1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-24 21:37:18 +00:00
hyperrogue/intra.cpp
2023-04-15 01:30:05 +02:00

1203 lines
35 KiB
C++

#include "hyper.h"
namespace hr {
EX namespace intra {
EX bool in;
#if CAP_PORTALS
#if HDR
/** information per every space connected with intra-portals */
struct intra_data {
gamedata gd;
geometryinfo gi;
int wallindex;
};
#endif
EX vector<intra_data> data;
/** tells gamedata store that we are just storing one world */
EX bool switching;
/** index of the space we are currently in */
EX int current;
/** portal debugging flags */
EX int debug_portal;
/** map cells to their intra spaces */
EX map<cell*, int> intra_id;
#if HDR
/** information about portal (one side) */
struct portal_data {
int kind;
hyperpoint v0;
ld d;
transmatrix T;
transmatrix iT;
hyperpoint co0;
hyperpoint co1;
ld scale;
/* convert h to portal coordinates ('poco') to usual coordinates */
hyperpoint to_poco(hyperpoint h) const;
/* convert h from portal coordinates ('poco') to usual coordinates */
hyperpoint from_poco(hyperpoint h) const;
};
#endif
hyperpoint portal_data::to_poco(hyperpoint h) const {
if(mproduct && kind == 1) {
auto dec = product_decompose(h);
h = dec.second;
if(bt::in()) {
h = PIU( deparabolic13(h) );
h[2] = dec.first - d;
h[3] = 1;
}
else {
h = T * h;
h[0] /= h[2];
h[1] /= h[2];
h[2] = dec.first - d;
h[3] = 1;
}
if(d<0) h[2] = -h[2], h[0] = -h[0];
return h;
}
else if(mproduct && kind == 0) {
h = T * h;
ld z = product_decompose(h).first;
h /= exp(z);
auto h1 = h;
h[2] = asin_auto_clamp(h1[0]);
h[1] = z;
h[0] = asin_auto_clamp(h1[1] / cos_auto(h[2]));
h[3] = 1;
return h;
}
#if CAP_BT
else if(hyperbolic && bt::in()) {
h = deparabolic13(h);
h[3] = 1;
tie(h[0], h[1], h[2]) = make_tuple(h[1], h[2], h[0]);
h = T * h;
h[2] *= exp(h[1]);
return h;
}
#endif
else if(sol) {
h = T * h;
h[2] *= exp(-h[1]);
return h;
}
else {
h = T * h;
h /= h[3];
if(sphere)
h[2] /= sqrt(1+h[0]*h[0]+h[1]*h[1]);
if(hyperbolic)
h[2] /= sqrt(1-h[0]*h[0]-h[1]*h[1]);
return h;
}
}
hyperpoint portal_data::from_poco(hyperpoint h) const {
if(mproduct && kind == 1) {
ld xd = h[2];
if(d<0) xd = -xd, h[0] = -h[0];
#if CAP_BT
if(bt::in()) {
h[2] = 0;
return PIU( parabolic13(h) ) * exp(d+xd);
}
#endif
h[2] = 1;
auto z = product_decompose(h).first;
return iT * h * exp(d+xd-z);
}
else if(mproduct && kind == 0) {
auto h0 = h;
h[0] = sin_auto(h0[2]);
h[1] = sin_auto(h0[0]) * cos_auto(h0[2]);
h[2] = cos_auto(h0[0]) * cos_auto(h0[2]);
h[3] = 1;
return iT * h * exp(h0[1]);
}
#if CAP_BT
else if(hyperbolic && bt::in()) {
h[2] *= exp(-h[1]);
h = iT * h;
return hr::parabolic13(h[0], h[1]) * xpush0(h[2]);
}
else if(sol) {
h[2] *= exp(h[1]);
return iT * h;
}
#endif
else {
h[3] = 1;
if(sphere)
h[2] *= sqrt(1+h[0]*h[0]+h[1]*h[1]);
if(hyperbolic)
h[2] *= sqrt(1-h[0]*h[0]-h[1]*h[1]);
return normalize(iT * h);
}
}
EX portal_data make_portal(cellwalker cw, int spin) {
if(debug_portal & 289)
println(hlog, "working in: ", full_geometry_name(), " wall no ", cw.spin, "/", cw.at->type);
auto& ss = currentmap->get_cellshape(cw.at);
auto fac = ss.faces_local[cw.spin];
portal_data id;
id.scale = 1;
id.T = Id;
auto gg = geometry;
if(mproduct && cw.spin >= cw.at->type - 2) {
id.kind = 1;
id.d = product_decompose(fac[0]).first;
id.v0 = C0 * exp(id.d);
#if CAP_BT
if(bt::in()) {
for(auto h: fac)
println(hlog, PIU(deparabolic13(cgi.emb->normalize_flat(h))));
if(cw.spin == cw.at->type - 2)
fac.pop_back();
else
fac.erase(fac.begin() + 1);
id.scale = log(2)/2;
}
#else
if(false) {}
#endif
else {
hyperpoint ctr = Hypc;
for(auto p: fac) ctr += product_decompose(p).second;
ctr = cgi.emb->normalize_flat(ctr);
id.T = gpushxto0(ctr);
}
}
else if(mproduct) {
id.kind = 0;
id.v0 = Hypc;
id.scale = cgi.plevel;
for(auto p: fac) id.v0 += p;
id.v0 = cgi.emb->normalize_flat(id.v0);
hyperpoint h = cgi.emb->normalize_flat(fac[0]);
id.T = cspin90(1, 0) * spintox(gpushxto0(id.v0) * h) * gpushxto0(id.v0);
if((id.T * C0)[0] > 0) id.T = spin180() * id.T;
for(int i=0; i<3; i++) id.T[3][i] = id.T[i][3] = i==3;
if(debug_portal & 128)
for(int a=0; a<4; a++) {
hyperpoint h = fac[a];
println(hlog, kz(h), " -> ", kz(spintox(id.v0)*h), " -> ", kz(cpush(0, -hdist0(id.v0))) * kz(spintox(id.v0) * h), " -> ", kz(id.to_poco(h)));
}
}
#if CAP_BT
else if(bt::in()) {
hyperpoint removed = Hypc;
auto facmod = fac;
if(hyperbolic) for(auto& h: facmod) h = deparabolic13(h);
for(int i=0; i<isize(facmod); i++) {
int i1 = i+1; if(i1 >= isize(facmod)) i1 = 0;
int i2 = i1+1; if(i2 >= isize(facmod)) i2 = 0;
if(hypot_d(3, 2*facmod[i1] - facmod[i] - facmod[i2]) < 1e-3) {
removed = fac[i1];
facmod.erase(facmod.begin()+i1);
fac.erase(fac.begin()+i1);
}
}
id.kind = 0;
id.v0 = Hypc;
id.T = Id;
auto fac1 = fac;
auto to_coords = [] (hyperpoint& p) {
if(hyperbolic) {
p = deparabolic13(p);
p = hyperpoint(p[1], p[2], p[0], 1);
}
};
for(auto& p: fac1)
to_coords(p);
to_coords(removed);
for(auto p: fac1) id.v0 += p;
id.v0 /= isize(fac);
dynamicval<eGeometry> g(geometry, gCubeTiling);
id.T = gpushxto0(id.v0);
for(auto p: fac1) {
if(abs((id.T * p)[2]) > 1e-3 && abs((id.T * p)[0]) < 1e-3)
id.T = cspin90(2, 0) * id.T;
if(abs((id.T * p)[2]) > 1e-3 && abs((id.T * p)[1]) < 1e-3)
id.T = cspin90(2, 1) * id.T;
}
if((id.T * C03)[2] > 0) id.T = cspin180(2, 0) * id.T;
if(abs((id.T * removed)[0]) > 1e-2) id.T = cspin90(0, 1) * id.T;
if((id.T * removed)[1] < -1e-2) id.T = cspin180(0, 1) * id.T;
vector<hyperpoint> v;
geometry = gg;
for(auto f: fac) v.push_back(id.to_poco(f));
geometry = gCubeTiling;
ld sca = 1;
for(int i=0; i<isize(v); i++)
sca *= sqhypot_d(3, v[i] - v[(1+i) % isize(v)]);
sca = pow(sca, .5 / isize(v));
id.scale = sca / 2;
}
#endif
else {
id.kind = 0;
id.v0 = project_on_triangle(fac[0], fac[1], fac[2]);
id.T = cpush(2, -hdist0(id.v0)) * cspin90(2, 0) * spintox(id.v0);
hyperpoint ctr = Hypc;
for(auto p: fac) ctr += id.T*p;
ctr = normalize(ctr);
id.T = gpushxto0(ctr) * id.T;
}
if(MDIM == 3) for(int i=0; i<4; i++) id.T[3][i] = id.T[i][3] = i==3;
id.iT = inverse(id.T);
if(MDIM == 3) for(int i=0; i<4; i++) id.iT[3][i] = id.iT[i][3] = i==3;
int first = spin;
int second = spin + 1;
first = gmod(first, isize(fac));
second = gmod(second, isize(fac));
id.co0 = id.to_poco(fac[first]);
id.co1 = id.to_poco(fac[second]);
if(debug_portal & 32) {
for(int i=0; i<isize(fac); i++)
println(hlog, "edge ", i, " length is ", hdist(fac[i], fac[(i+1)%isize(fac)]));
println(hlog, "chosen edge is ", first, "--", second);
}
if(debug_portal & 256) {
println(hlog, "portal scale = ", id.scale);
auto res = [&] (ld x, ld y, ld z) {
hyperpoint h = hyperpoint(x, y, z, 1);
return id.from_poco(h);
};
for(int x=0; x<5; x++) {
println(hlog, "horizontal ", x, " = ", hdist(res(x*.1,0,0), res(x*.1+.001,0,0)));
println(hlog, "vertical ", x, " = ", hdist(res(x*.1,0,0), res(x*.1,0.001,0)));
println(hlog, "deep ", x, " = ", hdist(res(x*.1,0,0), res(x*.1,0,0.001)));
}
hyperpoint a = hyperpoint(.4, .2, .1, 1);
println(hlog, "a = ", kz(a));
println(hlog, "b = ", kz(id.from_poco(a)));
println(hlog, "c = ", kz(id.to_poco(id.from_poco(a))));
}
if(debug_portal & 1) {
for(auto p: fac) {
auto p2 = id.to_poco(p);
auto p3 = id.from_poco(p2);
println(hlog, kz(p), " > ", kz(p2), " > ", kz(p3));
}
println(hlog, kz(C0), " > ", kz(id.to_poco(C0)), " > ", kz(id.from_poco(id.to_poco(C0))));
}
return id;
}
#if HDR
/** information about connection (portal-to-portal) */
struct connection_data {
int source_world;
int target_world;
cellwalker scw, tcw;
portal_data id1;
portal_data id2;
transmatrix T;
int spin_value;
bool mirrored; /* not implemented */
};
#endif
EX map<cellwalker, connection_data> connections;
EX connection_data* find_connection(int a, int b) {
for(auto& p: connections)
if(intra_id.at(p.first.at) == a && p.second.target_world == b)
return &p.second;
return nullptr;
}
EX void switch_to(int id) {
if(current == id) return;
dynamicval<bool> is(switching, true);
data[current].gd.storegame();
current = id;
ginf[gProduct] = data[current].gi;
data[current].gd.restoregame();
}
void connect_portal_1(cellwalker cw1, cellwalker cw2, int spin) {
auto& p = connections[cw1];
p.source_world = intra_id.at(cw1.at);
p.target_world = intra_id.at(cw2.at);
p.scw = cw1;
p.tcw = cw2;
switch_to(intra_id.at(cw1.at));
int pspin = 0, nspin = 0;
if(spin > 0) pspin = spin; else nspin = -spin;
p.id1 = make_portal(cw1, nspin);
switch_to(intra_id.at(cw2.at));
p.id2 = make_portal(cw2, pspin);
p.spin_value = spin;
if(1) {
dynamicval<eGeometry> g(geometry, gCubeTiling);
transmatrix T1;
set_column(T1, 0, p.id1.co0);
set_column(T1, 1, p.id1.co1);
set_column(T1, 2, hyperpoint(0,0,p.id1.scale,0));
set_column(T1, 3, C03);
transmatrix T2;
set_column(T2, 0, p.id2.co0);
set_column(T2, 1, p.id2.co1);
set_column(T2, 2, hyperpoint(0,0,-p.id2.scale,0));
set_column(T2, 3, C03);
if(debug_portal & 2) for(int i=0; i<4; i++)
println(hlog, "mapping [", p.source_world, "]", get_column(T1, i), " to [", p.target_world, "] ", get_column(T2, i),
" dists = ", hypot_d(2, get_column(T1,i)), ",", hypot_d(2, get_column(T2,i)));
p.T = T2 * inverse(T1);
if(debug_portal & 2)
println(hlog, "det = ", det(p.T));
if(det(p.T) < 0) {
set_column(T2, 0, p.id2.co1);
set_column(T2, 1, p.id2.co0);
p.T = T2 * inverse(T1);
}
}
if(debug_portal & 2)
println(hlog, "got scale = ", tie(p.id1.scale, p.id2.scale));
if(debug_portal & 4) for(int i=0; i<5; i++) {
hyperpoint h = C03;
if(i == 1) h[0] += .2;
if(i == 2) h[0] -= .2;
if(i == 3) h[1] += .2;
if(i == 4) h[1] -= .2;
array<hyperpoint, 4> hl;
ld eps = 1e-5; ld ss = pow(eps, -2);
hl[0] = h;
hl[1] = h + point3(eps, 0, 0);
hl[2] = h + point3(0, eps, 0);
hl[3] = h + point3(0, 0, eps);
auto hl1 = hl;
may_switch_to(cw1.at);
println(hlog, "checking ", h, " -> L ", kz(p.id1.from_poco(h)), " g: ", full_geometry_name());
for(auto& hx: hl1) hx = p.id1.from_poco(hx);
print(hlog, "L side: "); analyze_orthonormal(hl1, ss);
may_switch_to(cw2.at);
println(hlog, "checking ", h, " -> R ", kz(p.id2.from_poco(p.T * h)), " g: ", full_geometry_name());
auto hl2 = hl;
for(auto& hx: hl2) hx = p.id2.from_poco(p.T * hx);
print(hlog, "R side: "); analyze_orthonormal(hl2, ss);
}
}
EX vector<pair<int, cell*>> full_sample_list;
EX void connect_portal(cellwalker cw1, cellwalker cw2, int spin) {
connect_portal_1(cw1, cw2, spin);
connect_portal_1(cw2, cw1, -spin);
}
EX void generate_sample_list_for_current() {
auto v = hybrid::gen_sample_list();
int gi = 0;
if(full_sample_list.size()) {
gi = full_sample_list.back().first;
full_sample_list.pop_back();
}
data[current].wallindex = gi;
for(auto x: v)
full_sample_list.emplace_back(x.first + gi, x.second);
println(hlog, "added ", isize(v)-1, " samples, wallindex = ", data[current].wallindex);
}
EX void regenerate_full_sample_list() {
resetter ir;
full_sample_list.clear();
for(int i=0; i<isize(data); i++) {
switch_to(i);
generate_sample_list_for_current();
}
println(hlog, isize(full_sample_list), " samples known");
}
/** make currentmap into one of the spaces in intra */
EX void become() {
dynamicval<bool> is(switching, true);
if(intra::in) {
/* let them add more spaces in this case */
data[current].gd.storegame();
intra::in = false;
return;
}
check_cgi();
cgi.require_shapes();
auto& ac = currentmap->allcells();
current = isize(data);
for(cell *c: ac)
intra_id[c] = current;
for(cell *c: ac)
currentmap->wall_offset(c);
for(cell *c: ac) c->item = itNone;
data.emplace_back();
data.back().gd.storegame();
data.back().gi = ginf[gProduct];
generate_sample_list_for_current();
sightranges[geometry] = 10;
}
/** after called become() on some spaces, actually start intra */
EX void start(int id IS(0)) {
in = true;
current = id;
dynamicval<bool> is(switching, true);
data[current].gd.restoregame();
ginf[gProduct] = data[current].gi;
again:
int missing = 0;
for(auto p: intra_id)
for(int i=0; i<p.first->type; i++) {
cell *c1 = p.first->move(i);
if(!c1) continue;
if(intra_id.count(c1) == 0) {
intra_id[c1] = p.second;
missing++;
}
}
if(debug_portal & 64) println(hlog, "missing = ", missing);
if(missing) goto again;
}
#if HDR
/** a convenience struct to switch back after a temporary switch_to */
struct resetter {
int ic;
resetter() { ic = current; }
~resetter() { if(in) switch_to(ic); }
};
#endif
EX void may_switch_to(cell *c) {
if(in) switch_to(intra_id.at(c));
}
EX int full_wall_offset(cell *c) {
int wo = currentmap->wall_offset(c);
if(in) wo += data[intra_id.at(c)].wallindex;
return wo;
}
ld dsdet(array<hyperpoint, 4> ds) {
transmatrix T;
set_column(T, 0, ds[1]-ds[0]);
set_column(T, 1, ds[2]-ds[0]);
set_column(T, 2, ds[3]-ds[0]);
return det3(T);
}
EX void analyze_orthonormal(array<hyperpoint, 4> ds, ld sca) {
transmatrix T = gpushxto0(ds[0]);
vector<ld> orths;
for(int i: {1,2,3}) {
ds[i] = T * ds[i];
if(mproduct) ds[i][2]--;
}
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
orths.push_back(dot_d(3, ds[i+1], ds[j+1]) * sca);
println(hlog, "orths = ", kz(orths));
}
EX void shift_view_portal(hyperpoint H) {
shift_view(H);
if(!through_portal()) return;
shift_view(-H);
ld minv = 0, maxv = 1;
for(int i=0; i<30; i++) {
ld t = (minv + maxv) / 2;
shift_view(H * t);
bool b = through_portal();
if(b) maxv = t; else minv = t;
shift_view(H * -t);
}
println(hlog, "maxv = ", maxv);
shift_view(H * maxv);
check_portal_movement();
shift_view_portal(H * (1 - maxv));
}
EX const connection_data* through_portal() {
transmatrix iView = view_inverse(View);
int nei = through_wall(centerover, iView * C0);
if(nei == -1) return nullptr;
auto cw1 = cellwalker(centerover, nei);
return at_or_null(connections, cw1);
}
EX void check_portal_movement() {
auto p = through_portal();
if(p) {
ld eps = 1e-5;
ld ss = pow(eps, -2);
array<hyperpoint, 4> ds; /* camera, forward, upward */
ds[0] = inverse(View) * C0;
ds[1] = inverse(get_shift_view_of(ctangent(2, -eps), View)) * C0;
ds[2] = inverse(get_shift_view_of(ctangent(1, +eps), View)) * C0;
ds[3] = inverse(get_shift_view_of(ctangent(0, +eps), View)) * C0;
if(debug_portal & 8) {
#if CAP_BT
println(hlog, "at = ", ds[0], " det = ", dsdet(ds), " bt = ", bt::minkowski_to_bt(ds[0]));
#endif
analyze_orthonormal(ds, ss);
}
for(auto& h: ds) h = p->id1.to_poco(h);
if(debug_portal & 8) {
println(hlog, "poco: at = ", ds[0], " det = ", dsdet(ds));
if(debug_portal & 16) {
dynamicval<eGeometry> g(geometry, gCubeTiling);
analyze_orthonormal(ds, ss);
}
}
/* reset the original */
View = Id; NLP = Id;
switch_to(p->target_world);
centerover = p->tcw.at;
if(1) {
dynamicval<eGeometry> g(geometry, gCubeTiling);
for(auto& h: ds) h = p->T * h;
}
if(debug_portal & 8) {
println(hlog, "poco2: at = ", ds[0], " det = ", dsdet(ds));
if(debug_portal & 16) {
dynamicval<eGeometry> g(geometry, gCubeTiling);
analyze_orthonormal(ds, ss);
}
}
for(auto& h: ds) h = p->id2.from_poco(h);
if(debug_portal & 8) {
println(hlog, "goal: at = ", ds[0], " det = ", dsdet(ds));
analyze_orthonormal(ds, ss);
}
set_view(ds[0], ds[1], ds[2]);
if(debug_portal & 8) {
array<hyperpoint, 4> xds; /* camera, forward, upward */
xds[0] = inverse(View) * C0;
xds[1] = inverse(get_shift_view_of(ctangent(2, -eps), View)) * C0;
xds[2] = inverse(get_shift_view_of(ctangent(1, +eps), View)) * C0;
xds[3] = inverse(get_shift_view_of(ctangent(0, +eps), View)) * C0;
#if CAP_BT
println(hlog, "goal: at = ", xds[0], " det = ", dsdet(xds), " bt = ", bt::minkowski_to_bt(xds[0]));
#endif
}
ld scale = p->id2.scale / p->id1.scale;
camera_speed *= scale;
anims::cycle_length *= scale;
#if CAP_VR
vrhr::absolute_unit_in_meters *= scale;
#endif
if(walking::eye_level != -1) walking::eye_level *= scale;
walking::floor_dir = -1;
walking::on_floor_of = nullptr;
}
}
vector<cellwalker> unconnected;
void erase_unconnected(cellwalker cw) {
for(int i=0; i<isize(unconnected); i++)
if(unconnected[i] == cw)
unconnected.erase(unconnected.begin() + i);
}
EX string portal_help =
"In portal maps, you can create portals on walls. Such portals can be entered to end up in another world. "
"The portals are 'immersive', that is, you can see through the portals. In the current implementation, "
"the immersive view works only in the raycasting mode, for rendering walls -- so any other objects will not "
"be rendered. (You can turn raycasting off to see the world without any portals.) As a consequence, "
"there is no HyperRogue game in a portal map -- you can only move the camera around the scene. Pick "
"'set recommended settings' in the manage portals menu to optimize settings for this.\n\n"
"To create portals between different geometries, you need to create a map in the other geometry and save it "
"(using the map editor), then in your portal map such a world can be loaded to be added to the scene "
"(in the manage portals menu). Such portals work correctly when their intrinsic shapes are equal (including the "
"curvature), their extrinsic curvatures match, and are actually implemented; see the video 'Portals to "
"Non-Euclidean Geometries' for some portals that work.\n\n"
;
EX void become_menu() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("Become a portal map"));
dialog::addHelp(XLAT(portal_help));
dialog::addItem(XLAT("yes, that's what I want"), 'y');
dialog::add_action([] {
intra::become();
intra::start();
game_keys_scroll = true;
mapeditor::drawplayer = false;
popScreen();
pushScreen(show_portals);
});
dialog::addBack();
dialog::display();
}
int edit_spin;
EX void world_list() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("world list"));
dialog::start_list(900, 900, '1');
int c = current;
for(int i=0; i<isize(data); i++) {
switch_to(i);
dialog::addBoolItem(full_geometry_name(), i == c, dialog::list_fake_key++);
dialog::add_action([i] {
int ic = i;
switch_to(ic);
});
}
switch_to(c);
dialog::end_list();
dialog::addBreak(100);
#if CAP_EDIT
dialog::addItem("add a saved world to the scene", 'a');
dialog::add_action([] {
dialog::openFileDialog(levelfile, XLAT("level to load:"), ".lev", [] () {
intra::become();
if(mapstream::loadMap(levelfile.c_str())) {
addMessage(XLAT("Map loaded from %1", levelfile));
intra::become();
intra::start();
mapeditor::map_version++;
ray::reset_raycaster();
return true;
}
else {
addMessage(XLAT("Failed to load map from %1", levelfile));
intra::start();
return false;
}
});
});
#endif
dialog::addBack();
dialog::display();
}
EX void show_portals() {
cmode = sm::SIDE | sm::MAYDARK | sm::PANNING;
if(mapeditor::building_mode) cmode |= sm::EDIT_INSIDE_WALLS;
gamescreen();
dialog::init(XLAT("manage portals"));
cellwalker cw(mouseover2, point_direction);
bool valid = point_direction >= 0 && point_direction < mouseover2->type;
if(valid) {
initquickqueue();
for (const shiftmatrix& V : hr::span_at(current_display->all_drawn_copies, mouseover2)) {
dynamicval<color_t> p(poly_outline, 0xFFFFFF);
int ofs = currentmap->wall_offset(mouseover2);
queuepolyat(V, cgi.shWireframe3D[ofs + point_direction], 0, PPR::SUPERLINE);
}
quickqueue();
}
dialog::addItem(XLAT("view another world"), 'm');
dialog::add_action_push(world_list);
if(debug_portal) {
dialog::addItem(XLAT("debug"), 'd');
dialog::add_action([] {
ld eps = 1e-5;
array<hyperpoint, 4> ds; /* camera, forward, upward */
ds[0] = inverse(View) * C0;
ds[1] = inverse(get_shift_view_of(ctangent(2, -eps), View)) * C0;
ds[2] = inverse(get_shift_view_of(ctangent(1, +eps), View)) * C0;
ds[3] = inverse(get_shift_view_of(ctangent(0, +eps), View)) * C0;
set_view(ds[0], ds[1], ds[2]);
});
}
bool in_list = false; for(cellwalker x: unconnected) if(x == cw) in_list = true;
if(!valid) ;
else if(connections.count(cw)) {
dialog::addItem(XLAT("disconnect this portal"), 'd');
dialog::add_action([cw] {
auto tcw = connections[cw].tcw;
unconnected.push_back(tcw);
connections.erase(cw);
connections.erase(tcw);
mapeditor::map_version++;
});
}
else if(in_list) {
dialog::addItem(XLAT("remove %1 from the list", lalign(0, cw)), 'r');
dialog::add_action([cw] {
erase_unconnected(cw);
});
}
else {
dialog::addItem(XLAT("add to list"), 'a');
dialog::add_action([cw] { unconnected.push_back(cw); });
dialog::start_list(500, 500, '1');
for(auto p: unconnected) {
dialog::addItem(XLAT("connect " + lalign(0, p)), dialog::list_fake_key++);
dialog::add_action([p, cw] {
connect_portal(cw, p, edit_spin);
mapeditor::map_version++;
erase_unconnected(p);
});
}
dialog::end_list();
dialog::addSelItem(XLAT("portal orientation"), its(edit_spin), 'o');
dialog::add_action([] { edit_spin = edit_spin + 1; });
if(debug_portal) {
dialog::addItem(XLAT("mirror connection"), 'm');
dialog::add_action([cw] { connect_portal(cw, cw, edit_spin); });
}
if(debug_portal) {
dialog::addItem(XLAT("test portal here"), 't');
dialog::add_action([cw] { make_portal(cw, 0); });
}
}
if(!game_keys_scroll || mapeditor::drawplayer || !ray::fixed_map || vid.cells_drawn_limit > 100) {
dialog::addItem(XLAT("set recommended settings"), 'A');
dialog::add_action([] {
game_keys_scroll = true;
mapeditor::drawplayer = false;
ray::fixed_map = true;
vid.cells_drawn_limit = 100;
});
}
else {
dialog::addItem(XLAT("configure raycasting"), 'A');
dialog::add_action_push(ray::configure);
}
if(mproduct && point_direction < mouseover2->type - 2) {
ld r = get_ratio_edge(mouseover2, point_direction);
dialog::addSelItem(XLAT("height-to-width ratio"), fts(r), 'r');
dialog::add_action([] {
be_ratio_edge(mouseover2, point_direction);
mapeditor::map_version++;
ray::reset_raycaster();
});
}
else dialog::addBreak(100);
walking::add_options();
dialog::addHelp();
dialog::add_action([] { gotoHelp(portal_help); });
dialog::display();
}
#if HDR
struct portal_to_save {
cellwalker cw1;
cellwalker cw2;
int spin;
bool mirrored;
};
#endif
EX vector<portal_to_save> portals_to_save;
EX void prepare_to_save() {
portals_to_save.clear();
for(auto c: connections) if(c.second.scw < c.second.tcw) {
portals_to_save.emplace_back(portal_to_save{c.second.scw, c.second.tcw, c.second.spin_value, false});
}
}
EX void load_saved_portals() {
for(const auto& p: portals_to_save) connect_portal(p.cw1, p.cw2, p.spin);
}
EX void be_ratio(ld v IS(1)) {
check_cgi();
cgi.require_basics();
PIU( vid.plevel_factor = v * cgi.edgelen / cgi.scalefactor );
check_cgi();
cgi.require_basics();
}
EX ld get_edge_length(cell *c, int i) {
auto c1 = hybrid::get_where(c).first;
return PIU( hdist(currentmap->get_corner(c1, i), currentmap->get_corner(c1, (i+c1->type-1)%c1->type)) );
}
EX ld get_ratio_edge(cell *c, int i) {
ld len = get_edge_length(c, i);
return vid.plevel_factor * cgi.scalefactor / len;
}
EX void be_ratio_edge(cell *c, int i, ld v IS(1)) {
ld len = get_edge_length(c, i);
vid.plevel_factor = v * len / cgi.scalefactor;
check_cgi();
cgi.require_basics();
}
EX void be_ratio_edge(int i, ld v IS(1)) {
start_game();
be_ratio_edge(cwt.at, i, v);
}
/** Remove the space with the given id. Turns off intra */
EX void kill(int id) {
if(in) become();
data.erase(data.begin()+id);
vector<cellwalker> to_remove;
for(auto& p: connections) if(intra_id[p.second.scw.at] == id || intra_id[p.second.tcw.at] == id)
to_remove.push_back(p.first);
else {
if(p.second.source_world >= id) p.second.source_world--;
if(p.second.target_world >= id) p.second.target_world--;
}
for(auto r: to_remove) connections.erase(r);
vector<cell*> to_erase_cell;
for(auto& p: intra_id)
if(p.second == id)
to_erase_cell.push_back(p.first);
else if(p.second > id)
p.second--;
for(auto c: to_erase_cell)
intra_id.erase(c);
println(hlog, isize(to_remove), " connections and ", isize(to_erase_cell), " cells erased");
}
EX void erase_all_maps() {
println(hlog, "erase_all_maps called");
dynamicval<bool> is(switching, true);
data[current].gd.storegame();
in = false;
for(int i=0; i<isize(data); i++) {
current = i;
ginf[gProduct] = data[i].gi;
data[i].gd.restoregame();
clearCellMemory();
}
intra_id.clear();
connections.clear();
data.clear();
full_sample_list.clear();
}
EX set<cell*> need_to_save;
EX void prepare_need_to_save() {
need_to_save.clear();
map<cell*, cell*> parent;
vector<cell*> q;
cell *s = mapstream::save_start();
parent[s] = s;
q = {s};
for(int i=0; i<isize(q); i++) {
cell *c = q[i];
forCellEx(c2, c)
if(!parent.count(c2)) { parent[c2] = c; q.push_back(c2); }
}
for(int i=isize(q)-1; i>=0; i--) {
cell *c = q[i];
if(c == cwt.at) need_to_save.insert(c);
for(auto& p: connections) if(p.first.at == c) need_to_save.insert(c);
if(need_to_save.count(c)) need_to_save.insert(parent[c]);
}
println(hlog, "need to save ", isize(need_to_save), " out of ", isize(q), " cells");
}
auto hooks1 =
addHook(hooks_o_key, 90, [] (o_funcs& v) {
if(intra::in) v.push_back(named_dialog(XLAT("manage portals"), show_portals));
})
+ arg::add3("-intra-add", [] { start_game(); become(); })
+ arg::add3("-intra-start", [] { start_game(); become(); start(0); })
+ arg::add3("-intra-kill", [] { arg::shift(); kill(arg::argi()); start(0); regenerate_full_sample_list(); })
+ arg::add3("-be-square", [] { be_ratio(); })
+ arg::add3("-be-square-edge", [] {
arg::shift(); int i = arg::argi(); be_ratio_edge(i);
})
+ arg::add3("-debug-portal", [] { arg::shift(); debug_portal = arg::argi(); });
#endif
EX }
EX namespace walking {
EX bool on;
EX bool auto_eyelevel;
EX int floor_dir = -1;
EX cell *on_floor_of = nullptr;
EX ld eye_level = 0.2174492;
EX ld eye_angle = 0;
EX ld eye_angle_scale = 1;
EX int ticks_end, ticks_last;
EX set<color_t> colors_of_floors;
EX bool isFloor(cell *c) {
if(!isWall(c)) return false;
if(colors_of_floors.empty()) return true;
if(c->wall != waWaxWall) return false;
return colors_of_floors.count(c->landparam);
}
EX void handle() {
if(playermoved || !on) return;
make_actual_view();
if(floor_dir == -1 || on_floor_of != centerover) {
vector<int> choices;
for(int i=0; i<centerover->type; i++)
if(isFloor(centerover->cmove(i)))
choices.push_back(i);
if(sol && isize(choices) == 2) choices.pop_back();
if(isize(choices) == 1) {
on_floor_of = centerover;
floor_dir = choices[0];
}
else if(colors_of_floors.empty() && sn::in()) {
on_floor_of = centerover;
auto z = inverse(View) * C0;
switch(geometry) {
case gSol:
floor_dir = (z[2] > 0) ? 2 : 6;
return;
case gNIH:
floor_dir = (z[2] > 0) ? 5 : 4;
return;
case gSolN:
floor_dir = (z[2] > 0) ? 4 : 6;
return;
default: throw hr_exception("not solnihv");
}
}
#if CAP_BT
else if(colors_of_floors.empty() && hyperbolic && bt::in()) {
auto z = bt::minkowski_to_bt(inverse(View) * C0);
on_floor_of = centerover;
floor_dir = z[2] > 0 ? bt::updir() : 0;
println(hlog, "set floor_dir to ", floor_dir);
}
#endif
else {
println(hlog, "there are ", isize(choices), " choices for floor_dir");
if(!on_floor_of) return;
}
}
struct face {
hyperpoint h0, hx, hy;
};
transmatrix ToOld = currentmap->relative_matrix(on_floor_of, centerover, C0);
auto& csh = currentmap->get_cellshape(on_floor_of);
face f;
f.h0 = ToOld * csh.faces_local[floor_dir][0];
f.hx = ToOld * csh.faces_local[floor_dir][1];
f.hy = ToOld * csh.faces_local[floor_dir][2];
auto find_nearest = [&] (const face& fac, hyperpoint at) {
#if CAP_BT
if(sol) { at[2] = fac.h0[2]; return at; }
else if(hyperbolic && bt::in()) {
auto z = bt::minkowski_to_bt(at);
z[2] = bt::minkowski_to_bt(fac.h0)[2];
return bt::bt_to_minkowski(z);
}
else if(mproduct && bt::in()) {
auto dec = product_decompose(at);
hyperpoint dep = PIU( deparabolic13(dec.second) );
hyperpoint h = product_decompose(fac.h0).second;
h = PIU( deparabolic13(h) );
dep[0] = h[0];
return orthogonal_move(PIU(parabolic13(dep)), dec.first);
}
#else
if(false) {}
#endif
#if CAP_RAY
else {
transmatrix M = ray::mirrorize(currentmap->ray_iadj(on_floor_of, floor_dir));
M = ToOld * M * inverse(ToOld);
return mid(at, M * at);
}
#else
else return at;
#endif
};
hyperpoint at = tC0(inverse(View));
if(invalid_point(at)) {
println(hlog, "at is invalid!");
on = false;
return;
}
auto wallpt = find_nearest(f, at);
ld view_eps = 1e-5;
transmatrix spin_T;
bool use_T = false;
if(eye_angle) use_T = true, spin_T = cspin(1, 2, -eye_angle * degree);
#if CAP_VR
if(vrhr::active() && !vrhr::first && vrhr::hsm != vrhr::eHeadset::none) {
use_T = true;
spin_T = vrhr::hmd_ref_at;
// print(hlog, "HMD seems to be at altitude ", spin_T[1][3], " depth ", spin_T[2][3], " zeros are ", spin_T[3][1], " and ", spin_T[3][2]);
dynamicval<eGeometry> g(geometry, gCubeTiling);
spin_T = vrhr::sm * inverse(spin_T);
eye_level = -spin_T[1][3] / vrhr::absolute_unit_in_meters;
if(eye_level < .001) eye_level = 0.001;
vrhr::be_33(spin_T);
}
#endif
if(use_T) rotate_view(spin_T);
hyperpoint front = inverse(get_shift_view_of(ctangent(2, -view_eps), View)) * C0;
hyperpoint up = inverse(get_shift_view_of(ctangent(1, +view_eps), View)) * C0;
auto fwallpt = find_nearest(f, front);
transmatrix T = nonisotropic ? nisot::translate(wallpt, -1) : gpushxto0(wallpt);
hyperpoint dx = inverse_exp(shiftless(T * at));
transmatrix Tf = nonisotropic ? nisot::translate(fwallpt, -1) : gpushxto0(fwallpt);
hyperpoint dxf = inverse_exp(shiftless(Tf * front));
if(eye_level == -1) eye_level = hypot_d(3, dx);
auto smooth = [&] (hyperpoint h1, hyperpoint h2) {
if(ticks < ticks_end) {
ld last_t = ilerp(ticks_end-1000, ticks_end, ticks_last);
ld curr_t = ilerp(ticks_end-1000, ticks_end, ticks);
last_t = last_t * last_t * (3-2*last_t);
curr_t = curr_t * curr_t * (3-2*curr_t);
ld t = ilerp(last_t, 1, curr_t);
return lerp(h1, h2, t);
}
return h2;
};
auto oView = View;
set_view(
smooth(at, inverse(T) * direct_exp(dx / hypot_d(3, dx) * eye_level)),
smooth(front, inverse(Tf) * direct_exp(dxf / hypot_d(3, dxf) * eye_level)),
smooth(up, inverse(T) * direct_exp(dx / hypot_d(3, dx) * (eye_level + view_eps)))
);
if(use_T) rotate_view(inverse(spin_T));
auto nat = tC0(inverse(View));
if(invalid_point(nat)) {
println(hlog, "at is invalid after fixing!");
View = oView;
return;
}
ticks_last = ticks;
}
EX void switch_walking() {
on = !on;
if(on && auto_eyelevel) eye_level = -1;
floor_dir = -1;
on_floor_of = nullptr;
ticks_last = ticks;
ticks_end = ticks + 1000;
}
EX void add_options() {
dialog::addBoolItem("walking mode", on, 'w');
dialog::add_action(switch_walking);
add_edit(eye_level);
add_edit(eye_angle);
if(point_direction >= 0 && point_direction < centerover->type) {
cell *c = centerover->move(point_direction);
if(c && c->wall == waWaxWall) {
color_t col = c->landparam;
dialog::addBoolItem("we are facing floor (color " + format("%06X", col) + ")", colors_of_floors.count(col), 'n');
dialog::add_action([col] {
if(colors_of_floors.count(col)) colors_of_floors.erase(col);
else colors_of_floors.insert(col);
});
}
}
}
auto a = addHook(hooks_configfile, 100, [] {
param_b(auto_eyelevel, "auto_eyelevel")
-> editable("keep eye level when walking enabled", 'L');
param_f(eye_level, "walk_eye_level")
-> editable(0, 5, .1, "walking eye level",
"Distance from the floor to the eye in the walking mode, in absolute units. In VR this is adjusted automatically.",
'e')
->set_extra([] { add_edit(auto_eyelevel); });
param_f(eye_angle, "walk_eye_angle")
-> editable(-90, 90, 15, "walking eye angle",
"0 = looking forward, 90 = looking upward. In VR this is adjusted automatically.",
'k')
->set_extra([] { add_edit(eye_angle_scale); });
param_f(eye_angle_scale, "walk_eye_angle_scale")
-> editable(-2, 0, 2, "eye angle scale",
"1 = the angle can be changed with keyboard or mouse movements, 0 = the angle is fixed",
'k');
})
+ addHook(hooks_clearmemory, 40, [] { on_floor_of = nullptr; floor_dir = -1; })
+ arg::add3("-walk-on", [] {
on = true;
if(auto_eyelevel) eye_level = -1;
floor_dir = -1;
on_floor_of = nullptr;
ticks_last = ticks_end = ticks;
});
EX }
}