0] = 1e-9; h[1] = 1e-10; h[2] = 1e-11; }
|
|
dynamicval<eGeometry> gw(geometry, gwhere);
|
|
transmatrix M = orthonormalize(hpxyz(coord==0,coord==1,coord==2), h);
|
|
transmatrix Mi = inverse(M);
|
|
hyperpoint f = azeq_to_hyperboloid(Mi * h);
|
|
h = M * hyperboloid_to_azeq(xpush(val) * f);
|
|
}
|
|
}
|
|
|
|
void push_all_points(int coord, ld val) {
|
|
if(!val) return;
|
|
else for(int i=0; i<size(points); i++)
|
|
push_point(points[i]->flat, coord, val);
|
|
}
|
|
|
|
// construct the graph
|
|
//---------------------
|
|
|
|
int hyprand;
|
|
|
|
rugpoint *addRugpoint(hyperpoint h, double dist) {
|
|
rugpoint *m = new rugpoint;
|
|
m->h = h;
|
|
|
|
/*
|
|
ld tz = vid.alphax+h[2];
|
|
m->x1 = (1 + h[0] / tz) / 2;
|
|
m->y1 = (1 + h[1] / tz) / 2;
|
|
*/
|
|
|
|
hyperpoint onscreen;
|
|
applymodel(m->h, onscreen);
|
|
m->x1 = (1 + onscreen[0] * vid.scale) / 2;
|
|
m->y1 = (1 + onscreen[1] * vid.scale) / 2;
|
|
m->valid = false;
|
|
|
|
using namespace hyperpoint_vec;
|
|
|
|
if(sphere) {
|
|
m->valid = good_shape = true;
|
|
ld scale;
|
|
if(gwhere == gEuclid) {
|
|
scale = modelscale;
|
|
}
|
|
else if(gwhere == gNormal) {
|
|
// sinh(scale) = modelscale
|
|
scale = asinh(modelscale);
|
|
}
|
|
else if(gwhere == gSphere) {
|
|
if(modelscale >= 1)
|
|
// do as good as we can...
|
|
scale = M_PI / 2 - 1e-3, good_shape = false;
|
|
else scale = asin(modelscale);
|
|
}
|
|
m->flat = h * scale;
|
|
}
|
|
|
|
else if(euclid && gwhere == gEuclid) {
|
|
m->flat = h * modelscale;
|
|
}
|
|
|
|
else if(gwhere == gNormal && (euclid || (hyperbolic && modelscale >= 1))) {
|
|
m->valid = good_shape = true;
|
|
|
|
|
|
ld d = hdist0(h);
|
|
ld d0 = hypot2(h); if(!d0) d0 = 1;
|
|
|
|
hyperpoint hpoint;
|
|
bool orig_euclid = euclid;
|
|
dynamicval<eGeometry> gw(geometry, gwhere);
|
|
|
|
if(orig_euclid) {
|
|
d *= modelscale;
|
|
// point on a horocycle going through C0, in distance d along the horocycle
|
|
hpoint = hpxy(d*d/2, d);
|
|
}
|
|
else {
|
|
// radius of the equidistant
|
|
ld r = acosh(modelscale);
|
|
// point on an equdistant going through C0 in distance d along the guiding line
|
|
// hpoint = hpxy(cosh(r) * sinh(r) * (cosh(d) - 1), sinh(d) * cosh(r));
|
|
hpoint = xpush(r) * ypush(d) * xpush(-r) * C0;
|
|
}
|
|
|
|
ld hpdist = hdist0(hpoint);
|
|
ld z = hypot2(hpoint);
|
|
if(z==0) z = 1;
|
|
m->flat = hpxyz(hpdist * h[0]/d0 * hpoint[1] / z, hpdist * h[1]/d0 * hpoint[1] / z, -hpdist * hpoint[0] / z);
|
|
}
|
|
|
|
else m->flat = // hpxyz(h[0], h[1], sin(atan2(h[0], h[1]) * 3 + hyprand) * (h[2]-1) / 1000);
|
|
hpxyz(h[0], h[1], (h[2]- (euclid ? 0 : 1)) * (rand() % 1000 - rand() % 1000) / 1000);
|
|
|
|
// if(rug_perspective && gwhere == gEuclid) m->flat[2] -= 3;
|
|
m->inqueue = false;
|
|
m->dist = dist;
|
|
points.push_back(m);
|
|
return m;
|
|
}
|
|
|
|
rugpoint *findRugpoint(hyperpoint h) {
|
|
for(int i=0; i<size(points); i++)
|
|
if(intval(points[i]->h, h) < 1e-5) return points[i];
|
|
return NULL;
|
|
}
|
|
|
|
rugpoint *findOrAddRugpoint(hyperpoint h, double dist) {
|
|
rugpoint *r = findRugpoint(h);
|
|
return r ? r : addRugpoint(h, dist);
|
|
}
|
|
|
|
void addNewEdge(rugpoint *e1, rugpoint *e2, ld len = 1) {
|
|
edge e; e.len = len;
|
|
e.target = e2; e1->edges.push_back(e);
|
|
e.target = e1; e2->edges.push_back(e);
|
|
}
|
|
|
|
void addEdge(rugpoint *e1, rugpoint *e2, ld len = 1) {
|
|
for(int i=0; i<size(e1->edges); i++)
|
|
if(e1->edges[i].target == e2) return;
|
|
addNewEdge(e1, e2, len);
|
|
}
|
|
|
|
void addTriangle(rugpoint *t1, rugpoint *t2, rugpoint *t3, ld len = 1) {
|
|
addEdge(t1->getglue(), t2->getglue(), len);
|
|
addEdge(t2->getglue(), t3->getglue(), len);
|
|
addEdge(t3->getglue(), t1->getglue(), len);
|
|
triangles.push_back(triangle(t1,t2,t3));
|
|
}
|
|
|
|
map<pair<rugpoint*, rugpoint*>, rugpoint*> halves;
|
|
|
|
rugpoint* findhalf(rugpoint *r1, rugpoint *r2) {
|
|
if(r1 > r2) swap(r1, r2);
|
|
return halves[{r1,r2}];
|
|
}
|
|
|
|
void addTriangle1(rugpoint *t1, rugpoint *t2, rugpoint *t3) {
|
|
rugpoint *t12 = findhalf(t1, t2);
|
|
rugpoint *t23 = findhalf(t2, t3);
|
|
rugpoint *t31 = findhalf(t3, t1);
|
|
addTriangle(t1, t12, t31);
|
|
addTriangle(t12, t2, t23);
|
|
addTriangle(t23, t3, t31);
|
|
addTriangle(t23, t31, t12);
|
|
}
|
|
|
|
bool psort(rugpoint *a, rugpoint *b) {
|
|
return hdist0(a->h) < hdist0(b->h);
|
|
}
|
|
|
|
void calcLengths() {
|
|
for(int i=0; i<size(points); i++) for(int j=0; j<size(points[i]->edges); j++) {
|
|
ld d = hdist(points[i]->h, points[i]->edges[j].target->h);
|
|
if(elliptic && d > M_PI/2) d = M_PI - d;
|
|
points[i]->edges[j].len = d * modelscale;
|
|
}
|
|
}
|
|
|
|
void setVidParam() {
|
|
vid.xres = vid.yres = TEXTURESIZE;
|
|
vid.scrsize = HTEXTURESIZE;
|
|
vid.radius = vid.scrsize * vid.scale; vid.xcenter = HTEXTURESIZE; vid.ycenter = HTEXTURESIZE;
|
|
vid.beta = 2; vid.alphax = 1; vid.eye = 0; vid.goteyes = false;
|
|
}
|
|
|
|
void buildTorusRug() {
|
|
using namespace torusconfig;
|
|
|
|
setVidParam();
|
|
|
|
struct toruspoint {
|
|
int x,y;
|
|
toruspoint() { x=qty; y=qty; }
|
|
toruspoint(int _x, int _y) : x(_x), y(_y) {}
|
|
int d2() {
|
|
return x*x+(euclid6?x*y:0)+y*y;
|
|
}
|
|
};
|
|
|
|
vector<toruspoint> zeropoints;
|
|
vector<toruspoint> tps(qty);
|
|
|
|
for(int ax=-qty; ax<qty; ax++)
|
|
for(int ay=-qty; ay<qty; ay++) {
|
|
int v = (ax*dx + ay*dy) % qty;
|
|
if(v<0) v += qty;
|
|
toruspoint tp(ax, ay);
|
|
if(tps[v].d2() > tp.d2()) tps[v] = tp;
|
|
if(v == 0)
|
|
zeropoints.emplace_back(ax, ay);
|
|
}
|
|
|
|
pair<toruspoint, toruspoint> solution;
|
|
ld bestsol = 1e12;
|
|
|
|
for(auto p1: zeropoints)
|
|
for(auto p2: zeropoints) {
|
|
int det = p1.x * p2.y - p2.x * p1.y;
|
|
if(det < 0) continue;
|
|
if(det != qty && det != -qty) continue;
|
|
ld quality = ld(p1.d2()) * p2.d2();
|
|
if(quality < bestsol * 3)
|
|
if(quality < bestsol)
|
|
bestsol = quality, solution.first = p1, solution.second = p2;
|
|
}
|
|
|
|
if(solution.first.d2() > solution.second.d2())
|
|
swap(solution.first, solution.second);
|
|
|
|
ld factor = sqrt(ld(solution.second.d2()) / solution.first.d2());
|
|
|
|
printf("factor = %lf\n", factor);
|
|
if(factor < 2) factor = 2.2;
|
|
factor -= 1;
|
|
|
|
// 22,1
|
|
// 7,-17
|
|
|
|
// transmatrix z1 = {{{22,7,0}, {1,-17,0}, {0,0,1}}};
|
|
transmatrix z1 = {{{(ld)solution.first.x,(ld)solution.second.x,0}, {(ld)solution.first.y,(ld)solution.second.y,0}, {0,0,1}}};
|
|
transmatrix z2 = inverse(z1);
|
|
|
|
auto addToruspoint = [&] (ld x, ld y) {
|
|
auto r = addRugpoint(C0, 0);
|
|
hyperpoint onscreen;
|
|
applymodel(tC0(eumove(x, y)), onscreen);
|
|
// take point (1,0)
|
|
// apply eumove(1,0)
|
|
// divide by EUCSCALE
|
|
// multiply by vid.radius (= HTEXTURESIZE * rugzoom)
|
|
// add 1, divide by texturesize
|
|
r->x1 = onscreen[0];
|
|
r->y1 = onscreen[1];
|
|
// r->y1 = (1 + onscreen[1] * rugzoom / EUCSCALE)/2;
|
|
hyperpoint h1 = hpxyz(x, y, 0);
|
|
hyperpoint h2 = z2 * h1;
|
|
double alpha = -h2[0] * 2 * M_PI;
|
|
double beta = -h2[1] * 2 * M_PI;
|
|
// r->flat = {alpha, beta, 0};
|
|
double sc = (factor+1)/4;
|
|
r->flat = r->h = hpxyz((factor+cos(alpha)) * cos(beta) * sc, (factor+cos(alpha)) * sin(beta) * sc, -sin(alpha) * sc);
|
|
r->valid = true;
|
|
rugpoint *r2 = findRugpoint(r->flat);
|
|
printf("(%lf %lf) %p .. %p\n", x, y, r, r2);
|
|
if(r2 && r2 != r) r->glueto(r2);
|
|
return r;
|
|
};
|
|
|
|
int rugmax = (int) sqrt(vertex_limit / qty);
|
|
if(rugmax < 1) rugmax = 1;
|
|
if(rugmax > 16) rugmax = 16;
|
|
|
|
ld rmd = rugmax;
|
|
|
|
for(int i=0; i<qty; i++) {
|
|
int x = tps[i].x, y = tps[i].y;
|
|
rugpoint *rugarr[32][32];
|
|
for(int yy=0; yy<=rugmax; yy++)
|
|
for(int xx=0; xx<=rugmax; xx++)
|
|
rugarr[yy][xx] = addToruspoint(x+(xx-yy)/rmd, y+yy/rmd);
|
|
|
|
for(int yy=0; yy<rugmax; yy++)
|
|
for(int xx=0; xx<rugmax; xx++)
|
|
addTriangle(rugarr[yy][xx], rugarr[yy+1][xx], rugarr[yy+1][xx+1], modelscale/rugmax),
|
|
addTriangle(rugarr[yy][xx], rugarr[yy][xx+1], rugarr[yy+1][xx+1], modelscale/rugmax);
|
|
}
|
|
|
|
double maxz = 0;
|
|
|
|
for(auto p: points)
|
|
maxz = max(maxz, max(abs(p->x1), abs(p->y1)));
|
|
|
|
// maxz * rugzoom * vid.radius == vid.radius
|
|
|
|
vid.scale = 1 / maxz;
|
|
|
|
for(auto p: points)
|
|
p->x1 = (vid.xcenter + vid.radius * vid.scale * p->x1)/ vid.xres,
|
|
p->y1 = (vid.ycenter - vid.radius * vid.scale * p->y1)/ vid.yres;
|
|
|
|
qvalid = size(points);
|
|
printf("qvalid = %d\n", qvalid);
|
|
|
|
return;
|
|
}
|
|
|
|
void verify() {
|
|
vector<ld> ratios;
|
|
for(auto m: points)
|
|
for(auto& e: m->edges) {
|
|
auto m2 = e.target;
|
|
ld l = e.len;
|
|
|
|
dynamicval<eGeometry> gw(geometry, gwhere);
|
|
transmatrix M = orthonormalize(m->flat, m2->flat);
|
|
transmatrix Mi = inverse(M);
|
|
hyperpoint h1 = azeq_to_hyperboloid(Mi * m->flat);
|
|
hyperpoint h2 = azeq_to_hyperboloid(Mi * m2->flat);
|
|
ld l0 = hdist(h1, h2);
|
|
ratios.push_back(l0 / l);
|
|
}
|
|
|
|
printf("Length verification:\n");
|
|
sort(ratios.begin(), ratios.end());
|
|
for(int i=0; i<size(ratios); i += size(ratios) / 10)
|
|
printf("%lf\n", ratios[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
void buildRug() {
|
|
|
|
if(torus) {
|
|
good_shape = true;
|
|
buildTorusRug();
|
|
return;
|
|
}
|
|
|
|
map<cell*, rugpoint *> vptr;
|
|
|
|
for(int i=0; i<size(dcal); i++)
|
|
if(gmatrix.count(dcal[i]))
|
|
vptr[dcal[i]] = addRugpoint(gmatrix[dcal[i]]*C0, dcal[i]->cpdist);
|
|
|
|
for(int i=0; i<size(dcal); i++) {
|
|
cell *c = dcal[i];
|
|
rugpoint *v = vptr[c];
|
|
if(!v) continue;
|
|
for(int j=0; j<c->type; j++) {
|
|
cell *c2 = c->mov[j];
|
|
rugpoint *w = vptr[c2];
|
|
if(!w) continue;
|
|
// if(v<w) addEdge(v, w);
|
|
|
|
cell *c3 = c->mov[(j+1) % c->type];
|
|
rugpoint *w2 = vptr[c3];
|
|
if(!w2) continue;
|
|
if(ctof(c)) addTriangle(v, w, w2);
|
|
}
|
|
}
|
|
|
|
printf("vertices = %d triangles= %d\n", size(points), size(triangles));
|
|
|
|
calcLengths();
|
|
sort(points.begin(), points.end(), psort);
|
|
|
|
verify();
|
|
}
|
|
|
|
// rug physics
|
|
|
|
queue<rugpoint*> pqueue;
|
|
void enqueue(rugpoint *m) {
|
|
if(m->inqueue) return;
|
|
pqueue.push(m);
|
|
m->inqueue = true;
|
|
}
|
|
|
|
bool force_euclidean(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
|
if(!m1.valid || !m2.valid) return false;
|
|
// double rd = hdist(m1.h, m2.h) * xd;
|
|
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
|
|
double t = 0;
|
|
for(int i=0; i<3; i++) t += (m1.flat[i] - m2.flat[i]) * (m1.flat[i] - m2.flat[i]);
|
|
t = sqrt(t);
|
|
/* printf("%s ", display(m1.flat));
|
|
printf("%s ", display(m2.flat));
|
|
printf("%lf/%lf\n", t, rd); */
|
|
current_total_error += (t-rd) * (t-rd);
|
|
bool nonzero = abs(t-rd) > err_zero_current;
|
|
double force = (t - rd) / t / 2; // 20.0;
|
|
for(int i=0; i<3; i++) {
|
|
double di = (m2.flat[i] - m1.flat[i]) * force;
|
|
m1.flat[i] += di * d1;
|
|
m2.flat[i] -= di * d2;
|
|
if(nonzero && d2>0) enqueue(&m2);
|
|
}
|
|
return nonzero;
|
|
}
|
|
|
|
bool force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
|
|
if(!m1.valid || !m2.valid) return false;
|
|
if(gwhere == gEuclid && fast_euclidean) {
|
|
return force_euclidean(m1, m2, rd, d1, d2);
|
|
}
|
|
// double rd = hdist(m1.h, m2.h) * xd;
|
|
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
|
|
using namespace hyperpoint_vec;
|
|
dynamicval<eGeometry> gw(geometry, gwhere);
|
|
transmatrix M = orthonormalize(m1.flat, m2.flat);
|
|
transmatrix Mi = inverse(M);
|
|
hyperpoint f1 = azeq_to_hyperboloid(Mi * m1.flat);
|
|
hyperpoint f2 = azeq_to_hyperboloid(Mi * m2.flat);
|
|
|
|
ld t = hdist(f1, f2);
|
|
current_total_error += (t-rd) * (t-rd);
|
|
bool nonzero = abs(t-rd) > err_zero_current;
|
|
double forcev = (t - rd) / 2; // 20.0;
|
|
|
|
transmatrix T = gpushxto0(f1);
|
|
transmatrix T1 = spintox(T * f2) * T;
|
|
|
|
transmatrix iT1 = inverse(T1);
|
|
|
|
for(int i=0; i<3; i++) if(isnan(m1.flat[i])) { printf("NAN!\n"); exit(1); }
|
|
|
|
/*
|
|
printf("%p %p\n", &m1, &m2);
|
|
|
|
printf("m1 = %s\n", display(m1.flat));
|
|
printf("m2 = %s\n", display(m2.flat));
|
|
printf("Mi * m1 = %s\n", display(Mi*m1.flat));
|
|
printf("Mi * m2 = %s\n", display(Mi*m2.flat));
|
|
|
|
printf(" f1 = %s\n", display(f1));
|
|
printf(" T * f1 = %s\n", display(T * f1));
|
|
printf("T1 * f1 = %s\n", display(T1 * f1));
|
|
printf(" f2 = %s\n", display(f2));
|
|
printf(" T * f2 = %s\n", display(T * f2));
|
|
printf("T1 * f2 = %s\n", display(T1 * f2));
|
|
printf("iT1 = %s\n", display(iT1 * C0));
|
|
printf("iT1 + t = %s\n", display(iT1 * xpush(t) * C0));
|
|
*/
|
|
|
|
f1 = iT1 * xpush(forcev) * C0;
|
|
f2 = iT1 * xpush(t-forcev) * C0;
|
|
|
|
m1.flat = M * hyperboloid_to_azeq(f1);
|
|
m2.flat = M * hyperboloid_to_azeq(f2);
|
|
|
|
if(nonzero && d2>0) enqueue(&m2);
|
|
return nonzero;
|
|
}
|
|
|
|
void preset(rugpoint *m) {
|
|
int q = 0;
|
|
hyperpoint h;
|
|
for(int i=0; i<3; i++) h[i] = 0;
|
|
using namespace hyperpoint_vec;
|
|
|
|
for(int j=0; j<size(m->edges); j++)
|
|
for(int k=0; k<j; k++) {
|
|
rugpoint *a = m->edges[j].target;
|
|
rugpoint *b = m->edges[k].target;
|
|
if(!a->valid) continue;
|
|
if(!b->valid) continue;
|
|
double blen = -1;
|
|
for(int j2=0; j2<size(a->edges); j2++)
|
|
if(a->edges[j2].target == b) blen = a->edges[j2].len;
|
|
if(blen <= 0) continue;
|
|
for(int j2=0; j2<size(a->edges); j2++)
|
|
for(int k2=0; k2<size(b->edges); k2++)
|
|
if(a->edges[j2].target == b->edges[k2].target && a->edges[j2].target != m) {
|
|
rugpoint *c = a->edges[j2].target;
|
|
if(!c->valid) continue;
|
|
|
|
double a1 = m->edges[j].len/blen;
|
|
double a2 = m->edges[k].len/blen;
|
|
double c1 = a->edges[j2].len/blen;
|
|
double c2 = b->edges[k2].len/blen;
|
|
|
|
double cz = (c1*c1-c2*c2+1) / 2;
|
|
double ch = sqrt(c2*c2 - cz*cz);
|
|
|
|
double az = (a1*a1-a2*a2+1) / 2;
|
|
double ah = sqrt(a2*a2 - az*az);
|
|
|
|
// c->h = a->h + (b->h-a->h) * cz + ch * ort
|
|
hyperpoint ort = (c->flat - a->flat - cz * (b->flat-a->flat)) / ch;
|
|
|
|
// m->h = a->h + (b->h-a->h) * az - ah * ort
|
|
hyperpoint res = a->flat + (b->flat-a->flat) * az - ah * ort;
|
|
|
|
for(int i=0; i<3; i++) h[i] += res[i];
|
|
|
|
q++;
|
|
}
|
|
}
|
|
|
|
if(q>0) for(int i=0; i<3; i++) m->flat[i] = h[i]/q;
|
|
}
|
|
|
|
int divides = 0;
|
|
bool stop = false;
|
|
|
|
bool subdivide_further() {
|
|
if(torus) return false;
|
|
return size(points) * 4 < vertex_limit;
|
|
}
|
|
|
|
void subdivide() {
|
|
int N = size(points);
|
|
// if(euclid && gwhere == gEuclid) return;
|
|
if(!subdivide_further()) {
|
|
if(euclid && !bounded && gwhere == gEuclid) {
|
|
printf("Euclidean -- full precision\n");
|
|
stop = true;
|
|
}
|
|
else {
|
|
err_zero_current /= 2;
|
|
printf("increasing precision to %lg\n", err_zero_current);
|
|
for(auto p: points) enqueue(p);
|
|
}
|
|
return;
|
|
}
|
|
printf("subdivide (%d,%d)\n", N, size(triangles));
|
|
divides++;
|
|
vector<triangle> otriangles = triangles;
|
|
triangles.clear();
|
|
|
|
halves.clear();
|
|
|
|
// subdivide edges
|
|
for(int i=0; i<N; i++) {
|
|
rugpoint *m = points[i];
|
|
for(int j=0; j<size(m->edges); j++) {
|
|
rugpoint *m2 = m->edges[j].target;
|
|
if(m2 < m) continue;
|
|
rugpoint *mm = addRugpoint(mid(m->h, m2->h), (m->dist+m2->dist)/2);
|
|
halves[{m, m2}] = mm;
|
|
using namespace hyperpoint_vec;
|
|
mm->flat = (m->flat + m2->flat) / 2;
|
|
mm->valid = true; qvalid++;
|
|
mm->inqueue = false; enqueue(mm);
|
|
}
|
|
m->edges.clear();
|
|
}
|
|
|
|
for(int i=0; i<size(otriangles); i++)
|
|
addTriangle1(otriangles[i].m[0], otriangles[i].m[1], otriangles[i].m[2]);
|
|
|
|
calcLengths();
|
|
|
|
printf("result (%d,%d)\n", size(points), size(triangles));
|
|
}
|
|
|
|
void addNewPoints() {
|
|
|
|
if(qvalid == size(points)) {
|
|
subdivide();
|
|
return;
|
|
}
|
|
|
|
double dist = hdist0(points[qvalid]->h) + .1e-6;
|
|
|
|
int oqvalid = qvalid;
|
|
|
|
for(int i=0; i<size(points); i++) {
|
|
rugpoint& m = *points[i];
|
|
bool wasvalid = m.valid;
|
|
m.valid = wasvalid || sphere || hdist0(m.h) <= dist;
|
|
if(m.valid && !wasvalid) {
|
|
qvalid++;
|
|
if(i > 7) preset(&m);
|
|
|
|
if(good_shape) ;
|
|
else for(int it=0; it<50; it++)
|
|
for(int j=0; j<size(m.edges); j++)
|
|
force(m, *m.edges[j].target, m.edges[j].len, 1, 0);
|
|
|
|
enqueue(&m);
|
|
}
|
|
}
|
|
if(qvalid != oqvalid) { printf("adding new points %4d %4d %4d %.9lf %9d %9d\n", oqvalid, qvalid, size(points), dist, dt, queueiter); }
|
|
}
|
|
|
|
void physics() {
|
|
|
|
if(keep_shape && good_shape) return;
|
|
|
|
auto t = SDL_GetTicks();
|
|
|
|
current_total_error = 0;
|
|
|
|
while(SDL_GetTicks() < t + 5 && !stop)
|
|
for(int it=0; it<50 && !stop; it++)
|
|
if(pqueue.empty()) addNewPoints();
|
|
else {
|
|
queueiter++;
|
|
rugpoint *m = pqueue.front();
|
|
pqueue.pop();
|
|
m->inqueue = false;
|
|
bool moved = false;
|
|
for(int j=0; j<size(m->edges); j++)
|
|
moved = force(*m, *m->edges[j].target, m->edges[j].len) || moved;
|
|
|
|
if(moved) enqueue(m);
|
|
}
|
|
|
|
if(!stop) printf("%5d %10.7lf D%d Q%3d Qv%5d\n", queueiter, current_total_error, divides, size(pqueue), qvalid);
|
|
}
|
|
|
|
// drawing the Rug
|
|
//-----------------
|
|
|
|
int eyemod;
|
|
|
|
void getco(rugpoint *m, hyperpoint& h, int &spherepoints) {
|
|
using namespace hyperpoint_vec;
|
|
h = m->getglue()->flat;
|
|
if(gwhere == gSphere && h[2] > 0) {
|
|
ld rad = hypot3(h);
|
|
// turn M_PI to -M_PI
|
|
ld rad_to = M_PI + M_PI - rad;
|
|
ld r = -rad_to / rad;
|
|
h *= r;
|
|
spherepoints++;
|
|
}
|
|
if(eyemod) h[0] += eyemod * h[2] * vid.eye;
|
|
}
|
|
|
|
extern int besti;
|
|
|
|
void drawTriangle(triangle& t) {
|
|
using namespace hyperpoint_vec;
|
|
for(int i: {0,1,2}) {
|
|
if(!t.m[i]->valid) return;
|
|
if(t.m[i]->dist >= sightrange+.51) return;
|
|
}
|
|
dt++;
|
|
int spherepoints = 0;
|
|
array<hyperpoint,3> h;
|
|
for(int i: {0,1,2}) getco(t.m[i], h[i], spherepoints);
|
|
if(spherepoints == 1 || spherepoints == 2) return;
|
|
|
|
hyperpoint hc = (h[1] - h[0]) ^ (h[2] - h[0]);
|
|
double hch = hypot3(hc);
|
|
|
|
glNormal3f(hc[0]/hch,hc[1]/hch,hc[2]/hch);
|
|
|
|
for(int i: {0,1,2}) {
|
|
glTexCoord2f(t.m[i]->x1, t.m[i]->y1);
|
|
glVertex3f(h[i][0], h[i][1], h[i][2]);
|
|
}
|
|
}
|
|
|
|
GLuint FramebufferName = 0;
|
|
GLuint renderedTexture = 0;
|
|
GLuint depth_stencil_rb = 0;
|
|
|
|
SDL_Surface *texture;
|
|
Uint32 *expanded_data;
|
|
|
|
void initTexture() {
|
|
|
|
if(!rendernogl) {
|
|
#if !ISPANDORA
|
|
FramebufferName = 0;
|
|
glGenFramebuffers(1, &FramebufferName);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
|
|
|
|
glGenTextures(1, &renderedTexture);
|
|
glBindTexture(GL_TEXTURE_2D, renderedTexture);
|
|
glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, TEXTURESIZE, TEXTURESIZE, 0,GL_RGB, GL_UNSIGNED_BYTE, 0);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
|
|
#ifdef TEX
|
|
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, renderedTexture, 0);
|
|
#else
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, renderedTexture, 0);
|
|
#endif
|
|
GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0};
|
|
glDrawBuffers(1, DrawBuffers);
|
|
|
|
glGenRenderbuffers(1, &depth_stencil_rb);
|
|
glBindRenderbuffer(GL_RENDERBUFFER, depth_stencil_rb);
|
|
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, TEXTURESIZE, TEXTURESIZE);
|
|
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_stencil_rb);
|
|
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, depth_stencil_rb);
|
|
|
|
if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
|
|
addMessage("Failed to initialize the framebuffer");
|
|
rugged = false;
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
texture = SDL_CreateRGBSurface(SDL_SWSURFACE,TEXTURESIZE,TEXTURESIZE,32,0,0,0,0);
|
|
glGenTextures( 1, &renderedTexture );
|
|
glBindTexture( GL_TEXTURE_2D, renderedTexture);
|
|
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
|
|
expanded_data = new Uint32[TEXTURESIZE * TEXTURESIZE];
|
|
}
|
|
}
|
|
|
|
void prepareTexture() {
|
|
videopar svid = vid;
|
|
|
|
setVidParam();
|
|
|
|
if(rendernogl) {
|
|
vid.usingGL = false;
|
|
SDL_Surface *sav = s;
|
|
s = texture;
|
|
SDL_FillRect(s, NULL, 0);
|
|
|
|
drawfullmap();
|
|
s = sav;
|
|
for(int y=0; y<TEXTURESIZE; y++) for(int x=0; x<TEXTURESIZE; x++)
|
|
expanded_data[y*TEXTURESIZE + x] = qpixel(texture, x, TEXTURESIZE-1-y) | 0xFF000000;
|
|
glBindTexture( GL_TEXTURE_2D, renderedTexture);
|
|
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, TEXTURESIZE, TEXTURESIZE, 0, GL_BGRA, GL_UNSIGNED_BYTE, expanded_data );
|
|
}
|
|
else {
|
|
#if !ISPANDORA
|
|
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
|
|
glViewport(0,0,TEXTURESIZE,TEXTURESIZE);
|
|
|
|
setGLProjection();
|
|
ptds.clear();
|
|
drawthemap();
|
|
if(!renderonce) {
|
|
for(int i=0; i<numplayers(); i++) if(multi::playerActive(i))
|
|
queueline(tC0(shmup::ggmatrix(playerpos(i))), mouseh, 0xFF00FF, 8);
|
|
}
|
|
drawqueue();
|
|
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
#endif
|
|
}
|
|
vid = svid;
|
|
if(!rendernogl) glViewport(0,0,vid.xres,vid.yres);
|
|
}
|
|
|
|
void closeTexture() {
|
|
if(rendernogl) {
|
|
SDL_FreeSurface(texture);
|
|
glDeleteTextures(1, &renderedTexture);
|
|
delete[] expanded_data;
|
|
}
|
|
else {
|
|
#if !ISPANDORA
|
|
glDeleteTextures(1, &renderedTexture);
|
|
glDeleteRenderbuffers(1, &depth_stencil_rb);
|
|
glDeleteFramebuffers(1, &FramebufferName);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
double xview, yview;
|
|
|
|
void glcolorClear(int color) {
|
|
unsigned char *c = (unsigned char*) (&color);
|
|
glClearColor(c[3] / 255.0, c[2] / 255.0, c[1]/255.0, c[0] / 255.0);
|
|
}
|
|
|
|
void drawRugScene() {
|
|
GLfloat light_ambient[] = { 3.5, 3.5, 3.5, 1.0 };
|
|
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
|
|
GLfloat light_position[] = { 0.0, 0.0, 0.0, 1.0 };
|
|
|
|
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
|
|
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
|
|
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
|
|
|
|
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
|
|
GLERR("lighting");
|
|
|
|
glEnable(GL_LIGHTING);
|
|
glEnable(GL_LIGHT0);
|
|
|
|
glBindTexture(GL_TEXTURE_2D, renderedTexture);
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
glLoadIdentity();
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
glLoadIdentity();
|
|
|
|
if(backcolor == 0)
|
|
glClearColor(0.05,0.05,0.05,1);
|
|
else
|
|
glcolorClear(backcolor << 8 | 0xFF);
|
|
glClearDepth(1.0f);
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
glDisable(GL_BLEND);
|
|
glEnable(GL_TEXTURE_2D);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDepthFunc(GL_LESS);
|
|
|
|
if(rug_perspective) {
|
|
ld vnear = .001;
|
|
ld vfar = 1000;
|
|
ld sca = vnear / 2 / vid.xres;
|
|
xview = -.5;
|
|
yview = -.5 * vid.yres / vid.xres;
|
|
glFrustum(-sca * vid.xres, sca * vid.xres, -sca * vid.yres, sca * vid.yres, vnear, vfar);
|
|
}
|
|
else {
|
|
xview = vid.xres/(vid.scrsize*scale);
|
|
yview = vid.yres/(vid.scrsize*scale);
|
|
|
|
glOrtho(-xview, xview, -yview, yview, -1000, 1000);
|
|
}
|
|
|
|
glColor4f(1,1,1,1);
|
|
|
|
if(vid.eye > .001 || vid.eye < -.001) {
|
|
selectEyeMask(1);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
glBegin(GL_TRIANGLES);
|
|
eyemod = 1;
|
|
for(int t=0; t<size(triangles); t++)
|
|
drawTriangle(triangles[t]);
|
|
glEnd();
|
|
selectEyeMask(-1);
|
|
eyemod = -1;
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
glBegin(GL_TRIANGLES);
|
|
for(int t=0; t<size(triangles); t++)
|
|
drawTriangle(triangles[t]);
|
|
glEnd();
|
|
selectEyeMask(0);
|
|
}
|
|
else {
|
|
glBegin(GL_TRIANGLES);
|
|
for(int t=0; t<size(triangles); t++)
|
|
drawTriangle(triangles[t]);
|
|
glEnd();
|
|
}
|
|
|
|
glDisable(GL_TEXTURE_2D);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_LIGHTING);
|
|
glEnable(GL_BLEND);
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
glLoadIdentity();
|
|
selectEyeGL(0);
|
|
}
|
|
|
|
// organization
|
|
//--------------
|
|
|
|
transmatrix rotmatrix(double rotation, int c0, int c1) {
|
|
transmatrix t = Id;
|
|
t[c0][c0] = cos(rotation);
|
|
t[c1][c1] = cos(rotation);
|
|
t[c0][c1] = sin(rotation);
|
|
t[c1][c0] = -sin(rotation);
|
|
return t;
|
|
}
|
|
|
|
transmatrix currentrot;
|
|
|
|
void init() {
|
|
#if CAP_GLEW
|
|
if(!glew) {
|
|
glew = true;
|
|
GLenum err = glewInit();
|
|
if (GLEW_OK != err) {
|
|
addMessage("Failed to initialize GLEW");
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
if(rugged) return;
|
|
rugged = true;
|
|
if(scale < .01 || scale > 100) scale = 1;
|
|
initTexture();
|
|
if(renderonce) prepareTexture();
|
|
if(!rugged) return;
|
|
|
|
genrug = true;
|
|
drawthemap();
|
|
genrug = false;
|
|
|
|
qvalid = 0; dt = 0; queueiter = 0;
|
|
err_zero_current = err_zero;
|
|
|
|
buildRug();
|
|
while(good_shape && subdivide_further()) subdivide();
|
|
if(rug_perspective)
|
|
push_all_points(2, -1);
|
|
|
|
currentrot = Id;
|
|
}
|
|
|
|
void close() {
|
|
if(!rugged) return;
|
|
rugged = false;
|
|
closeTexture();
|
|
triangles.clear();
|
|
for(int i=0; i<size(points); i++) delete points[i];
|
|
points.clear();
|
|
pqueue = queue<rugpoint*> ();
|
|
}
|
|
|
|
int lastticks;
|
|
|
|
void actDraw() {
|
|
if(!renderonce) prepareTexture();
|
|
physics();
|
|
drawRugScene();
|
|
Uint8 *keystate = SDL_GetKeyState(NULL);
|
|
int qm = 0;
|
|
double alpha = (ticks - lastticks) / 1000.0;
|
|
lastticks = ticks;
|
|
|
|
transmatrix t = Id;
|
|
|
|
if(rug_perspective) {
|
|
if(keystate[SDLK_HOME]) qm++, t = t * rotmatrix(alpha, 0, 1);
|
|
if(keystate[SDLK_END]) qm++, t = t * rotmatrix(alpha, 1, 0);
|
|
|
|
if(!keystate[SDLK_LSHIFT]) {
|
|
if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 2, 1);
|
|
if(keystate[SDLK_UP]) qm++, t = t * rotmatrix(alpha, 1, 2);
|
|
if(keystate[SDLK_LEFT]) qm++, t = t * rotmatrix(alpha, 2, 0);
|
|
if(keystate[SDLK_RIGHT]) qm++, t = t * rotmatrix(alpha, 0, 2);
|
|
}
|
|
ld push = 0;
|
|
if(keystate[SDLK_PAGEDOWN]) push -= alpha;
|
|
if(keystate[SDLK_PAGEUP]) push += alpha;
|
|
|
|
ld strafex = 0, strafey = 0;
|
|
if(keystate[SDLK_LSHIFT]) {
|
|
if(keystate[SDLK_LEFT]) strafex += alpha;
|
|
if(keystate[SDLK_RIGHT]) strafex -= alpha;
|
|
if(keystate[SDLK_UP]) strafey -= alpha;
|
|
if(keystate[SDLK_DOWN]) strafey += alpha;
|
|
}
|
|
|
|
if(qm)
|
|
for(int i=0; i<size(points); i++) {
|
|
points[i]->flat = t * points[i]->flat;
|
|
}
|
|
|
|
push_all_points(2, push);
|
|
push_all_points(0, strafex);
|
|
push_all_points(1, strafey);
|
|
}
|
|
else {
|
|
if(keystate[SDLK_HOME]) qm++, t = inverse(currentrot);
|
|
if(keystate[SDLK_END]) qm++, t = currentrot * rotmatrix(alpha, 0, 1) * inverse(currentrot);
|
|
if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 1, 2);
|
|
if(keystate[SDLK_UP]) qm++, t = t * rotmatrix(alpha, 2, 1);
|
|
if(keystate[SDLK_LEFT]) qm++, t = t * rotmatrix(alpha, 0, 2);
|
|
if(keystate[SDLK_RIGHT]) qm++, t = t * rotmatrix(alpha, 2, 0);
|
|
if(keystate[SDLK_PAGEUP]) scale *= exp(alpha);
|
|
if(keystate[SDLK_PAGEDOWN]) scale /= exp(alpha);
|
|
|
|
if(qm) {
|
|
currentrot = t * currentrot;
|
|
for(int i=0; i<size(points); i++) points[i]->flat = t * points[i]->flat;
|
|
}
|
|
}
|
|
}
|
|
|
|
int besti;
|
|
|
|
void getco_pers(rugpoint *r, hyperpoint& p, bool& error) {
|
|
int sp;
|
|
getco(r, p, sp);
|
|
if(rug_perspective) {
|
|
if(p[2] >= 0)
|
|
error = true;
|
|
else {
|
|
p[0] /= p[2];
|
|
p[1] /= p[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
hyperpoint gethyper(ld x, ld y) {
|
|
double mx = ((x*2 / vid.xres)-1) * xview;
|
|
double my = (1-(y*2 / vid.yres)) * yview;
|
|
double bdist = 1e12;
|
|
|
|
double rx1=0, ry1=0;
|
|
|
|
bool found = false;
|
|
|
|
for(int i=0; i<size(triangles); i++) {
|
|
auto r0 = triangles[i].m[0];
|
|
auto r1 = triangles[i].m[1];
|
|
auto r2 = triangles[i].m[2];
|
|
hyperpoint p0, p1, p2;
|
|
bool error = false;
|
|
getco_pers(r0, p0, error);
|
|
getco_pers(r1, p1, error);
|
|
getco_pers(r2, p2, error);
|
|
if(error) continue;
|
|
double dx1 = p1[0] - p0[0];
|
|
double dy1 = p1[1] - p0[1];
|
|
double dx2 = p2[0] - p0[0];
|
|
double dy2 = p2[1] - p0[1];
|
|
double dxm = mx - p0[0];
|
|
double dym = my - p0[1];
|
|
// A (dx1,dy1) = (1,0)
|
|
// B (dx2,dy2) = (0,1)
|
|
double det = dx1*dy2 - dy1*dx2;
|
|
double tx = dxm * dy2 - dym * dx2;
|
|
double ty = -(dxm * dy1 - dym * dx1);
|
|
tx /= det; ty /= det;
|
|
if(tx >= 0 && ty >= 0 && tx+ty <= 1) {
|
|
double rz1 = p0[2] * (1-tx-ty) + p1[2] * tx + p2[2] * ty;
|
|
rz1 = -rz1;
|
|
if(rz1 < bdist) {
|
|
bdist = rz1;
|
|
rx1 = r0->x1 + (r1->x1 - r0->x1) * tx + (r2->x1 - r0->x1) * ty;
|
|
ry1 = r0->y1 + (r1->y1 - r0->y1) * tx + (r2->y1 - r0->y1) * ty;
|
|
}
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
if(!found) return Hypc;
|
|
|
|
double px = rx1 * TEXTURESIZE, py = (1-ry1) * TEXTURESIZE;
|
|
|
|
videopar svid = vid;
|
|
setVidParam();
|
|
hyperpoint h = ::gethyper(px, py);
|
|
vid = svid;
|
|
|
|
return h;
|
|
}
|
|
|
|
void show() {
|
|
dialog::init(XLAT("hypersian rug mode"), iinf[itPalace].color, 150, 100);
|
|
|
|
if((euclid || sphere) && !torus) {
|
|
dialog::addInfo("This makes sense only in hyperbolic or Torus geometry.");
|
|
dialog::addBreak(50);
|
|
}
|
|
|
|
dialog::addItem(XLAT("what's this?"), 'h');
|
|
dialog::addItem(XLAT("take me back"), 'q');
|
|
|
|
dialog::addItem(XLAT("enable the Hypersian Rug mode"), 'u');
|
|
|
|
dialog::addBoolItem(XLAT("render the texture only once"), (renderonce), 'o');
|
|
dialog::addBoolItem(XLAT("render texture without OpenGL"), (rendernogl), 'g');
|
|
dialog::addSelItem(XLAT("texture size"), its(texturesize)+"x"+its(texturesize), 's');
|
|
if(torus) {
|
|
dialog::addSelItem(XLAT("vertex_limit"), its(vertex_limit), 'p');
|
|
}
|
|
dialog::display();
|
|
keyhandler = [] (int sym, int uni) {
|
|
#if ISPANDORA
|
|
rendernogl = true;
|
|
#endif
|
|
dialog::handleNavigation(sym, uni);
|
|
|
|
if(uni == 'h') gotoHelp(
|
|
"In this mode, HyperRogue is played on a 3D model of a part of the hyperbolic plane, "
|
|
"similar to one you get from the 'paper model creator' or by hyperbolic crocheting.\n\n"
|
|
"This requires some OpenGL extensions and may crash or not work correctly -- enabling "
|
|
"the 'render texture without OpenGL' options may be helpful in this case. Also the 'render once' option "
|
|
"will make the rendering faster, but the surface will be rendered only once, so "
|
|
"you won't be able to play a game on it.\n\n"
|
|
"Use arrow keys to rotate, Page Up/Down to zoom."
|
|
);
|
|
else if(uni == 'u') {
|
|
if((euclid || sphere) && !torus)
|
|
addMessage("This makes sense only in hyperbolic or Torus geometry.");
|
|
{
|
|
rug::init();
|
|
popScreen();
|
|
}
|
|
}
|
|
else if(uni == 'o')
|
|
renderonce = !renderonce;
|
|
else if(uni == 'p')
|
|
dialog::editNumber(vertex_limit, 0, 16, 1, 2, "vertex limit", "vertex limit");
|
|
#if !ISPANDORA
|
|
else if(uni == 'g')
|
|
rendernogl = !rendernogl;
|
|
#endif
|
|
else if(uni == 's') {
|
|
texturesize *= 2;
|
|
if(texturesize == 8192) texturesize = 128;
|
|
dialog::scaleLog();
|
|
}
|
|
else if(doexiton(sym, uni)) popScreen();
|
|
};
|
|
}
|
|
|
|
void select() {
|
|
if(rug::rugged) rug::close();
|
|
else pushScreen(rug::show);
|
|
}
|
|
|
|
int rugArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-rugmodelscale")) {
|
|
shift(); modelscale = argf();
|
|
}
|
|
|
|
else if(argis("-ruggeo")) {
|
|
shift(); gwhere = (eGeometry) argi();
|
|
}
|
|
|
|
else if(argis("-rugpers")) {
|
|
rug_perspective = true;
|
|
}
|
|
|
|
else if(argis("-rugorth")) {
|
|
rug_perspective = false;
|
|
}
|
|
|
|
else if(argis("-rugerr")) {
|
|
shift(); err_zero = argf();
|
|
}
|
|
|
|
else if(argis("-rugv")) {
|
|
shift(); vertex_limit = argi();
|
|
}
|
|
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto rug_hook =
|
|
addHook(hooks_args, 100, rugArgs);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
// fake for mobile
|
|
namespace rug {
|
|
bool rugged = false;
|
|
bool renderonce = false;
|
|
bool rendernogl = true;
|
|
int texturesize = 512;
|
|
ld scale = 1.0f;
|
|
}
|
|
|
|
#endif
|