1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-12 10:20:32 +00:00
hyperrogue/hyperpoint.cpp

596 lines
14 KiB
C++

// Hyperbolic Rogue
// This file contains hyperbolic points and matrices.
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
namespace hr {
eGeometry geometry;
eVariation variation;
// hyperbolic points and matrices
// basic functions and types
//===========================
#ifdef SINHCOSH
// ld sinh(ld alpha) { return (exp(alpha) - exp(-alpha)) / 2; }
// ld cosh(ld alpha) { return (exp(alpha) + exp(-alpha)) / 2; }
/* ld inverse_sinh(ld z) {
return log(z+sqrt(1+z*z));
}
double inverse_cos(double c) {
double s = sqrt(1-c*c);
double r = atan(s/c);
if(r < 0) r = -r;
return r;
}
// ld tanh(ld x) { return sinh(x) / cosh(x); }
ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
#endif
#ifndef M_PI
#define M_PI 3.14159265358979
#endif
ld squar(ld x) { return x*x; }
int sig(int z) { return (sphere || z<2)?1:-1; }
int curvature() {
switch(cgclass) {
case gcEuclid: return 0;
case gcHyperbolic: return -1;
case gcSphere: return 1;
default: return 0;
}
}
ld sin_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return sinh(x);
case gcSphere: return sin(x);
default: return x;
}
}
ld asin_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return asinh(x);
case gcSphere: return asin(x);
default: return x;
}
}
ld asin_auto_clamp(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return asinh(x);
case gcSphere: return x>1 ? M_PI/2 : x<-1 ? -M_PI/2 : std::isnan(x) ? 0 : asin(x);
default: return x;
}
}
ld cos_auto(ld x) {
switch(cgclass) {
case gcEuclid: return 1;
case gcHyperbolic: return cosh(x);
case gcSphere: return cos(x);
default: return 1;
}
}
ld tan_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return tanh(x);
case gcSphere: return tan(x);
default: return 1;
}
}
ld atan_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return atanh(x);
case gcSphere: return atan(x);
default: return 1;
}
}
ld atan2_auto(ld y, ld x) {
switch(cgclass) {
case gcEuclid: return y/x;
case gcHyperbolic: return atanh(y/x);
case gcSphere: return atan2(y, x);
default: return 1;
}
}
// hyperbolic point:
//===================
// we represent the points on the hyperbolic plane
// by points in 3D space (Minkowski space) such that x^2+y^2-z^2 == -1, z > 0
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)
hyperpoint hpxy(ld x, ld y) {
return hpxyz(x,y, euclid ? 1 : sphere ? sqrt(1-x*x-y*y) : sqrt(1+x*x+y*y));
}
// center of the pseudosphere
const hyperpoint Hypc(0,0,0);
// origin of the hyperbolic plane
const hyperpoint C0(0,0,1);
// a point (I hope this number needs no comments ;) )
const hyperpoint Cx1(1,0,1.41421356237);
// this function returns approximate square of distance between two points
// (in the spherical analogy, this would be the distance in the 3D space,
// through the interior, not on the surface)
// also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2
bool zero2(hyperpoint h) { return h[0] == 0 && h[1] == 0; }
bool zero3(hyperpoint h) { return h[0] == 0 && h[1] == 0 && h[2] == 0; }
ld intval(const hyperpoint &h1, const hyperpoint &h2) {
if(elliptic) {
double d1 = squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]);
double d2 = squar(h1[0]+h2[0]) + squar(h1[1]+h2[1]) + squar(h1[2]+h2[2]);
return min(d1, d2);
}
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + (sphere?1:euclid?0:-1) * squar(h1[2]-h2[2]);
}
ld intvalxy(const hyperpoint &h1, const hyperpoint &h2) {
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]);
}
ld intvalxyz(const hyperpoint &h1, const hyperpoint &h2) {
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]);
}
ld hypot2(const hyperpoint& h) {
return sqrt(h[0]*h[0]+h[1]*h[1]);
}
ld hypot3(const hyperpoint& h) {
return sqrt(h[0]*h[0]+h[1]*h[1]+h[2]*h[2]);
}
ld sqhypot2(const hyperpoint& h) {
return h[0]*h[0]+h[1]*h[1];
}
ld sqhypot3(const hyperpoint& h) {
return h[0]*h[0]+h[1]*h[1]+h[2]*h[2];
}
ld zlevel(const hyperpoint &h) {
if(euclid) return h[2];
else if(sphere) return sqrt(intval(h, Hypc));
else return (h[2] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
}
ld hypot_auto(ld x, ld y) {
switch(cgclass) {
case gcEuclid:
return hypot(x, y);
case gcHyperbolic:
return acosh(cosh(x) * cosh(y));
case gcSphere:
return acos(cos(x) * cos(y));
default:
return hypot(x, y);
}
}
// move H back to the sphere/hyperboloid/plane
hyperpoint normalize(hyperpoint H) {
ld Z = zlevel(H);
for(int c=0; c<3; c++) H[c] /= Z;
return H;
}
// get the center of the line segment from H1 to H2
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
using namespace hyperpoint_vec;
return normalize(H1 + H2);
}
// like mid, but take 3D into account
hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
using namespace hyperpoint_vec;
hyperpoint H3 = H1 + H2;
ld Z = 2;
if(!euclid) Z = zlevel(H3) * 2 / (zlevel(H1) + zlevel(H2));
for(int c=0; c<3; c++) H3[c] /= Z;
return H3;
}
// matrices
//==========
// matrices represent isometries of the hyperbolic plane
// (just like isometries of the sphere are represented by rotation matrices)
// rotate by alpha degrees
transmatrix spin(ld alpha) {
transmatrix T = Id;
T[0][0] = +cos(alpha); T[0][1] = +sin(alpha);
T[1][0] = -sin(alpha); T[1][1] = +cos(alpha);
T[2][2] = 1;
return T;
}
transmatrix eupush(ld x, ld y) {
transmatrix T = Id;
T[0][2] = x;
T[1][2] = y;
return T;
}
transmatrix eupush(hyperpoint h) {
transmatrix T = Id;
T[0][2] = h[0];
T[1][2] = h[1];
return T;
}
transmatrix euscalezoom(hyperpoint h) {
transmatrix T = Id;
T[0][0] = h[0];
T[0][1] = -h[1];
T[1][0] = h[1];
T[1][1] = h[0];
return T;
}
transmatrix euaffine(hyperpoint h) {
transmatrix T = Id;
T[0][1] = h[0];
T[1][1] = exp(h[1]);
return T;
}
// push alpha units to the right
transmatrix xpush(ld alpha) {
if(euclid) return eupush(alpha, 0);
transmatrix T = Id;
if(sphere) {
T[0][0] = +cos(alpha); T[0][2] = +sin(alpha);
T[2][0] = -sin(alpha); T[2][2] = +cos(alpha);
}
else {
T[0][0] = +cosh(alpha); T[0][2] = +sinh(alpha);
T[2][0] = +sinh(alpha); T[2][2] = +cosh(alpha);
}
return T;
}
inline hyperpoint xpush0(ld x) {
hyperpoint h;
if(euclid) return hpxy(x, 0);
else if(sphere) h[0] = sin(x), h[1] = 0, h[2] = cos(x);
else h[0] = sinh(x), h[1] = 0, h[2] = cosh(x);
return h;
}
inline hyperpoint ypush0(ld x) {
hyperpoint h;
if(euclid) return hpxy(x, 0);
else if(sphere) h[0] = 0, h[1] = sin(x), h[2] = cos(x);
else h[0] = 0, h[1] = sinh(x), h[2] = cosh(x);
return h;
}
inline hyperpoint xspinpush0(ld alpha, ld x) {
// return spin(alpha)*xpush0(x);
ld s;
hyperpoint h;
if(euclid) return hpxy(x*cos(alpha), -x*sin(alpha));
else if(sphere) s=sin(x), h[0] = s*cos(alpha), h[1] = -s*sin(alpha), h[2] = cos(x);
else s=sinh(x), h[0] = s*cos(alpha), h[1] = -s*sin(alpha), h[2] = cosh(x);
return h;
}
// push alpha units vertically
transmatrix ypush(ld alpha) {
if(euclid) return eupush(0, alpha);
transmatrix T = Id;
if(sphere) {
T[1][1] = +cos(alpha); T[1][2] = +sin(alpha);
T[2][1] = -sin(alpha); T[2][2] = +cos(alpha);
}
else {
T[1][1] = +cosh(alpha); T[1][2] = +sinh(alpha);
T[2][1] = +sinh(alpha); T[2][2] = +cosh(alpha);
}
return T;
}
transmatrix parabolic1(ld u) {
if(euclid)
return ypush(u);
else
return transmatrix {{{-u*u/2+1, u, u*u/2}, {-u, 1, u}, {-u*u/2, u, u*u/2+1}}};
}
// rotate the hyperbolic plane around C0 such that H[1] == 0 and H[0] >= 0
transmatrix spintox(const hyperpoint& H) {
transmatrix T = Id;
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
if(R >= 1e-12) {
T[0][0] = +H[0]/R; T[0][1] = +H[1]/R;
T[1][0] = -H[1]/R; T[1][1] = +H[0]/R;
}
return T;
}
void set_column(transmatrix& T, int i, const hyperpoint& H) {
for(int j=0; j<3; j++)
T[j][i] = H[j];
}
transmatrix build_matrix(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
transmatrix T;
for(int i=0; i<3; i++)
T[i][0] = h1[i],
T[i][1] = h2[i],
T[i][2] = h3[i];
return T;
}
// reverse of spintox(H)
transmatrix rspintox(const hyperpoint& H) {
transmatrix T = Id;
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
if(R >= 1e-12) {
T[0][0] = +H[0]/R; T[0][1] = -H[1]/R;
T[1][0] = +H[1]/R; T[1][1] = +H[0]/R;
}
return T;
}
// for H such that H[1] == 0, this matrix pushes H to C0
transmatrix pushxto0(const hyperpoint& H) {
if(euclid) return eupush(-H[0], -H[1]);
transmatrix T = Id;
if(sphere) {
T[0][0] = +H[2]; T[0][2] = -H[0];
T[2][0] = +H[0]; T[2][2] = +H[2];
}
else {
T[0][0] = +H[2]; T[0][2] = -H[0];
T[2][0] = -H[0]; T[2][2] = +H[2];
}
return T;
}
// reverse of pushxto0(H)
transmatrix rpushxto0(const hyperpoint& H) {
if(euclid) return eupush(H[0], H[1]);
transmatrix T = Id;
if(sphere) {
T[0][0] = +H[2]; T[0][2] = +H[0];
T[2][0] = -H[0]; T[2][2] = +H[2];
}
else {
T[0][0] = +H[2]; T[0][2] = +H[0];
T[2][0] = +H[0]; T[2][2] = +H[2];
}
return T;
}
// generalization: H[1] can be non-zero
transmatrix gpushxto0(const hyperpoint& H) {
if(euclid) return eupush(-H[0], -H[1]);
hyperpoint H2 = spintox(H) * H;
return rspintox(H) * pushxto0(H2) * spintox(H);
}
transmatrix rgpushxto0(const hyperpoint& H) {
if(euclid) return eupush(H[0], H[1]);
hyperpoint H2 = spintox(H) * H;
return rspintox(H) * rpushxto0(H2) * spintox(H);
}
// fix the matrix T so that it is indeed an isometry
// (without using this, imprecision could accumulate)
void fixmatrix(transmatrix& T) {
if(euclid) {
for(int x=0; x<2; x++) for(int y=0; y<=x; y++) {
ld dp = 0;
for(int z=0; z<2; z++) dp += T[z][x] * T[z][y];
if(y == x) dp = 1 - sqrt(1/dp);
for(int z=0; z<2; z++) T[z][x] -= dp * T[z][y];
}
for(int x=0; x<2; x++) T[2][x] = 0;
T[2][2] = 1;
}
else for(int x=0; x<3; x++) for(int y=0; y<=x; y++) {
ld dp = 0;
for(int z=0; z<3; z++) dp += T[z][x] * T[z][y] * sig(z);
if(y == x) dp = 1 - sqrt(sig(x)/dp);
for(int z=0; z<3; z++) T[z][x] -= dp * T[z][y];
}
}
// show the matrix on screen
ld det(const transmatrix& T) {
ld det = 0;
for(int i=0; i<3; i++)
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
for(int i=0; i<3; i++)
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
return det;
}
void inverse_error(const transmatrix& T) {
println(hlog, "Warning: inverting a singular matrix: ", T);
}
transmatrix inverse(const transmatrix& T) {
profile_start(7);
ld d = det(T);
transmatrix T2;
if(d == 0) {
inverse_error(T);
return Id;
}
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]) / d;
profile_stop(7);
return T2;
}
// distance between mh and 0
double hdist0(const hyperpoint& mh) {
switch(cgclass) {
case gcHyperbolic:
if(mh[2] < 1) return 0;
return acosh(mh[2]);
case gcEuclid: {
ld d = sqrt(mh[0]*mh[0]+mh[1]*mh[1]);
return d;
}
case gcSphere: {
ld res = mh[2] >= 1 ? 0 : mh[2] <= -1 ? M_PI : acos(mh[2]);
if(elliptic && res > M_PI/2) res = M_PI-res;
return res;
}
default:
return 0;
}
}
ld circlelength(ld r) {
switch(cgclass) {
case gcEuclid:
return 2 * M_PI * r;
case gcHyperbolic:
return 2 * M_PI * sinh(r);
case gcSphere:
return 2 * M_PI * sin(r);
default:
return 0;
}
}
// distance between two points
double hdist(const hyperpoint& h1, const hyperpoint& h2) {
return hdist0(gpushxto0(h1) * h2);
ld iv = intval(h1, h2);
switch(cgclass) {
case gcEuclid:
return sqrt(iv);
case gcHyperbolic:
return 2 * asinh(sqrt(iv) / 2);
case gcSphere:
return 2 * asin_auto_clamp(sqrt(iv) / 2);
default:
return 0;
}
}
hyperpoint mscale(const hyperpoint& t, double fac) {
hyperpoint res;
for(int i=0; i<3; i++)
res[i] = t[i] * fac;
return res;
}
transmatrix mscale(const transmatrix& t, double fac) {
transmatrix res;
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
res[i][j] = t[i][j] * fac;
return res;
}
transmatrix xyscale(const transmatrix& t, double fac) {
transmatrix res;
for(int i=0; i<3; i++) for(int j=0; j<2; j++)
res[i][j] = t[i][j] * fac;
return res;
}
transmatrix xyzscale(const transmatrix& t, double fac, double facz) {
transmatrix res;
for(int i=0; i<3; i++) for(int j=0; j<2; j++)
res[i][j] = t[i][j] * fac;
for(int i=0; i<3; i++)
res[i][2] = t[i][2] * facz;
return res;
}
// double downspin_zivory;
transmatrix mzscale(const transmatrix& t, double fac) {
// take only the spin
transmatrix tcentered = gpushxto0(tC0(t)) * t;
// tcentered = tcentered * spin(downspin_zivory);
fac -= 1;
transmatrix res = t * inverse(tcentered) * ypush(-fac) * tcentered;
fac *= .2;
fac += 1;
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
res[i][j] = res[i][j] * fac;
return res;
}
transmatrix pushone() { return euclid ? eupush(1, 0) : xpush(sphere?.5 : 1); }
bool operator == (hyperpoint h1, hyperpoint h2) {
return h1[0] == h2[0] && h1[1] == h2[1] && h1[2] == h2[2];
}
// rotation matrix in R^3
transmatrix rotmatrix(double rotation, int c0, int c1) {
transmatrix t = Id;
t[c0][c0] = cos(rotation);
t[c1][c1] = cos(rotation);
t[c0][c1] = sin(rotation);
t[c1][c0] = -sin(rotation);
return t;
}
hyperpoint mid3(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
using namespace hyperpoint_vec;
return mid(h1+h2+h3, h1+h2+h3);
}
hyperpoint mid_at(hyperpoint h1, hyperpoint h2, ld v) {
using namespace hyperpoint_vec;
hyperpoint h = h1 * (1-v) + h2 * v;
return mid(h, h);
}
hyperpoint mid_at_actual(hyperpoint h, ld v) {
using namespace hyperpoint_vec;
return rspintox(h) * xpush0(hdist0(h) * v);
}
}