1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-29 19:40:35 +00:00
hyperrogue/vr.cpp

1579 lines
47 KiB
C++

// Hyperbolic Rogue -- VR support
// Copyright (C) 2020-2020 Zeno Rogue, see 'hyper.cpp' for details
/** \file vr.cpp
* \brief VR support
*/
#include "hyper.h"
namespace hr {
EX namespace vrhr {
#if !CAP_VR
#if HDR
inline bool active() { return false; }
inline bool rendering() { return false; }
inline bool rendering_eye() { return false; }
#endif
#endif
#if CAP_VR
/** VR is active */
EX bool active() { return state; }
/** called in drawqueue to see if we should switch to vrhr::render() */
EX bool should_render() { return state == 1; }
/** currently rendering a VR-aware screen */
EX bool rendering() { return state == 2 || state == 4; }
/** currently rendering a VR eye */
EX bool rendering_eye() { return state == 2; }
#if HDR
enum class eHeadset { none, rotation_only, reference, holonomy, model_viewing };
enum class eEyes { none, equidistant, truesim };
enum class eCompScreen { none, reference, single, eyes };
#endif
EX eHeadset hsm = eHeadset::reference;
EX eEyes eyes = eEyes::equidistant;
EX eCompScreen cscr = eCompScreen::eyes;
EX bool controllers_on_desktop = true;
EX cell *forward_cell;
EX ld vraim_x, vraim_y, vrgo_x, vrgo_y;
EX ld pointer_length = 1;
vector<pair<string, string> > headset_desc = {
{"none", "Ignore the headset movement and rotation."},
{"rotation only", "Ignore the headset movement but do not ignore its rotation."},
{"reference", "The reference point in the real world corresponds to the reference point in VR. When you move your head in a loop, you return to where you started."},
{"holonomy", "Headsets movements in the real world are translated to the same movements in VR. Since the geometry is different, when you move your head in a loop, you usually don't return "
"to where you started."},
{"view model", "Fix a 3D projection of the non-Euclidean world, and see it from many viewpoints."}
};
vector<pair<string, string> > eyes_desc = {
{"none", "Both eyes see the same image."},
{"equidistant", "Render the image so that the perceived direction and distance is correct."},
{"true vision", "Simulate the actual binocular vision in the non-Euclidean space. Hyperbolic spaces look smaller than they are (stretched Klein model), spherical spaces look weird, "
"nonisotropic spaces are incomprehensible."}, /* not implemented */
};
/* not implemented */
vector<pair<string, string> > comp_desc = {
{"none", "Do not display anything on the computer screen."},
{"reference", "Display the standard HyperRogue view from the reference point."},
{"single", "Display a a single monocular image from the headset."},
{"eyes", "Display a copy of the VR display."},
};
struct vr_rendermodel {
string name;
GLuint texture_id;
vector<glhr::textured_vertex> vertices;
};
struct vr_framebuffer {
bool ok;
GLuint m_nDepthBufferId;
GLuint m_nRenderTextureId;
GLuint m_nRenderFramebufferId;
GLuint m_nResolveTextureId;
GLuint m_nResolveFramebufferId;
vr_framebuffer(int x, int y);
~vr_framebuffer();
};
vr_framebuffer::vr_framebuffer(int xsize, int ysize) {
resetbuffer rb;
glGenFramebuffers(1, &m_nRenderFramebufferId );
glBindFramebuffer(GL_FRAMEBUFFER, m_nRenderFramebufferId);
glGenRenderbuffers(1, &m_nDepthBufferId);
glBindRenderbuffer(GL_RENDERBUFFER, m_nDepthBufferId);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, 4, GL_DEPTH24_STENCIL8, xsize, ysize );
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_nDepthBufferId );
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_nDepthBufferId );
glGenTextures(1, &m_nRenderTextureId );
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_nRenderTextureId );
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, 4, GL_RGBA8, xsize, ysize, true);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D_MULTISAMPLE, m_nRenderTextureId, 0);
glGenFramebuffers(1, &m_nResolveFramebufferId );
glBindFramebuffer(GL_FRAMEBUFFER, m_nResolveFramebufferId);
glGenTextures(1, &m_nResolveTextureId );
glBindTexture(GL_TEXTURE_2D, m_nResolveTextureId );
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, xsize, ysize, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_nResolveTextureId, 0);
// check FBO status
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ok = status == GL_FRAMEBUFFER_COMPLETE;
rb.reset();
}
EX transmatrix eyeproj, eyeshift;
vr_framebuffer::~vr_framebuffer() {
glDeleteRenderbuffers( 1, &m_nDepthBufferId );
glDeleteTextures( 1, &m_nRenderTextureId );
glDeleteFramebuffers( 1, &m_nRenderFramebufferId );
glDeleteTextures( 1, &m_nResolveTextureId );
glDeleteFramebuffers( 1, &m_nResolveFramebufferId );
}
struct controller_data {
int x, y, clicked;
};
struct vrdata_t {
vr::IVRSystem *vr;
uint32_t xsize, ysize;
vr_framebuffer *eyes[2];
transmatrix proj[2];
transmatrix iproj[2]; /* inverse of proj */
transmatrix eyepos[2];
vr::TrackedDevicePose_t poses[ vr::k_unMaxTrackedDeviceCount ];
transmatrix pose_matrix[vr::k_unMaxTrackedDeviceCount ];
transmatrix last_pose_matrix[ vr::k_unMaxTrackedDeviceCount ];
vector<vr_rendermodel*> models;
vr_rendermodel* device_models[ vr::k_unMaxTrackedDeviceCount ];
controller_data cdata [ vr::k_unMaxTrackedDeviceCount ];
};
/** 0,1 == eyes, 2 == headset */
EX transmatrix hmd_mv_for[3];
EX transmatrix hmd_pre_for[3];
vrdata_t vrdata;
/** how far is the object pointed to */
EX ld pointer_distance;
/** should we try to access VR */
EX bool enabled = false;
/** we tried to access VR but failed */
EX bool failed;
/** VR error message */
EX string error_msg;
/** 0 = not loaded, 1 = loaded but not currently rendering, 2 = currently rendering the VR screen, 3 = currently rendering the reference computer screen, 4 = currently rendering the single computer screen */
EX int state = 0;
#if HDR
// use E4 when working with real-world matrices to ensure that inverses, multiplications, etc. are computed correctly
#define E4 dynamicval<eGeometry> g(geometry, gCubeTiling)
#endif
#define IN_E4(x) [&]{ E4; return x; }()
std::string GetTrackedDeviceString( vr::TrackedDeviceIndex_t unDevice, vr::TrackedDeviceProperty prop, vr::TrackedPropertyError *peError = NULL ) {
uint32_t unRequiredBufferLen = vr::VRSystem()->GetStringTrackedDeviceProperty( unDevice, prop, NULL, 0, peError );
if( unRequiredBufferLen == 0 ) return "";
char *pchBuffer = new char[ unRequiredBufferLen ];
unRequiredBufferLen = vr::VRSystem()->GetStringTrackedDeviceProperty( unDevice, prop, pchBuffer, unRequiredBufferLen, peError );
std::string sResult = pchBuffer;
delete [] pchBuffer;
return sResult;
}
transmatrix vr_to_hr(vr::HmdMatrix44_t mat) {
transmatrix T;
for(int i=0; i<4; i++)
for(int j=0; j<4; j++)
T[i][j] = mat.m[i][j];
return T;
}
transmatrix vr_to_hr(vr::HmdMatrix34_t mat) {
transmatrix T;
for(int i=0; i<3; i++)
for(int j=0; j<4; j++)
T[i][j] = mat.m[i][j];
T[3][0] = 0;
T[3][1] = 0;
T[3][2] = 0;
T[3][3] = 1;
return T;
}
string device_class_name(vr::ETrackedDeviceClass v) {
if(v == vr::TrackedDeviceClass_Controller)
return "controller";
if(v == vr::TrackedDeviceClass_HMD)
return "HMD";
if(v == vr::TrackedDeviceClass_Invalid)
return "invalid";
if(v == vr::TrackedDeviceClass_GenericTracker)
return "tracker";
if(v == vr::TrackedDeviceClass_TrackingReference)
return "reference";
return "unknown";
}
EX bool first = true;
EX transmatrix hmd_at_ui = Id;
EX transmatrix hmd_at = Id;
EX transmatrix hmd_ref_at = Id;
EX transmatrix hmd_mvp, hmd_pre, hmd_mv;
EX transmatrix sm;
EX int ui_xmin, ui_ymin, ui_xmax, ui_ymax;
EX reaction_t change_ui_bounds;
#if HDR
struct frustum_info {
transmatrix pre;
transmatrix nlp;
bool screen;
transmatrix proj;
};
#endif
EX vector<frustum_info> frusta;
EX void set_ui_bounds() {
ui_xmin = 0;
ui_ymin = 0;
ui_xmax = current_display->xsize;
ui_ymax = current_display->ysize;
if(change_ui_bounds)
change_ui_bounds();
}
EX void size_and_draw_ui_box() {
if(!vrhr::active()) return;
if(!vrhr::in_menu()) return;
vrhr::set_ui_bounds();
color_t col = 0x000000C0;
current_display->next_shader_flags = 0;
dynamicval<eModel> m(pmodel, mdPixel);
vrhr::in_vr_ui([&] {
glhr::color2(col);
glhr::set_depthtest(false);
vector<glvertex> vs;
vs.emplace_back(glhr::makevertex(ui_xmin, ui_ymin, 0));
vs.emplace_back(glhr::makevertex(ui_xmax, ui_ymin, 0));
vs.emplace_back(glhr::makevertex(ui_xmax, ui_ymax, 0));
vs.emplace_back(glhr::makevertex(ui_xmin, ui_ymin, 0));
vs.emplace_back(glhr::makevertex(ui_xmin, ui_ymax, 0));
vs.emplace_back(glhr::makevertex(ui_xmax, ui_ymax, 0));
glhr::current_vertices = NULL;
glhr::vertices(vs);
glDrawArrays(GL_TRIANGLES, 0, 6);
});
}
vr_rendermodel *get_render_model(string name) {
for(auto& m: vrdata.models)
if(m->name == name)
return m;
println(hlog, "trying to load model ", name);
vr::RenderModel_t *pModel;
vr::EVRRenderModelError error;
while(1) {
error = vr::VRRenderModels()->LoadRenderModel_Async(name.c_str(), &pModel );
if(error != vr::VRRenderModelError_Loading) break;
usleep(1000);
}
if(error != vr::VRRenderModelError_None) {
println(hlog, "Unable to load render model %s - %s\n", name, vr::VRRenderModels()->GetRenderModelErrorNameFromEnum( error ) );
return NULL;
}
vr::RenderModel_TextureMap_t *pTexture;
while (1) {
error = vr::VRRenderModels()->LoadTexture_Async( pModel->diffuseTextureId, &pTexture );
if(error != vr::VRRenderModelError_Loading) break;
usleep(1000);
}
if(error != vr::VRRenderModelError_None) {
println(hlog, "Unable to load render texture id:%d for render model %s\n", pModel->diffuseTextureId, name);
vr::VRRenderModels()->FreeRenderModel( pModel );
return NULL; // move on to the next tracked device
}
auto md = new vr_rendermodel;
vrdata.models.emplace_back(md);
md->name = name;
int cnt = pModel->unTriangleCount * 3;
for(int i=0; i<cnt; i++) {
glhr::textured_vertex tv;
int id = pModel->rIndexData[i];
for(int j=0; j<3; j++)
tv.coords[j] = pModel->rVertexData[id].vPosition.v[j];
tv.coords[3] = 1;
for(int j=0; j<2; j++)
tv.texture[j] = pModel->rVertexData[id].rfTextureCoord[j];
md->vertices.push_back(tv);
}
glGenTextures(1, &md->texture_id);
glBindTexture( GL_TEXTURE_2D, md->texture_id);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, pTexture->unWidth, pTexture->unHeight,
0, GL_RGBA, GL_UNSIGNED_BYTE, pTexture->rubTextureMapData );
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
GLfloat fLargest;
glGetFloatv( GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &fLargest );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, fLargest );
glBindTexture( GL_TEXTURE_2D, 0 );
println(hlog, "model loaded successfully");
return md;
}
EX bool need_poses = true;
void track_poses() {
E4;
if(!need_poses) return;
need_poses = false;
vr::VRCompositor()->WaitGetPoses(vrdata.poses, vr::k_unMaxTrackedDeviceCount, NULL, 0 );
// println(hlog, "poses received");
for(int i=0; i<(int)vr::k_unMaxTrackedDeviceCount; i++) {
auto& p = vrdata.poses[i];
vrdata.device_models[i] = nullptr;
if(!p.bPoseIsValid)
continue;
transmatrix T = vr_to_hr(p.mDeviceToAbsoluteTracking) * sm;
// println(hlog, "found ", device_class_name(vrdata.vr->GetTrackedDeviceClass(i)), " at ", T);
vrdata.pose_matrix[i] = T;
if(i == vr::k_unTrackedDeviceIndex_Hmd) {
hmd_at = inverse(T);
if(first) hmd_ref_at = hmd_at, first = false;
}
auto& cd = vrdata.cdata[i];
cd.x = cd.y = 0;
if(vrdata.vr->GetTrackedDeviceClass(i) == vr::TrackedDeviceClass_Controller) {
string mname = GetTrackedDeviceString(i, vr::Prop_RenderModelName_String );
vrdata.device_models[i] = get_render_model(mname);
/*
cd.last = cd.cur;
bool ok = vrdata.vr->GetControllerState(i, &cd.cur, sizeof(state));
if(ok) {
println(hlog, "pressed = ", color_t(cd.cur.ulButtonPressed), " touched = ", color_t(cd.cur.ulButtonTouched), " on ", i);
for(int i=0; i<5; i++)
if(cd.cur.rAxis[i].x || cd.cur.rAxis[i].y)
println(hlog, "axis ", i, " = ", tie(cd.cur.rAxis[i].x, cd.cur.rAxis[i].y));
}
*/
if(which_pointer == i) {
if(in_menu()) {
hyperpoint h1 = sm * hmd_at_ui * vrdata.pose_matrix[i] * sm * C0;
hyperpoint h2 = sm * hmd_at_ui * vrdata.pose_matrix[i] * sm * point31(0, 0, -0.01);
ld p = ilerp(h1[2], h2[2], -ui_depth);
hyperpoint pxo = lerp(h1, h2, p);
hyperpoint px = pxo;
px[0] /= ui_size * ui_size_unit;
px[1] /= -ui_size * ui_size_unit;
px[0] += (ui_xmin+ui_xmax) / 2;
px[1] += (ui_ymin+ui_ymax) / 2;
targeting_menu = px[0] >= 0 && px[1] >= 0 && px[0] <= vid.xres && px[1] <= vid.yres;
if(targeting_menu) {
mousex = px[0];
mousey = px[1];
pointer_distance = hdist(pxo, h1);
}
}
else targeting_menu = false;
}
if(hdist(vrdata.pose_matrix[i] * C0, vrdata.last_pose_matrix[i] * C0) > .05) {
vrdata.last_pose_matrix[i] = vrdata.pose_matrix[i];
mousing = true;
which_pointer = i;
println(hlog, "setting which_pointer to ", i);
}
}
}
if(!in_menu()) hmd_at_ui = hmd_at;
}
EX bool targeting_menu;
EX void send_click() {
holdmouse = false;
fix_mouseh();
println(hlog, "sending a click, getcstat = ", getcstat, " in menu = ", in_menu());
if(in_menu() && targeting_menu)
handlekey(getcstat, getcstat);
else
handlekey('-', '-');
}
EX void send_release() {
holdmouse = false;
fix_mouseh();
println(hlog, "sending a release");
handlekey(PSEUDOKEY_RELEASE, PSEUDOKEY_RELEASE);
}
EX void vr_control() {
if(!enabled || !vid.usingGL) {
if(state) shutdown_vr();
return;
}
if(enabled && vid.usingGL && !state && !failed) {
start_vr();
}
if(state == 1) {
track_actions();
need_poses = true;
}
static bool last_vr_clicked = false;
shiftmul = getcshift;
if(which_pointer) mousemoved = true;
if(vr_clicked && last_vr_clicked && holdmouse) send_click();
mousepressed = vr_clicked;
if(vr_clicked && !last_vr_clicked && vid.quickmouse) send_click();
if(vr_clicked && !last_vr_clicked && !vid.quickmouse)
actonrelease = true;
if(!vr_clicked && last_vr_clicked && !vid.quickmouse && actonrelease) {
send_click();
actonrelease = false;
}
else if(!vr_clicked && last_vr_clicked) {
send_release();
}
if(mousepressed && inslider) {
send_click();
}
last_vr_clicked = vr_clicked;
}
EX void be_33(transmatrix& T) {
for(int i=0; i<3; i++) T[i][3] = T[3][i] = 0;
T[3][3] = 1;
}
EX void apply_movement(const transmatrix& rel) {
hyperpoint h0 = IN_E4(inverse(rel) * C0);
hyperpoint h = h0;
for(int i=0; i<3; i++) h[i] /= -absolute_unit_in_meters;
shift_view(h);
transmatrix Rot = rel;
be_33(Rot);
rotate_view(Rot);
}
EX void vr_shift() {
if(first) return;
rug::using_rugview urv;
if(GDIM == 2) return;
if(GDIM == 3 && hsm == eHeadset::holonomy) {
apply_movement(IN_E4(hmd_at * inverse(hmd_ref_at)));
hmd_ref_at = hmd_at;
playermoved = false;
if(!rug::rugged) optimizeview();
}
}
EX ld absolute_unit_in_meters = 3;
/** what point and cell is the controller number id pointing to */
EX eModel pmodel_3d_version() {
if(pmodel == mdGeodesic) return mdEquidistant;
if(pmodel == mdPerspective) return nonisotropic ? mdHorocyclic : mdEquidistant;
return pmodel;
}
/** convert model coordinates to controller-relative coordinates */
EX transmatrix model_to_controller(int id) {
return inverse(sm * hmd_at * vrdata.pose_matrix[id] * sm) * hmd_mv;
}
EX hyperpoint model_location(shiftpoint h, bool& bad) {
if(eyes == eEyes::truesim) {
hyperpoint eye_at[2], tangent[2];
bad = false;
for(int i=0; i<2; i++) {
shiftpoint h1 = h;
h1.h = hmd_pre_for[i] * h1.h;
eModel md = pmodel_3d_version();
hyperpoint hscr;
apply_other_model(h1, hscr, md);
E4;
hscr[3] = 1;
eye_at[i] = vrdata.eyepos[i] * C0;
tangent[i] = vrdata.eyepos[i] * sm * hmd_mv_for[i] * (hscr - C0);
}
// eye_at[0] + tangent[0] * a == eye_at[1] + tangent[1] * b
// (in coordinates 0,2; in nonisotropic geometries, [1] may be different)
E4;
auto t10 = tangent[1][0];
auto t12 = tangent[1][2];
auto t00 = tangent[0][0];
auto t02 = tangent[0][2];
ld a = (t10 * eye_at[0][2] - t12 * eye_at[0][0] - t10 * eye_at[1][2] + t12 * eye_at[1][0]) / (t00 * t12 - t02 * t10);
ld b = (t00 * eye_at[1][2] - t02 * eye_at[1][0] - t00 * eye_at[0][2] + t02 * eye_at[0][0]) / (t10 * t02 - t12 * t00);
hyperpoint hit0 = eye_at[0] + tangent[0] * a;
hyperpoint hit1 = eye_at[1] + tangent[1] * b;
// we should have hit0 == hit1, except coordinate [1]
return (hit0 + hit1) / 2;
}
else {
hyperpoint hscr;
h.h = hmd_pre_for[2] * h.h;
eModel md = pmodel_3d_version();
apply_other_model(h, hscr, md);
bad = in_vr_sphere && get_side(hscr) == (sphereflipped() ? -1 : 1);
hscr[3] = 1;
return hscr;
}
}
ld vr_distance(const shiftpoint& h, int id, ld& dist) {
bool bad;
hyperpoint hscr = model_location(h, bad);
if(bad) return 1e5;
bool flat = WDIM == 2;
E4; hyperpoint hc = model_to_controller(id) * hscr;
if(flat) {
if(hc[2] > 0.1) return 1e6; /* behind */
dist = -hc[2];
return sqhypot_d(2, hc);
}
else {
hc[2] += dist;
return sqhypot_d(3, hc);
}
}
EX hyperpoint vr_direction;
EX void compute_vr_direction(int id) {
E4;
transmatrix T = (hsm == eHeadset::none ? hmd_at : hmd_ref_at) * vrdata.pose_matrix[id] * sm;
vrhr::be_33(T);
vr_direction = T * point31(0, 0, -0.01);
}
EX void compute_point(int id, shiftpoint& res, cell*& c, ld& dist) {
if(WDIM == 3) {
compute_vr_direction(id);
movedir md = vectodir(vr_direction);
cellwalker xc = cwt + md.d + wstep;
forward_cell = xc.at;
}
dist = pointer_length;
gen_mv();
set_vr_sphere();
c = nullptr;
ld best = 1e9;
shiftmatrix T;
// needed so that applymodel gives the VR coordinates
dynamicval<int> dvs (vrhr::state, 2);
for(auto p: current_display->all_drawn_copies) {
for(auto& V: p.second) {
shiftpoint h = V * pointable();
ld d = vr_distance(h, id, dist);
if(d < best) best = d, c = p.first, T = V;
}
}
auto rel = pointable();
T = minimize_point_value(T, [&] (const shiftmatrix& T1) { return vr_distance(T1*rel, id, dist); });
res = T * rel;
}
EX bool vr_clicked;
void move_according_to(vr::ETrackedControllerRole role, bool last, bool cur) {
if(cur) vr_clicked = true;
int id = vr::VRSystem()->GetTrackedDeviceIndexForControllerRole(role);
if((last || cur) && id >= 0 && id < int(vr::k_unMaxTrackedDeviceCount)) {
println(hlog, "click setting which_pointer to ", id);
which_pointer = id;
}
}
struct digital_action_data {
string action_name;
vr::VRActionHandle_t handle;
bool last, curr;
function<void(bool, bool)> act;
bool_reaction_t when;
digital_action_data(string s, bool_reaction_t when, function<void(bool, bool)> f) : when(when) { action_name = s; act = f; handle = vr::k_ulInvalidActionHandle; }
};
struct analog_action_data {
string action_name;
vr::VRActionHandle_t handle;
ld x, y;
function<void(ld, ld)> act;
analog_action_data(string s, function<void(ld, ld)> f) { action_name = s; act = f; handle = vr::k_ulInvalidActionHandle; }
};
struct set_data {
string set_name;
int prio;
vr::VRActionHandle_t handle;
bool_reaction_t when;
set_data(string s, int p, bool_reaction_t w) { set_name = s; prio = p; when = w; handle = vr::k_ulInvalidActionHandle; }
};
vector<digital_action_data> dads = {
digital_action_data("/actions/general/in/ClickLeft", [] { return true; }, [] (bool last, bool curr) {
move_according_to(vr::TrackedControllerRole_LeftHand, last, curr);
}),
digital_action_data("/actions/general/in/ClickRight", [] { return true; }, [] (bool last, bool curr) {
move_according_to(vr::TrackedControllerRole_RightHand, last, curr);
}),
digital_action_data("/actions/game/in/Drop", [] { return (cmode && sm::NORMAL); }, [] (bool last, bool curr) {
if(curr && !last) dialog::queue_key('g');
}),
digital_action_data("/actions/game/in/Skip turn", [] { return (cmode && sm::NORMAL); }, [] (bool last, bool curr) {
if(curr && !last) dialog::queue_key('s');
}),
digital_action_data("/actions/general/in/Menu", [] { return true; }, [] (bool last, bool curr) {
if(curr && !last) {
always_show_hud = !always_show_hud;
hmd_at_ui = hmd_at;
}
}),
digital_action_data("/actions/general/in/SetReference", [] { return true; }, [] (bool last, bool curr) {
if(curr && !last) hmd_ref_at = hmd_at;
})
};
vector<analog_action_data> aads = {
analog_action_data("/actions/general/in/MoveCamera", [] (ld x, ld y) {
vrgo_x = x;
vrgo_y = y;
}),
analog_action_data("/actions/general/in/RotateCamera", [] (ld x, ld y) {
vraim_x = x;
vraim_y = y;
}),
};
EX bool always_show_hud = false;
EX bool in_actual_menu() { return (cmode & sm::VR_MENU) || !(cmode & (sm::NORMAL | sm::DRAW)); }
EX bool in_menu() { return always_show_hud || in_actual_menu(); }
vector<set_data> sads = {
set_data("/actions/game", 20, [] { return cmode & sm::NORMAL; }),
set_data("/actions/general", 10, [] { return true; })
};
void init_input() {
const auto& vi = vr::VRInput();
string cwd;
char cwdbuf[PATH_MAX];
if (getcwd(cwdbuf, sizeof(cwdbuf)) != NULL) {
cwd = cwdbuf;
println(hlog, "Found cwd: ", cwd);
if(cwd.back() == '/' || cwd.back() == '\\') ;
else cwd += (ISWINDOWS ? '\\' : '/');
cwd += "hypervr_actions.json";
}
vi->SetActionManifestPath(cwd.c_str());
for(auto& sad: sads)
vi->GetActionSetHandle(sad.set_name.c_str(), &sad.handle);
for(auto& dad: dads)
vi->GetActionHandle(dad.action_name.c_str(), &dad.handle);
for(auto& aad: aads)
vi->GetActionHandle(aad.action_name.c_str(), &aad.handle);
}
EX void track_actions() {
for(auto& cd: vrdata.cdata)
cd.clicked = false;
vr_clicked = false;
forward_cell = nullptr;
vector<vr::VRActiveActionSet_t> sets;
for(auto& sad: sads) if(sad.when()) {
sets.emplace_back();
auto& s = sets.back();
s.ulActionSet = sad.handle;
s.ulRestrictedToDevice = vr::k_ulInvalidInputValueHandle;
s.ulSecondaryActionSet = vr::k_ulInvalidInputValueHandle;
s.nPriority = sad.prio;
}
if(isize(sets))
vr::VRInput()->UpdateActionState( &sets[0], sizeof(vr::VRActiveActionSet_t), isize(sets));
for(auto& dad: dads) {
if(!dad.when()) continue;
vr::InputDigitalActionData_t actionData;
vr::VRInput()->GetDigitalActionData(dad.handle, &actionData, sizeof(actionData), vr::k_ulInvalidInputValueHandle );
dad.last = dad.curr;
dad.curr = actionData.bState;
dad.act(dad.last, dad.curr);
}
for(auto& aad: aads) {
vr::InputAnalogActionData_t actionData;
vr::VRInput()->GetAnalogActionData(aad.handle, &actionData, sizeof(actionData), vr::k_ulInvalidInputValueHandle );
aad.x = actionData.x;
aad.y = actionData.y;
aad.act(aad.x, aad.y);
}
}
EX void get_eyes() {
for(int a=0; a<2; a++) {
auto eye = vr::EVREye(a);
E4;
vrdata.proj[a] =
vr_to_hr(vrdata.vr->GetProjectionMatrix(eye, 0.01, 300));
vrdata.iproj[a] = MirrorZ * inverse(vrdata.proj[a]);
// println(hlog, "projection = ", vrdata.proj[a]);
vrdata.eyepos[a] =
vr_to_hr(vrdata.vr->GetEyeToHeadTransform(eye));
// println(hlog, "eye-to-head = ", vrdata.eyepos[a]);
}
}
EX void start_vr() {
if(true) { sm = Id; sm[1][1] = sm[2][2] = -1; }
vr::EVRInitError eError = vr::VRInitError_None;
vrdata.vr = vr::VR_Init( &eError, vr::VRApplication_Scene );
for(auto& m: vrdata.last_pose_matrix) m = Id;
if(eError != vr::VRInitError_None) {
error_msg = vr::VR_GetVRInitErrorAsEnglishDescription( eError );
println(hlog, "Unable to init VR: ", error_msg);
failed = true;
return;
}
else println(hlog, "VR initialized successfully");
apply_screen_settings();
string driver = GetTrackedDeviceString( vr::k_unTrackedDeviceIndex_Hmd, vr::Prop_TrackingSystemName_String );
string display = GetTrackedDeviceString( vr::k_unTrackedDeviceIndex_Hmd, vr::Prop_SerialNumber_String );
println(hlog, "HyperRogue VR: driver=", driver, " display=", display);
if(!vr::VRCompositor()) {
println(hlog, "Compositor initialization failed. See log file for details\n" );
exit(1);
}
init_input();
vrdata.vr->GetRecommendedRenderTargetSize( &vrdata.xsize, &vrdata.ysize);
println(hlog, "recommended size: ", int(vrdata.xsize), " x ", int(vrdata.ysize));
for(int a=0; a<2; a++) {
vrdata.eyes[a] = new vr_framebuffer(vrdata.xsize, vrdata.ysize);
println(hlog, "eye ", a, " : ", vrdata.eyes[a]->ok ? "OK" : "Error");
}
get_eyes();
//CreateFrameBuffer( m_nRenderWidth, m_nRenderHeight, leftEyeDesc );
//CreateFrameBuffer( m_nRenderWidth, m_nRenderHeight, rightEyeDesc );
state = 1;
}
EX void shutdown_vr() {
vr::VR_Shutdown();
vrdata.vr = nullptr;
for(auto& e: vrdata.eyes) {
delete e;
e = nullptr;
}
for(auto& m: vrdata.models) {
if(m) delete m;
}
vrdata.models.clear();
for(auto& m: vrdata.device_models) m = nullptr;
state = 0;
}
EX void clear() {
if(!state) return;
resetbuffer rb;
for(int i=0; i<2; i++) {
auto& ey = vrdata.eyes[i];
glBindFramebuffer( GL_FRAMEBUFFER, ey->m_nRenderFramebufferId );
glViewport(0, 0, vrdata.xsize, vrdata.ysize );
glhr::set_depthtest(false);
glhr::set_depthtest(true);
glhr::set_depthwrite(false);
glhr::set_depthwrite(true);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
rb.reset();
current_display->set_viewport(0);
}
EX ld ui_depth = 1.5;
EX ld ui_size = 2;
#if HDR
const ld ui_size_unit = 0.001;
#endif
struct vr_eye_settings {
dynamicval<int> vx, vy;
dynamicval<ld> xmin, ymin, xmax, ymax;
vr_eye_settings() :
vx(vid.xres, vrdata.xsize),
vy(vid.yres, vrdata.ysize),
xmin(current_display->xmin, 0),
ymin(current_display->ymin, 0),
xmax(current_display->xmax, 1),
ymax(current_display->ymax, 1)
{ }
void use(int i) {
glBindFramebuffer( GL_FRAMEBUFFER, vrdata.eyes[i]->m_nRenderFramebufferId );
glViewport(0, 0, vrdata.xsize, vrdata.ysize );
calcparam();
}
};
EX void in_vr_ui(reaction_t what) {
resetbuffer rb;
if(!state) return;
int ui_xmed = (ui_xmin + ui_xmax) / 2;
int ui_ymed = (ui_ymin + ui_ymax) / 2;
state = 2;
for(int i=0; i<2; i++) {
E4;
vr_eye_settings ey;
ey.use(i);
glhr::set_depthtest(false);
hmd_mvp = Id;
hmd_mvp = xpush(-ui_xmed) * ypush(-ui_ymed) * hmd_mvp;
transmatrix Sca = Id;
Sca[0][0] *= ui_size * ui_size_unit;
Sca[1][1] *= -ui_size * ui_size_unit;
Sca[2][2] *= 0;
hmd_mvp = Sca * hmd_mvp;
hmd_mvp = zpush(-ui_depth) * hmd_mvp;
hmd_mvp = sm * hmd_at * inverse(hmd_at_ui) * sm * hmd_mvp;
hmd_mvp = vrdata.proj[i] * inverse(vrdata.eyepos[i]) * hmd_mvp;
reset_projection();
current_display->set_all(0, 0);
current_display->xcenter = 0;
current_display->ycenter = 0;
what();
}
state = 1;
rb.reset();
calcparam();
current_display->set_viewport(0);
calcparam();
reset_projection();
current_display->set_all(0, 0);
glhr::set_modelview(glhr::translate(-current_display->xcenter,-current_display->ycenter, 0));
what();
}
EX void draw_eyes() {
state = 1;
for(int i=0; i<2; i++) {
resetbuffer rb;
auto& ey = vrdata.eyes[i];
glBindFramebuffer(GL_READ_FRAMEBUFFER, ey->m_nRenderFramebufferId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ey->m_nResolveFramebufferId );
glBlitFramebuffer( 0, 0, vrdata.xsize, vrdata.ysize, 0, 0, vrdata.xsize, vrdata.ysize, GL_COLOR_BUFFER_BIT, GL_LINEAR);
rb.reset();
current_display->next_shader_flags = GF_TEXTURE;
dynamicval<eModel> m(pmodel, mdPixel);
current_display->set_all(0, 0);
glBindTexture(GL_TEXTURE_2D, ey->m_nResolveTextureId );
glhr::id_modelview();
glhr::set_depthtest(false);
glhr::color2(0xFFFFFFFF);
vector<glhr::textured_vertex> tvx;
for(int a=0; a<6; a++) {
int dx[6] = {0, 1, 1, 0, 0, 1};
int dy[6] = {0, 0, 1, 0, 1, 1};
glhr::textured_vertex tx;
tx.coords[2] = 0;
tx.coords[3] = 1;
tx.coords[0] = (dx[a]+i) * current_display->xsize / 2 - current_display->xcenter;
tx.coords[1] = (1-dy[a]) * current_display->ysize - current_display->ycenter;
tx.texture[0] = dx[a];
tx.texture[1] = dy[a];
tvx.push_back(tx);
}
glhr::prepare(tvx);
glDrawArrays(GL_TRIANGLES, 0, 6);
}
}
EX void gen_mv() {
transmatrix mu;
bool pers = in_perspective();
ld sca = pers ? absolute_unit_in_meters : pconf.vr_scale_factor;
for(int i=0; i<4; i++)
for(int j=0; j<4; j++)
mu[i][j] = i!=j ? 0 : i==3 ? 1 : sca;
if(!pers) mu[1][1] *= pconf.stretch;
hmd_mv = Id;
bool nlpu = nisot::local_perspective_used();
if(1) {
E4;
if(nlpu) {
be_33(NLP);
hmd_mv = NLP * hmd_mv;
}
hmd_mv = sm * hmd_mv;
if(pconf.vr_angle) hmd_mv = cspin(1, 2, -pconf.vr_angle * degree) * hmd_mv;
if(pconf.vr_zshift) hmd_mv = euclidean_translate(0, 0, -pconf.vr_zshift) * hmd_mv;
hmd_mv = mu * hmd_mv;
if(GDIM == 2 || hsm == eHeadset::model_viewing) {
hmd_mv = sm * hmd_at * inverse(hmd_ref_at) * sm * hmd_mv;
}
}
}
EX shiftmatrix master_cview;
EX void render() {
track_poses();
get_eyes();
resetbuffer rb;
state = 2;
vrhr::frusta.clear();
// cscr = lshiftclick ? eCompScreen::eyes : eCompScreen::single;
for(int i=0; i<3; i++) {
if(1) {
make_actual_view();
master_cview = cview();
/* unfortunately we need to backup everything that could change by shift_view... */
dynamicval<transmatrix> tN(NLP, NLP);
dynamicval<transmatrix> tV(View, View);
dynamicval<transmatrix> tC(current_display->which_copy, current_display->which_copy);
dynamicval<transmatrix> trt(current_display->radar_transform);
/* changed in intra */
dynamicval<ld> tcs(camera_speed);
dynamicval<ld> tcl(anims::cycle_length);
dynamicval<ld> tau(vrhr::absolute_unit_in_meters);
dynamicval<ld> tel(walking::eye_level);
dynamicval<int> tfd(walking::floor_dir);
dynamicval<cell*> tof(walking::on_floor_of);
int id = intra::current;
cell *co = centerover;
finalizer fin([&] {
if(intra::current != id) {
println(hlog, "rendering via portal");
intra::switch_to(id);
centerover = co;
}
});
if(hsm == eHeadset::rotation_only) {
transmatrix T = hmd_at;
be_33(T);
apply_movement(T);
}
else if(GDIM == 3 && hsm == eHeadset::reference) {
apply_movement(IN_E4(hmd_at * inverse(hmd_ref_at)));
}
if(eyes == eEyes::truesim && i != 2) {
apply_movement(IN_E4(inverse(vrdata.eyepos[i])));
}
make_actual_view();
hmd_pre = hmd_pre_for[i] = cview().T * inverse(master_cview.T);
current_display->radar_transform = trt.backup * inverse(hmd_pre);
if(i < 2)
frusta.push_back(frustum_info{hmd_pre, NLP, false, vrdata.proj[i]});
else
frusta.push_back(frustum_info{hmd_pre, NLP, true, Id});
if(1) {
gen_mv();
E4;
if(eyes == eEyes::equidistant && i != 2) {
eyeshift = vrdata.eyepos[i];
hmd_mv = inverse(eyeshift) * hmd_mv;
}
else eyeshift = Id;
hmd_mv_for[i] = hmd_mv;
if(i != 2) {
hmd_mvp = vrdata.proj[i] * hmd_mv;
eyeproj = vrdata.iproj[i];
}
}
if(i != 2) {
vr_eye_settings ey;
ey.use(i);
glhr::set_depthtest(false);
glhr::set_depthtest(true);
glhr::set_depthwrite(false);
glhr::set_depthwrite(true);
// glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
calcparam();
drawqueue();
}
if(i == 2) {
rb.reset();
calcparam();
current_display->set_viewport(0);
calcparam();
current_display->next_shader_flags = 0;
current_display->set_all(0, 0);
if(cscr == eCompScreen::single) {
state = 4;
drawqueue();
}
}
}
}
if(cscr == eCompScreen::reference) {
state = 3;
drawqueue();
}
if(cscr == eCompScreen::eyes && !controllers_on_desktop) draw_eyes();
render_controllers();
if(cscr == eCompScreen::eyes && controllers_on_desktop) draw_eyes();
state = 1;
}
EX void show_vr_demos() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("VR demos"));
dialog::addInfo(XLAT("warning: these will restart your game!"));
dialog::addBreak(100);
dialog::addItem(XLAT("standard HyperRogue but in VR"), 'a');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
stop_game();
set_geometry(gNormal);
if(GDIM == 3) geom3::switch_fpp();
specialland = laIce;
set_variation(eVariation::bitruncated);
pmodel = mdDisk;
pconf.alpha = 1;
pconf.vr_scale_factor = 1;
pconf.vr_angle = 0;
pconf.vr_zshift = 0;
hsm = eHeadset::model_viewing;
eyes = eEyes::equidistant;
start_game();
popScreenAll();
});
dialog::addItem(XLAT("HyperRogue FPP"), 'b');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
stop_game();
pmodel = mdDisk;
set_geometry(gNormal);
if(GDIM == 2) geom3::switch_fpp();
specialland = laIce;
set_variation(eVariation::bitruncated);
pconf.alpha = 1;
pconf.vr_scale_factor = 1;
pconf.vr_angle = 0;
pconf.vr_zshift = 0;
hsm = eHeadset::reference;
eyes = eEyes::equidistant;
start_game();
popScreenAll();
});
#if CAP_RUG
dialog::addItem(XLAT("Hypersian Rug"), 'c');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
stop_game();
set_geometry(gNormal);
if(GDIM == 3) geom3::switch_fpp();
specialland = laIce;
set_variation(eVariation::bitruncated);
pmodel = mdDisk;
pconf.alpha = 1;
pconf.vr_scale_factor = 1;
pconf.vr_angle = 0;
pconf.vr_zshift = 0;
hsm = eHeadset::model_viewing;
rug::modelscale = 0.5;
eyes = eEyes::equidistant;
start_game();
rug::init();
popScreenAll();
});
#endif
dialog::addItem(XLAT("sphere from the inside"), 'd');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
stop_game();
set_geometry(gSphere);
if(GDIM == 3) geom3::switch_fpp();
specialland = laHalloween;
set_variation(eVariation::bitruncated);
pmodel = mdDisk;
pconf.alpha = 0;
pconf.vr_scale_factor = 2;
pconf.vr_angle = 0;
pconf.vr_zshift = 0;
hsm = eHeadset::model_viewing;
eyes = eEyes::equidistant;
start_game();
popScreenAll();
});
dialog::addItem(XLAT("sphere from the outside"), 'e');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
stop_game();
set_geometry(gSphere);
if(GDIM == 3) geom3::switch_fpp();
specialland = laHalloween;
set_variation(eVariation::bitruncated);
pmodel = mdDisk;
pconf.alpha = 2;
pconf.vr_scale_factor = 0.5;
pconf.vr_angle = 0;
pconf.vr_zshift = 0;
hsm = eHeadset::model_viewing;
eyes = eEyes::equidistant;
start_game();
popScreenAll();
});
dialog::addItem(XLAT("Thurston racing"), 'f');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
hsm = eHeadset::reference;
eyes = eEyes::equidistant;
popScreenAll();
pushScreen(racing::thurston_racing);
});
dialog::addItem(XLAT("raytracing in H3"), 'g');
dialog::add_action([] {
if(rug::rugged) rug::close();
hmd_ref_at = hmd_at;
hsm = eHeadset::holonomy;
eyes = eEyes::truesim;
stop_game();
specialland = laEmerald;
set_geometry(gSpace534);
check_cgi();
cgi.require_basics();
cgi.require_shapes();
fieldpattern::field_from_current();
set_geometry(gFieldQuotient);
int p = 2;
for(;; p++) { currfp.Prime = p; currfp.force_hash = 0x72414D0C; if(!currfp.solve()) break; }
start_game();
popScreenAll();
});
dialog::addBreak(100);
dialog::addBack();
dialog::display();
}
EX void enable_button() {
dialog::addBoolItem(XLAT("VR enabled"), enabled, 'o');
dialog::add_action([] {
enabled = !enabled;
});
if(!enabled)
dialog::addBreak(100);
else if(failed)
dialog::addInfo(XLAT("error: ") + error_msg, 0xC00000);
else
dialog::addInfo(XLAT("VR initialized correctly"), 0x00C000);
}
EX void reference_button() {
if(enabled && among(hsm, eHeadset::reference, eHeadset::model_viewing)) {
E4;
hyperpoint h = hmd_at * inverse(hmd_ref_at) * C0;
dialog::addSelItem(XLAT("reset the reference point"), state ? fts(hypot_d(3, h)) + "m" : "", 'r');
dialog::add_action([] { hmd_ref_at = hmd_at; });
}
else dialog::addBreak(100);
}
EX void show_vr_settings() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("VR settings"));
dialog::addItem(XLAT("VR demos"), 'D');
dialog::add_action_push(show_vr_demos);
enable_button();
dialog::addBreak(100);
add_edit(hsm);
if(enabled && GDIM == 2 && among(hsm, eHeadset::holonomy, eHeadset::reference))
dialog::addInfo(XLAT("(this setting is for 3D geometries only, use 'model viewing' instead)"));
add_edit(eyes);
add_edit(cscr);
dialog::addSelItem(XLAT("absolute unit in meters"), fts(absolute_unit_in_meters), 'a');
dialog::add_action([] {
dialog::editNumber(absolute_unit_in_meters, .01, 100, 0.1, 1, XLAT("absolute unit in meters"),
XLAT(
"The size of the absolute unit of the non-Euclidean geometry in meters. "
"This affects the headset movement and binocular vision.\n\n"
"In spherical geometry, the absolute unit is the radius of the sphere. "
"The smaller the absolute unit, the stronger the non-Euclidean effects.\n\n"
"Elements of the HyperRogue world have fixed size in terms of absolute units, "
"so reducing the absolute unit makes them smaller. "
"If you are playing in the Euclidean mode, this feature just scales everything "
"(e.g., in the cube tiling, the 'absolute unit' is just the edge of the cube). "
"Only perspective projections are affected, other models use the 'VR scale' setting "
"from the Projections menu."
));
dialog::scaleLog();
});
dialog::addSelItem(XLAT("projection"), current_proj_name(), 'M');
dialog::add_action_push(models::model_menu);
reference_button();
dialog::addSelItem(XLAT("pointer length"), fts(pointer_length) + "m", 'p');
dialog::add_action([] {
dialog::editNumber(pointer_length, 0, 2, 0.1, 1, XLAT("pointer length"),
XLAT(
"If the pointer length is 0.5m, the object pointed to is 0.5 meter from the controller. "
"This is used in situations where the controller is used as a 3D mouse, e.g., "
"the drawing tool in three-dimensional geometries. When pointing at two-dimensional surfaces, "
"this is not relevant (the pointer is as long as needed to hit the surface)."
));
});
dialog::addSelItem(XLAT("UI size"), fts(ui_size) + "mm", 'u');
dialog::add_action([] {
dialog::editNumber(ui_size, 0, 10, 0.1, 2, XLAT("UI size"),
XLAT(
"How big is a pixel of the user interface (HUD and menus). The user interface is as big as the window on the desktop."
));
});
dialog::addSelItem(XLAT("UI depth"), fts(ui_depth) + "m", 'U');
dialog::add_action([] {
dialog::editNumber(ui_depth, 0, 2, 0.1, 1, XLAT("UI depth"),
XLAT(
"How far to show the user interface (HUD and menus)."
));
});
dialog::addBack();
dialog::display();
}
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-vr-enabled")) {
PHASEFROM(2);
shift(); enabled = argi();
}
else if(argis("-vr-absunit")) {
PHASEFROM(2);
shift_arg_formula(absolute_unit_in_meters);
}
else if(argis("-vr-scale")) {
PHASEFROM(2);
shift_arg_formula(pconf.vr_scale_factor);
}
else if(argis("-vr-z")) {
PHASEFROM(2);
shift_arg_formula(pconf.vr_zshift);
}
else if(argis("-vr-pl")) {
PHASEFROM(2);
shift_arg_formula(pointer_length);
}
else if(argis("-vr-angle")) {
PHASEFROM(2);
shift_arg_formula(pconf.vr_angle);
}
else if(argis("-d:vr")) {
PHASEFROM(2); launch_dialog(show_vr_settings);
}
else if(argis("-d:vrd")) {
PHASEFROM(2); launch_dialog(show_vr_demos);
}
else if(argis("-vr-mode")) {
PHASEFROM(2);
shift(); hsm = (eHeadset) argi();
shift(); eyes = (eEyes) argi();
shift(); cscr = (eCompScreen) argi();
}
else return 1;
return 0;
}
auto hooka = addHook(hooks_args, 100, readArgs);
#endif
#if CAP_CONFIG
void addconfig() {
addsaver(enabled, "vr-enabled");
param_f(absolute_unit_in_meters, "vr-abs-unit");
param_f(pconf.vr_scale_factor, "vr_scale");
param_f(pconf.vr_zshift, "vr_zshift");
param_f(pconf.vr_angle, "vr_angle");
auto& rrconf = vid.rug_config;
param_f(rrconf.vr_scale_factor, "rug_vr_scale");
param_f(rrconf.vr_zshift, "rug_vr_shift");
param_f(rrconf.vr_angle, "rug_vr_angle");
param_f(vrhr::pointer_length, "vr_pointer_length");
param_f(vrhr::ui_depth, "vr_ui_depth");
param_f(vrhr::ui_size, "vr_ui_size");
param_enum(vrhr::hsm, "vr_headset_mode", "vr_headset_mode", vrhr::hsm)
->editable(headset_desc, "VR headset movement", 'h');
param_enum(vrhr::eyes, "vr_eyes_mode", "vr_eyes_mode", vrhr::eyes)
->editable(eyes_desc, "VR binocular vision", 'b');
param_enum(vrhr::cscr, "vr_screen_mode", "vr_screen_mode", vrhr::cscr)
->editable(comp_desc, "VR computer screen", 'c');
}
auto hookc = addHook(hooks_configfile, 100, addconfig);
#endif
EX bool rec;
EX void render_controllers() {
if(!state) return;
dynamicval<bool> rc(rec, true);
for(int i=0; i<(int)vr::k_unMaxTrackedDeviceCount; i++)
if(vrdata.device_models[i]) {
resetbuffer rb;
state = 2;
dynamicval<eModel> m(pmodel, mdPerspective);
dynamicval<ld> ms(sightranges[geometry], 100);
for(int e=0; e<3; e++) {
if(e < 2) {
vr_eye_settings ey;
ey.use(e);
}
else {
state = 1;
rb.reset();
calcparam();
current_display->set_viewport(0);
calcparam();
reset_projection();
current_display->set_all(0, 0);
if(cscr != eCompScreen::single || !controllers_on_desktop) goto next_model;
state = 4;
}
E4;
hmd_mvp = sm * hmd_at * vrdata.pose_matrix[i] * sm * Id;
if(e < 2)
hmd_mvp = vrdata.proj[e] * inverse(vrdata.eyepos[e]) * hmd_mvp;
else
hmd_mv = hmd_mvp;
hmd_pre = Id;
reset_projection();
current_display->next_shader_flags = GF_TEXTURE;
current_display->set_all(0, 0);
glhr::set_depthtest(false);
glhr::set_depthtest(true);
glhr::set_depthwrite(false);
glhr::set_depthwrite(true);
glClear(GL_DEPTH_BUFFER_BIT);
glhr::id_modelview();
glhr::color2(0xFFFFFFFF);
prepare(vrdata.device_models[i]->vertices);
glBindTexture(GL_TEXTURE_2D, vrdata.device_models[i]->texture_id);
glDrawArrays(GL_TRIANGLES, 0, isize(vrdata.device_models[i]->vertices));
if(i == which_pointer) {
current_display->next_shader_flags = 0;
current_display->set_all(0, 0);
vector<glvertex> vex;
vex.push_back(glhr::makevertex(0.01, 0, 0));
vex.push_back(glhr::makevertex(-0.01, 0, 0));
vex.push_back(glhr::makevertex(0, 0, -pointer_distance));
glhr::current_vertices = nullptr;
glhr::vertices(vex);
glhr::color2(0xC0FFC0C0);
glDrawArrays(GL_TRIANGLES, 0, 3);
}
}
next_model: ;
}
}
EX void submit() {
if(!state) return;
for(int i=0; i<2; i++) {
auto eye = vr::EVREye(i);
auto& ey = vrdata.eyes[i];
resetbuffer rb;
glBindFramebuffer(GL_READ_FRAMEBUFFER, ey->m_nRenderFramebufferId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ey->m_nResolveFramebufferId );
glBlitFramebuffer( 0, 0, vrdata.xsize, vrdata.ysize, 0, 0, vrdata.xsize, vrdata.ysize, GL_COLOR_BUFFER_BIT, GL_LINEAR);
rb.reset();
vr::Texture_t texture = {(void*)(uintptr_t)ey->m_nResolveTextureId, vr::TextureType_OpenGL, vr::ColorSpace_Gamma };
vr::VRCompositor()->Submit(eye, &texture );
}
}
EX void handoff() {
if(!state) return;
vr::VRCompositor()->PostPresentHandoff();
}
#endif
EX }
}