mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-17 18:54:48 +00:00
1119 lines
40 KiB
C++
1119 lines
40 KiB
C++
// Hyperbolic Rogue -- embeddings
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file embeddings.cpp
|
|
* \brief Embedding 2D geometries into 3D
|
|
*
|
|
* This file handles primarily embedding 2D geometries into 3D.
|
|
*
|
|
* The following coordinate systems are used for embedding of 2D geometries into 3D:
|
|
*
|
|
* - *base* coordinates are simply the coordinate in the underlying 2D geometry. They support only two dimensions.
|
|
* - *logical* coordinates: X and Y are in the Beltrami-Klein or gnomonic model, or in horocyclic coordinates for binary-like tilings. Z coordinate is the altitude above the plane.
|
|
* - *logical_scaled* coordinates: X and Y are scaled (and possibly rotated in the XY plane) in order to match the scale and orientation of the ambient 3D geometry. They are a linear transformation of logical.
|
|
* - *intermediate* coordinates: they use the same assignment of coordinates as actual, but they are a linear transformation of logical scaled.
|
|
* - *actual* coordinates: final coordinates in the ambient 3D geometry.
|
|
*
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
|
|
namespace hr {
|
|
|
|
EX namespace geom3 {
|
|
#if HDR
|
|
enum eSpatialEmbedding {
|
|
seNone,
|
|
seDefault,
|
|
seLowerCurvature,
|
|
seMuchLowerCurvature,
|
|
seProduct,
|
|
seNil,
|
|
seSol,
|
|
seNIH,
|
|
seSolN,
|
|
seCliffordTorus,
|
|
seProductH,
|
|
seProductS,
|
|
seSL2,
|
|
seCylinderE,
|
|
seCylinderH,
|
|
seCylinderHE,
|
|
seCylinderNil,
|
|
seCylinderHoro,
|
|
seCylinderSL2
|
|
};
|
|
#endif
|
|
|
|
EX vector<pair<string, string>> spatial_embedding_options = {
|
|
{"2D engine", "Use HyperRogue's 2D engine to simulate same curvature. Works well in top-down and third-person perspective. The Hypersian Rug mode can be used to project this to a surface."},
|
|
{"same curvature", "Embed as an equidistant surface in the 3D version of the same geometry."},
|
|
{"lower curvature", "Embed as a surface in a space of lower curvature."},
|
|
{"much lower curvature", "Embed sphere as a sphere in hyperbolic space."},
|
|
{"product", "Add one extra dimension in the Euclidean way."},
|
|
{"Nil", "Embed Euclidean plane into Nil."},
|
|
{"Sol", "Embed Euclidean or hyperbolic plane into Sol."},
|
|
{"stretched hyperbolic", "Embed Euclidean or hyperbolic plane into stretched hyperbolic geometry."},
|
|
{"stretched Sol", "Embed Euclidean or hyperbolic plane into stretched Sol geometry."},
|
|
{"Clifford Torus", "Embed Euclidean rectangular torus into S3."},
|
|
{"hyperbolic product", "Embed Euclidean or hyperbolic plane in the H2xR product space."},
|
|
{"spherical product", "Embed Euclidean cylinder or spherical plane in the H2xR product space."},
|
|
{"SL(2,R)", "Embed Euclidean plane in twisted product geometry."},
|
|
{"cylinder", "Embed Euclidean cylinder in Euclidean space."},
|
|
{"hyperbolic cylinder", "Embed Euclidean cylinder in hyperbolic space."},
|
|
{"product cylinder", "Embed Euclidean cylinder in H2xR space."},
|
|
{"Nil cylinder", "Embed Euclidean cylinder in Nil."},
|
|
{"horocylinder", "Embed Euclidean as a horocylinder in H2xR space."},
|
|
{"SL2 cylinder", "Embed Euclidean as a cylinder in twisted product geometry."},
|
|
};
|
|
|
|
EX eSpatialEmbedding spatial_embedding = seDefault;
|
|
EX ld euclid_embed_scale = 1;
|
|
EX ld euclid_embed_scale_y = 1;
|
|
EX ld euclid_embed_rotate = 0;
|
|
EX bool auto_configure = true;
|
|
EX bool flat_embedding = false;
|
|
EX bool inverted_embedding = false;
|
|
|
|
EX ld euclid_embed_scale_mean() { return euclid_embed_scale * sqrt(euclid_embed_scale_y); }
|
|
EX void set_euclid_embed_scale(ld x) { euclid_embed_scale = x; euclid_embed_scale_y = 1; euclid_embed_rotate = 0; }
|
|
|
|
EX bool supports_flat() { return among(spatial_embedding, seDefault, seProductH, seProductS); }
|
|
EX bool supports_invert() { return among(spatial_embedding, seDefault, seLowerCurvature, seMuchLowerCurvature, seNil, seSol, seNIH, seSolN, seProductH, seProductS); }
|
|
|
|
EX vector<geometryinfo> ginf_backup;
|
|
|
|
EX eGeometryClass mgclass() {
|
|
return (embedded_plane ? ginf_backup : ginf)[geometry].g.kind;
|
|
}
|
|
|
|
EX eGeometryClass ggclass() {
|
|
return (flipped ? ginf_backup : ginf)[geometry].g.kind;
|
|
}
|
|
|
|
EX bool any_cylinder(eSpatialEmbedding e) {
|
|
return among(e, seCylinderE, seCylinderH, seCylinderHE, seCylinderHoro, seCylinderNil);
|
|
}
|
|
|
|
EX bool in_product() {
|
|
return ggclass() == gcProduct;
|
|
}
|
|
|
|
EX bool flipped;
|
|
|
|
EX geometry_information* unflipped;
|
|
|
|
EX void light_flip(bool f) {
|
|
if(f != flipped) {
|
|
if(!flipped) unflipped = cgip;
|
|
swap(ginf[geometry].g, geom3::ginf_backup[geometry].g);
|
|
swap(ginf[geometry].flags, geom3::ginf_backup[geometry].flags);
|
|
if(!flipped) cgip = unflipped;
|
|
flipped = f;
|
|
}
|
|
}
|
|
|
|
#if HDR
|
|
template<class T> auto in_flipped(const T& f) -> decltype(f()) {
|
|
light_flip(true);
|
|
finalizer ff([] { light_flip(false); });
|
|
return f();
|
|
}
|
|
|
|
template<class T> auto in_not_flipped(const T& f) -> decltype(f()) {
|
|
light_flip(false);
|
|
finalizer ff([] { light_flip(true); });
|
|
return f();
|
|
}
|
|
|
|
#define IPF(x) geom3::in_flipped([&] { return (x); })
|
|
#endif
|
|
|
|
EX void apply_always3() {
|
|
if(!vid.always3 && !ginf_backup.empty()) {
|
|
ginf = ginf_backup;
|
|
ginf_backup.clear();
|
|
}
|
|
if(vid.always3 && ginf_backup.empty()) {
|
|
ginf_backup = ginf;
|
|
for(geometryinfo& gi: ginf) {
|
|
auto &g = gi.g;
|
|
if(vid.always3 && g.gameplay_dimension == 2 && g.graphical_dimension == 2) {
|
|
/* same-in-same by default */
|
|
auto og = g;
|
|
g.graphical_dimension++;
|
|
g.homogeneous_dimension++;
|
|
g.sig[3] = g.sig[2];
|
|
g.sig[2] = g.sig[1];
|
|
|
|
bool ieuclid = g.kind == gcEuclid;
|
|
bool isphere = g.kind == gcSphere;
|
|
bool ieuc_or_binary = ieuclid || (gi.flags & qBINARY);
|
|
|
|
if(spatial_embedding == seProduct && !ieuclid) g = giProduct, g.sig[2] = og.sig[2];
|
|
if(spatial_embedding == seProductH && ieuclid) g = giProductH;
|
|
if(spatial_embedding == seProductS && ieuclid) g = giProductS;
|
|
if(spatial_embedding == seLowerCurvature) g = (isphere ? giEuclid3 : giHyperb3);
|
|
if(spatial_embedding == seMuchLowerCurvature) g = giHyperb3;
|
|
if(spatial_embedding == seNil && ieuclid) g = giNil;
|
|
if(spatial_embedding == seCliffordTorus && ieuclid) g = giSphere3;
|
|
if(spatial_embedding == seSol && ieuc_or_binary) g = giSol;
|
|
if(spatial_embedding == seNIH && ieuc_or_binary) g = giNIH;
|
|
if(spatial_embedding == seSolN && ieuc_or_binary) g = giSolN;
|
|
if(spatial_embedding == seSL2 && ieuclid) g = giSL2;
|
|
if(spatial_embedding == seCylinderH && ieuclid) g = giHyperb3;
|
|
if(spatial_embedding == seCylinderHE && ieuclid) g = giProductH;
|
|
if(spatial_embedding == seCylinderHoro && ieuclid) g = giProductH;
|
|
if(spatial_embedding == seCylinderNil && ieuclid) g = giNil;
|
|
if(spatial_embedding == seCylinderSL2 && ieuclid) g = giSL2;
|
|
|
|
g.gameplay_dimension = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EX void configure_clifford_torus() {
|
|
rug::clifford_torus ct;
|
|
|
|
if(hypot_d(2, ct.xh) < 1e-6 || hypot_d(2, ct.yh) < 1e-6) {
|
|
euclid_embed_scale = TAU / 20.;
|
|
euclid_embed_scale_y = 1;
|
|
euclid_embed_rotate = 0;
|
|
vid.depth = 45._deg - 1;
|
|
vid.wall_height = 0.2;
|
|
vid.eye = vid.wall_height / 2 - vid.depth;
|
|
return;
|
|
}
|
|
|
|
euclid_embed_scale = TAU / hypot_d(2, ct.xh);
|
|
euclid_embed_scale_y = TAU / hypot_d(2, ct.yh) / euclid_embed_scale;
|
|
euclid_embed_rotate = atan2(ct.xh[1], ct.xh[0]) / degree;
|
|
|
|
ld alpha = atan2(ct.xfactor, ct.yfactor);
|
|
|
|
vid.depth = alpha - 1;
|
|
vid.wall_height = min(1 / euclid_embed_scale_mean(), (90._deg - alpha) * 0.9);
|
|
vid.eye = vid.wall_height / 2 - vid.depth;
|
|
}
|
|
|
|
EX void configure_cylinder() {
|
|
rug::clifford_torus ct;
|
|
hyperpoint vec;
|
|
if(sqhypot_d(2, ct.yh) > 1e-6) vec = ct.yh;
|
|
else if(sqhypot_d(2, ct.xh) > 1e-6) vec = ct.xh;
|
|
else vec = hyperpoint(10, 0, 0, 0);
|
|
|
|
euclid_embed_scale = TAU / hypot_d(2, vec);
|
|
euclid_embed_scale_y = 1;
|
|
euclid_embed_rotate = atan2(vec[1], vec[0]) / degree;
|
|
}
|
|
|
|
EX }
|
|
|
|
#if HDR
|
|
struct embedding_method {
|
|
virtual ld center_z() { return 0; }
|
|
virtual hyperpoint tile_center();
|
|
virtual transmatrix intermediate_to_actual_translation(hyperpoint i) = 0;
|
|
virtual hyperpoint intermediate_to_actual(hyperpoint i) { return intermediate_to_actual_translation(i) * tile_center(); }
|
|
virtual hyperpoint actual_to_intermediate(hyperpoint a) = 0;
|
|
virtual hyperpoint orthogonal_move(const hyperpoint& a, ld z);
|
|
virtual transmatrix map_relative_push(hyperpoint h);
|
|
virtual ld get_logical_z(hyperpoint a) { return (intermediate_to_logical_scaled * actual_to_intermediate(a))[2]; }
|
|
virtual hyperpoint logical_to_actual(hyperpoint l) { return intermediate_to_actual(logical_to_intermediate * l); }
|
|
virtual hyperpoint actual_to_logical(hyperpoint a) { return intermediate_to_logical * actual_to_intermediate(a); }
|
|
virtual hyperpoint base_to_actual(hyperpoint h) = 0;
|
|
virtual transmatrix base_to_actual(const transmatrix &T) = 0;
|
|
virtual hyperpoint actual_to_base(hyperpoint h) = 0;
|
|
virtual transmatrix actual_to_base(const transmatrix &T) = 0;
|
|
virtual hyperpoint normalize_flat(hyperpoint a) { return flatten(normalize(a)); }
|
|
virtual hyperpoint flatten(hyperpoint a);
|
|
virtual transmatrix get_radar_transform(const transmatrix& V);
|
|
virtual transmatrix get_lsti() { return Id; }
|
|
virtual transmatrix get_lti() { return logical_scaled_to_intermediate; }
|
|
virtual hyperpoint base_to_logical(hyperpoint h) = 0;
|
|
virtual hyperpoint logical_to_base(hyperpoint h) = 0;
|
|
|
|
virtual bool is_euc_in_product() { return false; }
|
|
virtual bool is_product_embedding() { return false; }
|
|
virtual bool is_euc_in_sl2() { return false; }
|
|
virtual bool is_same_in_same() { return false; }
|
|
virtual bool is_sph_in_low() { return false; }
|
|
virtual bool is_hyp_in_solnih() { return false; }
|
|
virtual bool is_euc_in_hyp() { return false; }
|
|
virtual bool is_euc_in_sph() { return false; }
|
|
virtual bool is_euc_in_nil() { return false; }
|
|
virtual bool is_euc_in_noniso() { return false; }
|
|
virtual bool is_in_noniso() { return false; }
|
|
virtual bool is_depth_limited() { return false; }
|
|
virtual bool is_cylinder() { return false; }
|
|
virtual bool no_spin() { return false; }
|
|
|
|
/* convert the tangent space in logical coordinates to actual coordinates */
|
|
transmatrix logical_to_intermediate;
|
|
|
|
/* convert the tangent space in actual coordinates to logical coordinates */
|
|
transmatrix intermediate_to_logical;
|
|
|
|
/* convert the tangent space in logical coordinates to actual coordinates */
|
|
transmatrix logical_scaled_to_intermediate;
|
|
|
|
/* convert the tangent space in actual coordinates to logical coordinates */
|
|
transmatrix intermediate_to_logical_scaled;
|
|
|
|
void prepare_lta();
|
|
void auto_configure();
|
|
};
|
|
|
|
#endif
|
|
|
|
EX geometry_information *swapper;
|
|
|
|
hyperpoint embedding_method::tile_center() {
|
|
ld z = center_z();
|
|
if(z == 0) return C0;
|
|
return lzpush(z) * C0;
|
|
}
|
|
|
|
transmatrix embedding_method::map_relative_push(hyperpoint a) {
|
|
auto i = actual_to_intermediate(a);
|
|
return intermediate_to_actual_translation(i);
|
|
}
|
|
|
|
hyperpoint embedding_method::orthogonal_move(const hyperpoint& a, ld z) {
|
|
auto i = actual_to_intermediate(a);
|
|
auto l = intermediate_to_logical_scaled * i;
|
|
l[2] += z;
|
|
i = logical_scaled_to_intermediate * l;
|
|
return intermediate_to_actual(i);
|
|
}
|
|
|
|
hyperpoint embedding_method::flatten(hyperpoint a) {
|
|
auto i = actual_to_intermediate(a);
|
|
auto l = intermediate_to_logical * i;
|
|
l[2] = 0; i = logical_to_intermediate * l;
|
|
return intermediate_to_actual(i);
|
|
}
|
|
|
|
/** dummy 'embedding method' used when no embedding is used (2D engine or 3D map) */
|
|
|
|
struct emb_none : embedding_method {
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override { return a; }
|
|
hyperpoint intermediate_to_actual(hyperpoint i) override { return i; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(i); }
|
|
transmatrix base_to_actual(const transmatrix& T) override { return T; }
|
|
hyperpoint base_to_actual(hyperpoint h) override { return h; }
|
|
transmatrix actual_to_base(const transmatrix& T) override { return T; }
|
|
hyperpoint actual_to_base(hyperpoint h) override { return h; }
|
|
hyperpoint orthogonal_move(const hyperpoint& h, ld z) {
|
|
if(GDIM == 2) return scale_point(h, geom3::scale_at_lev(z));
|
|
if(gproduct) return scale_point(h, exp(z));
|
|
if(sl2) return slr::translate(h) * cpush0(2, z);
|
|
if(nil) return nisot::translate(h) * cpush0(2, z);
|
|
if(translatable) return hpxy3(h[0], h[1], h[2] + z);
|
|
/* copied from emb_same_in_same */
|
|
ld u = 1;
|
|
if(h[2]) z += asin_auto(h[2]), u /= cos_auto(asin_auto(h[2]));
|
|
u *= cos_auto(z);
|
|
return hpxy3(h[0] * u, h[1] * u, sinh(z));
|
|
}
|
|
hyperpoint base_to_logical(hyperpoint h) override {
|
|
if(sn::in() || !bt::in())
|
|
return h;
|
|
#if CAP_BT
|
|
if(bt::in() && !mproduct) return bt::minkowski_to_bt(h);
|
|
#endif
|
|
return h;
|
|
}
|
|
hyperpoint logical_to_base(hyperpoint h) override {
|
|
if(sn::in() || !bt::in())
|
|
return ultra_normalize(h);
|
|
#if CAP_BT
|
|
if(bt::in() && !mproduct)
|
|
return bt::bt_to_minkowski(h);
|
|
#endif
|
|
return h;
|
|
}
|
|
};
|
|
|
|
/** embeddings methods that are not emb_none */
|
|
|
|
struct emb_actual : embedding_method {
|
|
|
|
hyperpoint base_to_logical(hyperpoint h) override {
|
|
if(bt::in()) {
|
|
auto h1 = bt::inverse_horopoint(h);
|
|
h1[2] = 0; h1[3] = 1;
|
|
return h1;
|
|
}
|
|
h /= h[2];
|
|
h[2] = 0; h[3] = 1;
|
|
return h;
|
|
}
|
|
|
|
hyperpoint logical_to_base(hyperpoint h) override {
|
|
if(bt::in()) {
|
|
auto h1 = bt::get_horopoint(h);
|
|
h1[3] = 1;
|
|
return h1;
|
|
}
|
|
h[2] = 1; h = normalize(h);
|
|
h[3] = 1;
|
|
return h;
|
|
}
|
|
};
|
|
|
|
/** embed in the 3D variant of the same geometry */
|
|
|
|
struct emb_same_in_same : emb_actual {
|
|
virtual bool is_same_in_same() { return true; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(i); }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override { return a; }
|
|
hyperpoint orthogonal_move(const hyperpoint& h, ld z) override {
|
|
ld u = 1;
|
|
if(h[2]) z += asin_auto(h[2]), u /= cos_auto(asin_auto(h[2]));
|
|
u *= cos_auto(z);
|
|
return hpxy3(h[0] * u, h[1] * u, sinh(z));
|
|
}
|
|
transmatrix base_to_actual(const transmatrix &T0) override {
|
|
auto T = T0;
|
|
for(int i=0; i<4; i++) T[i][3] = T[i][2], T[i][2] = 0;
|
|
for(int i=0; i<4; i++) T[3][i] = T[2][i], T[i][2] = 0;
|
|
for(int i=0; i<4; i++) T[i][2] = T[2][i] = 0;
|
|
T[2][2] = 1;
|
|
return T;
|
|
}
|
|
transmatrix actual_to_base(const transmatrix &T0) override {
|
|
auto T = T0;
|
|
for(int i=0; i<4; i++) T[i][2] = T[i][3], T[i][3] = 0;
|
|
for(int i=0; i<4; i++) T[2][i] = T[3][i], T[i][3] = 0;
|
|
T[3][3] = 1;
|
|
fixmatrix(T);
|
|
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++) if(isnan(T[i][j])) return Id;
|
|
return T;
|
|
}
|
|
hyperpoint base_to_actual(hyperpoint h) override {
|
|
h[3] = h[2]; h[2] = 0;
|
|
return h;
|
|
}
|
|
hyperpoint actual_to_base(hyperpoint h) override {
|
|
h[2] = h[3]; h[3] = 0;
|
|
return h;
|
|
}
|
|
transmatrix map_relative_push(hyperpoint h) override {
|
|
ld z = asin_auto(h[2]);
|
|
ld u = 1 / cos_auto(z);
|
|
auto h1 = hpxy3(h[0] * u, h[1] * u, 0);
|
|
return rgpushxto0(h1) * zpush(z);
|
|
}
|
|
|
|
hyperpoint actual_to_logical(hyperpoint h) override {
|
|
ld z = asin_auto(h[2]);
|
|
ld u = 1 / cos_auto(z);
|
|
auto h1 = hpxy3(h[0] * u, h[1] * u, 0);
|
|
h1[2] = h1[3];
|
|
geom3::light_flip(true);
|
|
h1 = base_to_logical(h1);
|
|
geom3::light_flip(false);
|
|
return h1;
|
|
}
|
|
|
|
hyperpoint logical_to_actual(hyperpoint h) override {
|
|
geom3::light_flip(true);
|
|
auto b = logical_to_base(h);
|
|
geom3::light_flip(false);
|
|
b[3] = b[2]; b[2] = 0;
|
|
return orthogonal_move(b, h[2]);
|
|
}
|
|
|
|
hyperpoint flatten(hyperpoint h) override {
|
|
ld z = asin_auto(h[2]);
|
|
ld u = 1 / cos_auto(z);
|
|
return hpxy3(h[0] * u, h[1] * u, 0);
|
|
}
|
|
|
|
};
|
|
|
|
/** embed in the product geometry */
|
|
|
|
struct emb_product_embedding : emb_actual {
|
|
virtual bool is_product_embedding() { return true; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) { return rgpushxto0(i); }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) { return a; }
|
|
hyperpoint flatten(hyperpoint h) { h /= exp(zlevel(h)); return h; }
|
|
hyperpoint orthogonal_move(const hyperpoint& h, ld z) { return h * exp(z); }
|
|
transmatrix base_to_actual(const transmatrix &T) override { return T; }
|
|
transmatrix actual_to_base(const transmatrix &T0) override {
|
|
auto T = T0; fixmatrix(T);
|
|
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++) if(isnan(T[i][j])) return Id;
|
|
return T;
|
|
}
|
|
hyperpoint base_to_actual(hyperpoint h) override { return h; }
|
|
hyperpoint actual_to_base(hyperpoint h) override { return flatten(h); }
|
|
transmatrix map_relative_push(hyperpoint h) override { return rgpushxto0(h); }
|
|
|
|
hyperpoint actual_to_logical(hyperpoint h) override {
|
|
ld z = zlevel(h);
|
|
h /= exp(z);
|
|
h = base_to_logical(h);
|
|
h[2] = z;
|
|
return h;
|
|
}
|
|
|
|
hyperpoint logical_to_actual(hyperpoint h) override {
|
|
return logical_to_base(h) * exp(h[2]);
|
|
}
|
|
};
|
|
|
|
/** embed Euclidean plane as horosphere */
|
|
|
|
struct emb_euc_in_hyp : emb_actual {
|
|
bool is_euc_in_hyp() override { return true; }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override { return deparabolic13(a); }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return parabolic13_at(i); }
|
|
transmatrix base_to_actual(const transmatrix &T) override {
|
|
geom3::light_flip(true);
|
|
hyperpoint mov = T * C02;
|
|
transmatrix U = gpushxto0(mov) * T;
|
|
geom3::light_flip(false);
|
|
for(int i=0; i<4; i++) U[i][3] = U[3][i] = i == 3;
|
|
return parabolic13(mov[0], mov[1]) * U;
|
|
}
|
|
hyperpoint base_to_actual(hyperpoint h) override {
|
|
h[3] = h[2]; h[2] = 0; return parabolic13(h[0], h[1]) * C0;
|
|
}
|
|
hyperpoint actual_to_base(hyperpoint h) override { return deparabolic13(h); }
|
|
transmatrix actual_to_base(const transmatrix& T) override { hyperpoint h = deparabolic13(T * C0); return eupush(h[0], h[1]); }
|
|
};
|
|
|
|
/** sphere into a isotropic space of higher curvature */
|
|
|
|
struct emb_sphere_in_low : emb_actual {
|
|
bool is_sph_in_low() override { return true; }
|
|
bool is_depth_limited() override { return true; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
throw hr_exception("illegal function");
|
|
}
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
throw hr_exception("illegal function");
|
|
}
|
|
ld center_z() { return 1; }
|
|
transmatrix map_relative_push(hyperpoint a) {
|
|
ld z = hdist0(a);
|
|
geom3::light_flip(true);
|
|
auto h1 = normalize(a);
|
|
transmatrix T = rgpushxto0(h1);
|
|
geom3::light_flip(false);
|
|
return T * zpush(z);
|
|
}
|
|
transmatrix base_to_actual(const transmatrix &T0) override {
|
|
auto T = T0;
|
|
for(int i=0; i<4; i++) T[i][3] = T[3][i] = i == 3;
|
|
return T;
|
|
}
|
|
hyperpoint base_to_actual(hyperpoint h) override {
|
|
if(euclid) h[3] = 1;
|
|
else h *= sinh(1), h[3] = cosh(1);
|
|
return h;
|
|
}
|
|
hyperpoint actual_to_base(hyperpoint h) override { return h; }
|
|
transmatrix actual_to_base(const transmatrix& T) override { return T; }
|
|
ld get_logical_z(hyperpoint a) override { return hdist0(a) - 1; }
|
|
hyperpoint flatten(hyperpoint a) override {
|
|
ld d = hdist0(a);
|
|
if(d == 0) return a;
|
|
a *= sin_auto(1) / sin_auto(d);
|
|
a[3] = cos_auto(1);
|
|
return a;
|
|
}
|
|
hyperpoint orthogonal_move(const hyperpoint& h, ld z) override {
|
|
ld z0 = hdist0(h);
|
|
ld f = sin_auto(z0 + z) / sin_auto(z0);
|
|
hyperpoint hf = h * f;
|
|
hf[3] = cos_auto(z0 + z);
|
|
return hf;
|
|
}
|
|
hyperpoint logical_to_actual(hyperpoint h) {
|
|
auto z = h[2];
|
|
h[2] = 1;
|
|
geom3::light_flip(true);
|
|
h = normalize(h);
|
|
geom3::light_flip(false);
|
|
h *= (1 + z);
|
|
h[3] = 1;
|
|
return h;
|
|
}
|
|
hyperpoint actual_to_logical(hyperpoint h) {
|
|
ld z = get_logical_z(h);
|
|
geom3::light_flip(true);
|
|
h = kleinize(h);
|
|
geom3::light_flip(false);
|
|
h[2] = z; h[3] = 1;
|
|
return h;
|
|
}
|
|
};
|
|
|
|
/** abstract class for embeddings of Euclidean plane; these embeddings are not isotropic */
|
|
|
|
struct emb_euclid_noniso : emb_actual {
|
|
bool is_euc_in_noniso() override { return true; }
|
|
bool is_in_noniso() override { return true; }
|
|
transmatrix base_to_actual(const transmatrix &T) override {
|
|
auto T0 = T;
|
|
hyperpoint h = get_column(T0, 2);
|
|
h[2] = 0; h[3] = 1;
|
|
return intermediate_to_actual_translation( logical_to_intermediate * h);
|
|
}
|
|
hyperpoint base_to_actual(hyperpoint h) override {
|
|
h[2] = 0; h[3] = 1;
|
|
return intermediate_to_actual_translation( logical_to_intermediate * h ) * tile_center();
|
|
}
|
|
hyperpoint actual_to_base(hyperpoint h) override {
|
|
hyperpoint h1 = intermediate_to_logical * actual_to_intermediate(h);
|
|
h1[2] = 1; h1[3] = 0;
|
|
return h1;
|
|
}
|
|
transmatrix actual_to_base(const transmatrix& T) override { hyperpoint h = actual_to_base(T * tile_center()); return eupush(h[0], h[1]); }
|
|
|
|
transmatrix get_lti() override {
|
|
transmatrix lti = Id;
|
|
lti[0][0] *= geom3::euclid_embed_scale;
|
|
lti[1][1] *= geom3::euclid_embed_scale * geom3::euclid_embed_scale_y;
|
|
return logical_scaled_to_intermediate * cspin(0, 1, geom3::euclid_embed_rotate * degree) * lti;
|
|
}
|
|
};
|
|
|
|
struct emb_euc_in_product : emb_euclid_noniso {
|
|
bool is_euc_in_product() override { return true; }
|
|
bool no_spin() override { return true; }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
ld bz = zlevel(a);
|
|
auto h1 = a / exp(bz);
|
|
ld by = asin_auto(h1[1]);
|
|
ld bx = atan_auto(h1[0] / h1[2]);
|
|
return hyperpoint(bx, by, bz, 1);
|
|
}
|
|
transmatrix get_lsti() override { return cspin90(2, 1); }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) {
|
|
return zpush(i[2]) * xpush(i[0]) * ypush(i[1]);
|
|
}
|
|
};
|
|
|
|
struct emb_euc_in_sl2 : emb_euclid_noniso {
|
|
|
|
transmatrix esl2_zpush(ld z) { return cspin(2, 3, z) * cspin(0, 1, z); }
|
|
|
|
hyperpoint intermediate_to_actual(hyperpoint i) override {
|
|
return esl2_zpush(i[2]) * xpush(i[0]) * ypush0(i[1]);
|
|
}
|
|
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
return esl2_zpush(i[2]) * xpush(i[0]) * ypush(i[1]);
|
|
}
|
|
|
|
hyperpoint actual_to_intermediate(hyperpoint h) override {
|
|
ld a1 = (h[0] * h[3] - h[1] * h[2]) / (-h[2] * h[2] - h[1] * h[1] -h[0] * h[0] - h[3] * h[3]);
|
|
// a1 is S*sqrt(1+S*S) / (1+2*S*S), where S = sinh(-x) and C = cosh(-x); U is S*S
|
|
ld a = a1 * a1;
|
|
ld b = 4 * a - 1;
|
|
ld U = sqrt(.25 - a/b) - .5;
|
|
ld S = sqrt(U) * (a1 > 0 ? 1 : -1);
|
|
ld x = -asinh(S);
|
|
h = lorentz(0, 3, -x) * lorentz(1, 2, x) * h;
|
|
ld y = h[3]*h[3] > h[2]*h[2] ? atanh(h[1] / h[3]) : atanh(h[0] / h[2]);
|
|
h = lorentz(0, 2, -y) * lorentz(1, 3, -y) * h;
|
|
ld z = atan2(h[2], h[3]);
|
|
return hyperpoint(x, y, z, 0);
|
|
}
|
|
|
|
bool is_euc_in_sl2() override { return true; }
|
|
bool no_spin() override { return true; }
|
|
transmatrix get_lsti() override { return cspin90(2, 1); }
|
|
};
|
|
|
|
/* for both seCylinderH and seCylinderE. Possibly actually works for CliffordTorus too */
|
|
struct emb_euc_cylinder : emb_euclid_noniso {
|
|
bool is_cylinder() override { return true; }
|
|
ld center_z() override { return 1; }
|
|
bool is_depth_limited() override { return true; }
|
|
transmatrix get_lsti() override { return cspin90(0, 1); }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
ld z0 = asin_auto(hypot(a[1], a[2]));
|
|
ld x0 = a[0];
|
|
if(z0 == 0) return hyperpoint(x0, 0, 0, 1);
|
|
x0 = asin_auto(x0 / cos_auto(z0));
|
|
ld y0 = z0 ? atan2(a[1], a[2]) : 0;
|
|
return point31(x0, y0, z0-1);
|
|
}
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
return xpush(i[0]) * cspin(1, 2, i[1]) * zpush(i[2]);
|
|
}
|
|
};
|
|
|
|
struct emb_euc_cylinder_he : emb_euc_cylinder {
|
|
bool no_spin() override { return true; }
|
|
transmatrix get_lsti() override { return cspin90(0, 2); }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
ld z0 = zlevel(a);
|
|
a /= exp(z0);
|
|
ld y0 = atan2(a[1], a[0]);
|
|
ld x0 = asin_auto(hypot(a[0], a[1]));
|
|
return hyperpoint(x0-1, y0, z0, 1);
|
|
}
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
return zpush(i[2]) * cspin(1, 0, i[1]) * xpush(i[0]);
|
|
}
|
|
};
|
|
|
|
struct emb_euc_cylinder_horo : emb_euc_cylinder {
|
|
ld center_z() override { return 0; }
|
|
bool no_spin() override { return true; }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
ld z0 = zlevel(a);
|
|
a /= exp(z0);
|
|
auto hy = deparabolic13(a);
|
|
hy[2] = z0;
|
|
return hy;
|
|
}
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
return zpush(i[2]) * parabolic1(i[1]) * xpush(i[0]);
|
|
}
|
|
transmatrix get_lsti() override {
|
|
return cspin90(0, 2);
|
|
}
|
|
};
|
|
|
|
struct emb_euc_cylinder_sl2 : emb_euc_cylinder {
|
|
bool no_spin() override { return true; }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
hyperpoint i = point31(0, 0, 0);
|
|
i[2] = atan2(a[2], a[3]);
|
|
a = cspin(1, 0, i[2]) * cspin(3, 2, i[2]) * a;
|
|
i[1] = (a[0] || a[1]) ? atan2(a[0], a[1]) : 0;
|
|
a = cspin(1, 0, i[1]) * a;
|
|
i[0] = asinh(a[0]);
|
|
return i;
|
|
}
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
return cspin(2, 3, i[2]) * cspin(0, 1, i[2] + i[1]) * xpush(i[0]);
|
|
}
|
|
transmatrix get_lsti() override {
|
|
return cspin90(0, 2);
|
|
}
|
|
};
|
|
|
|
struct emb_euc_in_sph : emb_euclid_noniso {
|
|
bool is_euc_in_sph() override { return true; }
|
|
ld center_z() override { return 1; }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
ld tx = hypot(a[0], a[2]);
|
|
ld ty = hypot(a[1], a[3]);
|
|
ld x0 = atan2(a[0], a[2]);
|
|
ld y0 = atan2(a[1], a[3]);
|
|
ld z0 = atan2(tx, ty);
|
|
return hyperpoint(x0, y0, z0, 1);
|
|
}
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
return cspin(0, 2, i[0]) * cspin(1, 3, i[1]) * cspin(2, 3, i[2]);
|
|
}
|
|
};
|
|
|
|
struct emb_euc_in_nil : emb_euclid_noniso {
|
|
bool is_euc_in_nil() override { return true; }
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override { return a; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(i); }
|
|
transmatrix get_lsti() override { return cspin90(2, 1); }
|
|
};
|
|
|
|
struct emb_euc_in_solnih : emb_euclid_noniso {
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override { return a; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(i); }
|
|
};
|
|
|
|
struct emb_hyp_in_solnih : emb_actual {
|
|
bool is_hyp_in_solnih() override { return true; }
|
|
bool is_in_noniso() override { return true; }
|
|
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
|
|
if(cgclass == gcSol) i[0] *= exp(-i[2]);
|
|
if(cgclass == gcSolN) i[0] *= pow(2, -i[2]);
|
|
if(cgclass == gcNIH) i[0] *= pow(2, i[2]);
|
|
return rgpushxto0(i);
|
|
}
|
|
hyperpoint actual_to_intermediate(hyperpoint a) override {
|
|
if(cgclass == gcSol) a[0] *= exp(a[2]);
|
|
if(cgclass == gcSolN) a[0] *= pow(2, a[2]);
|
|
if(cgclass == gcNIH) a[0] *= pow(2, -a[2]);
|
|
return a;
|
|
}
|
|
transmatrix base_to_actual(const transmatrix &T) override {
|
|
auto T1 = T;
|
|
auto h = get_column(T1, 2);
|
|
return rgpushxto0(base_to_actual(h));
|
|
}
|
|
hyperpoint base_to_actual(hyperpoint h) override {
|
|
// copied from deparabolic13
|
|
h /= (1 + h[2]);
|
|
h[0] -= 1;
|
|
h /= sqhypot_d(2, h);
|
|
h[0] += .5;
|
|
ld hx = log(2) + log(-h[0]);
|
|
if(cgclass == gcNIH) hx /= log(3);
|
|
if(cgclass == gcSolN) hx /= log(3);
|
|
ld hy = h[1] * 2;
|
|
return point31(0, -hy, hx);
|
|
}
|
|
transmatrix actual_to_base(const transmatrix& T) override {
|
|
return Id; /* TBD actual computation */
|
|
}
|
|
hyperpoint actual_to_base(hyperpoint h) override {
|
|
return C02; /* TBD actual computation */
|
|
}
|
|
transmatrix get_lsti() override { return cspin90(0, 1) * cspin90(1, 2) * cspin90(0, 1); }
|
|
hyperpoint orthogonal_move(const hyperpoint& a, ld z) override { return nisot::translate(a) * cpush0(0, z); }
|
|
};
|
|
|
|
/* the remaining methods */
|
|
/*=======================*/
|
|
|
|
void embedding_method::prepare_lta() {
|
|
bool b = geom3::flipped;
|
|
if(b) geom3::light_flip(false);
|
|
|
|
logical_scaled_to_intermediate = get_lsti();
|
|
logical_to_intermediate = get_lti();
|
|
intermediate_to_logical = inverse(logical_to_intermediate);
|
|
intermediate_to_logical_scaled = inverse(logical_scaled_to_intermediate);
|
|
if(b) geom3::light_flip(true);
|
|
}
|
|
|
|
/** pick the embedding_method for the current setting */
|
|
EX unique_ptr<embedding_method> make_embed() {
|
|
|
|
embedding_method *emb1;
|
|
using namespace geom3;
|
|
|
|
if(!embedded_plane)
|
|
emb1 = new emb_none;
|
|
else if(any_cylinder(spatial_embedding) && mgclass() == gcEuclid)
|
|
emb1 = spatial_embedding == seCylinderHE ? new emb_euc_cylinder_he :
|
|
spatial_embedding == seCylinderHoro ? new emb_euc_cylinder_horo :
|
|
spatial_embedding == seCylinderSL2 ? new emb_euc_cylinder_sl2 :
|
|
new emb_euc_cylinder;
|
|
else if(mgclass() == ggclass())
|
|
emb1 = new emb_same_in_same;
|
|
else if(mgclass() == gcSphere && among(ggclass(), gcHyperbolic, gcEuclid))
|
|
emb1 = new emb_sphere_in_low;
|
|
else if(mgclass() == gcEuclid && ggclass() == gcSphere)
|
|
emb1 = new emb_euc_in_sph;
|
|
else if(mgclass() == gcEuclid && ggclass() == gcSL2)
|
|
emb1 = new emb_euc_in_sl2;
|
|
else if(mgclass() == gcHyperbolic && among(ggclass(), gcSol, gcNIH, gcSolN))
|
|
emb1 = new emb_hyp_in_solnih;
|
|
else if(mgclass() == gcEuclid && ggclass() == gcProduct)
|
|
emb1 = new emb_euc_in_product;
|
|
else if(ggclass() == gcProduct)
|
|
emb1 = new emb_product_embedding;
|
|
else if(mgclass() == gcEuclid && ggclass() == gcNil)
|
|
emb1 = new emb_euc_in_nil;
|
|
else if(mgclass() == gcEuclid && ggclass() == gcHyperbolic)
|
|
emb1 = new emb_euc_in_hyp;
|
|
else if(mgclass() == gcEuclid && among(ggclass(), gcSol, gcNIH, gcSolN))
|
|
emb1 = new emb_euc_in_solnih;
|
|
else
|
|
throw hr_exception("unknown embedding");
|
|
|
|
unique_ptr<embedding_method> emb(emb1);
|
|
|
|
emb->prepare_lta();
|
|
return emb;
|
|
}
|
|
|
|
EX hyperpoint orthogonal_move(hyperpoint h, ld z ) { return cgi.emb->orthogonal_move(h, z); }
|
|
|
|
EX transmatrix unswap_spin(transmatrix T) {
|
|
return cgi.emb->intermediate_to_logical_scaled * T * cgi.emb->logical_scaled_to_intermediate;
|
|
}
|
|
|
|
/** rotate by alpha degrees in the XY plane */
|
|
EX transmatrix spin(ld alpha) {
|
|
if(cgi.emb->no_spin()) return Id;
|
|
return cgi.emb->logical_scaled_to_intermediate * cspin(0, 1, alpha) * cgi.emb->intermediate_to_logical_scaled;
|
|
}
|
|
|
|
/** rotate by 90 degrees in the XY plane */
|
|
EX transmatrix spin90() {
|
|
if(cgi.emb->no_spin()) return Id;
|
|
return cgi.emb->logical_scaled_to_intermediate * cspin90(0, 1) * cgi.emb->intermediate_to_logical_scaled;
|
|
}
|
|
|
|
/** rotate by 180 degrees in the XY plane */
|
|
EX transmatrix spin180() {
|
|
if(cgi.emb->no_spin()) return Id;
|
|
return cgi.emb->logical_scaled_to_intermediate * cspin180(0, 1) * cgi.emb->intermediate_to_logical_scaled;
|
|
}
|
|
|
|
/** rotate by 270 degrees in the XY plane */
|
|
EX transmatrix spin270() {
|
|
if(cgi.emb->no_spin()) return Id;
|
|
return cgi.emb->logical_scaled_to_intermediate * cspin90(1, 0) * cgi.emb->intermediate_to_logical_scaled;
|
|
}
|
|
|
|
EX transmatrix lzpush(ld z) {
|
|
auto <i = cgi.emb->logical_scaled_to_intermediate;
|
|
if(lti[0][2]) return cpush(0, lti[0][2] * z);
|
|
if(lti[1][2]) return cpush(1, lti[1][2] * z);
|
|
return cpush(2, z);
|
|
}
|
|
|
|
EX transmatrix lxpush(ld alpha) {
|
|
if(embedded_plane) {
|
|
geom3::light_flip(true);
|
|
auto t = cpush(0, alpha);
|
|
geom3::light_flip(false);
|
|
return cgi.emb->base_to_actual(t);
|
|
}
|
|
return cpush(0, alpha);
|
|
}
|
|
|
|
EX hyperpoint lxpush0(ld x) { return lxpush(x) * tile_center(); }
|
|
|
|
EX transmatrix lspintox(const hyperpoint& H) {
|
|
if(cgi.emb->no_spin()) return Id;
|
|
if(embedded_plane) {
|
|
hyperpoint H1 = cgi.emb->intermediate_to_logical_scaled * H;
|
|
return cgi.emb->logical_scaled_to_intermediate * spintoc(H1, 0, 1) * cgi.emb->intermediate_to_logical_scaled;
|
|
}
|
|
if(WDIM == 2 || gproduct) return spintoc(H, 0, 1);
|
|
transmatrix T1 = spintoc(H, 0, 1);
|
|
return spintoc(T1*H, 0, 2) * T1;
|
|
}
|
|
|
|
EX transmatrix lrspintox(const hyperpoint& H) {
|
|
if(cgi.emb->no_spin()) return Id;
|
|
if(embedded_plane) {
|
|
hyperpoint H1 = cgi.emb->intermediate_to_logical_scaled * H;
|
|
return cgi.emb->logical_scaled_to_intermediate * rspintoc(H1, 0, 1) * cgi.emb->intermediate_to_logical_scaled;
|
|
}
|
|
if(WDIM == 2 || gproduct) return rspintoc(H, 0, 1);
|
|
transmatrix T1 = spintoc(H, 0, 1);
|
|
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
|
|
}
|
|
|
|
/** tangent vector in logical direction Z */
|
|
EX hyperpoint lztangent(ld z) {
|
|
return cgi.emb->logical_to_intermediate * ctangent(2, z);
|
|
}
|
|
|
|
EX hyperpoint tile_center() { return cgi.emb->tile_center(); }
|
|
|
|
EX hyperpoint lspinpush0(ld alpha, ld x) {
|
|
bool f = embedded_plane;
|
|
if(f) geom3::light_flip(true);
|
|
if(embedded_plane) throw hr_exception("still embedded plane");
|
|
hyperpoint h = xspinpush0(alpha, x);
|
|
if(f) geom3::light_flip(false);
|
|
if(f) return cgi.emb->base_to_actual(h);
|
|
return h;
|
|
}
|
|
|
|
EX hyperpoint xspinpush0(ld alpha, ld x) {
|
|
if(embedded_plane) return lspinpush0(alpha, x);
|
|
if(sl2) return slr::polar(x, -alpha, 0);
|
|
hyperpoint h = Hypc;
|
|
h[LDIM] = cos_auto(x);
|
|
h[0] = sin_auto(x) * cos(alpha);
|
|
h[1] = sin_auto(x) * -sin(alpha);
|
|
return h;
|
|
}
|
|
|
|
EX transmatrix xspinpush(ld dir, ld dist) {
|
|
if(embedded_plane) {
|
|
geom3::light_flip(true);
|
|
transmatrix T = spin(dir) * xpush(dist) * spin(-dir);
|
|
geom3::light_flip(false);
|
|
return cgi.emb->base_to_actual(T);
|
|
}
|
|
else if(euclid)
|
|
return eupush(cos(dir) * dist, -sin(dir) * dist);
|
|
else
|
|
return spin(dir) * xpush(dist) * spin(-dir);
|
|
}
|
|
|
|
EX const transmatrix& lmirror() {
|
|
if(cgi.emb->is_euc_in_product()) return Id;
|
|
if(cgi.emb->logical_to_intermediate[2][1]) return MirrorZ;
|
|
if(cgi.emb->is_hyp_in_solnih()) return MirrorZ;
|
|
return Mirror;
|
|
}
|
|
|
|
transmatrix embedding_method::get_radar_transform(const transmatrix& V) {
|
|
if(cgi.emb->is_euc_in_sl2()) {
|
|
return inverse(actual_view_transform * V);
|
|
}
|
|
else if(nonisotropic) {
|
|
transmatrix T = actual_view_transform * V;
|
|
ld z = -tC0(view_inverse(T)) [2];
|
|
transmatrix R = actual_view_transform;
|
|
R = logical_scaled_to_intermediate * R;
|
|
if(R[1][2] || R[2][2])
|
|
R = cspin(1, 2, -atan2(R[1][2], R[2][2])) * R;
|
|
if(R[0][2] || R[2][2])
|
|
R = cspin(0, 2, -atan2(R[0][2], R[2][2])) * R;
|
|
if(is_hyp_in_solnih()) R = Id;
|
|
R = intermediate_to_logical_scaled * R;
|
|
return inverse(R) * zpush(-z);
|
|
}
|
|
else if(gproduct) {
|
|
transmatrix T = V;
|
|
ld z = zlevel(tC0(inverse(T)));
|
|
|
|
transmatrix R = NLP;
|
|
if(R[1][2] || R[2][2])
|
|
R = cspin(1, 2, -atan2(R[1][2], R[2][2])) * R;
|
|
if(R[0][2] || R[2][2])
|
|
R = cspin(0, 2, -atan2(R[0][2], R[2][2])) * R;
|
|
|
|
return R * zpush(z);
|
|
}
|
|
else if(is_euc_in_sph()) {
|
|
return inverse(V);
|
|
}
|
|
else if(is_cylinder()) {
|
|
return inverse(V);
|
|
}
|
|
else {
|
|
transmatrix T = actual_view_transform * V;
|
|
transmatrix U = view_inverse(T);
|
|
|
|
if(T[0][2] || T[1][2])
|
|
T = spin(-atan2(T[0][2], T[1][2])) * T;
|
|
if(T[1][2] || T[2][2])
|
|
T = cspin(1, 2, -atan2(T[1][2], T[2][2])) * T;
|
|
|
|
ld z = -asin_auto(tC0(view_inverse(T)) [2]);
|
|
T = zpush(-z) * T;
|
|
|
|
return T * U;
|
|
}
|
|
}
|
|
|
|
EX void swapmatrix(transmatrix& T) {
|
|
if(embedded_plane) T = swapper->emb->base_to_actual(T);
|
|
else T = swapper->emb->actual_to_base(T);
|
|
}
|
|
|
|
EX void swappoint(hyperpoint& h) {
|
|
if(embedded_plane) h = swapper->emb->base_to_actual(h);
|
|
else h = swapper->emb->actual_to_base(h);
|
|
}
|
|
|
|
void embedding_method::auto_configure() {
|
|
using namespace geom3;
|
|
ld ms = min<ld>(cgi.scalefactor, 1);
|
|
vid.depth = ms;
|
|
vid.wall_height = 1.5 * ms;
|
|
if(sphere && msphere) {
|
|
vid.depth = 30 * degree;
|
|
vid.wall_height = 60 * degree;
|
|
}
|
|
vid.human_wall_ratio = 0.8;
|
|
if(mgclass() == gcEuclid && allowIncreasedSight() && vid.use_smart_range == 0) {
|
|
genrange_bonus = gamerange_bonus = sightrange_bonus = cgi.base_distlimit * 3/2;
|
|
}
|
|
vid.camera = 0;
|
|
vid.eye = 0;
|
|
if(is_sph_in_low()) {
|
|
vid.depth = 0;
|
|
vid.wall_height = -1;
|
|
vid.eye = -0.5;
|
|
if(inverted_embedding) {
|
|
vid.wall_height = 1.4;
|
|
vid.eye = 0.2;
|
|
vid.depth = 0.5;
|
|
}
|
|
}
|
|
if(supports_flat() && flat_embedding) {
|
|
vid.eye += vid.depth / 2;
|
|
vid.depth = 0;
|
|
}
|
|
if(spatial_embedding == seDefault && !flat_embedding && inverted_embedding) {
|
|
vid.eye += vid.depth * 1.5;
|
|
vid.depth *= -1;
|
|
}
|
|
if((is_euc_in_hyp() || is_euc_in_noniso()) && inverted_embedding) {
|
|
vid.wall_height *= -1;
|
|
vid.eye = -2 * vid.depth;
|
|
}
|
|
if(is_euc_in_nil() || is_euc_in_sl2()) {
|
|
vid.depth = 0;
|
|
vid.eye = vid.wall_height / 2;
|
|
}
|
|
if(is_euc_in_hyp() && spatial_embedding == seMuchLowerCurvature) {
|
|
vid.eye = inverted_embedding ? -vid.depth : vid.depth;
|
|
vid.depth = 0;
|
|
}
|
|
if(msphere && spatial_embedding == seProduct) {
|
|
vid.depth = 0;
|
|
vid.wall_height = 2;
|
|
vid.eye = 2;
|
|
}
|
|
if(pmodel == mdDisk) pmodel = nonisotropic ? mdGeodesic : mdPerspective;
|
|
if(cgflags & qIDEAL && vid.texture_step < 32)
|
|
vid.texture_step = 32;
|
|
#if CAP_RACING
|
|
racing::player_relative = true;
|
|
#endif
|
|
if(hyperbolic && is_same_in_same() && spatial_embedding == seLowerCurvature) {
|
|
vid.eye += vid.depth;
|
|
vid.depth *= 2;
|
|
if(inverted_embedding) {
|
|
vid.eye = 1;
|
|
vid.depth *= -1;
|
|
vid.wall_height *= -1;
|
|
}
|
|
}
|
|
if(hyperbolic && is_same_in_same() && spatial_embedding == seMuchLowerCurvature) {
|
|
vid.eye += vid.depth;
|
|
vid.depth *= 3;
|
|
if(inverted_embedding) {
|
|
vid.eye = 2;
|
|
vid.depth *= -1;
|
|
vid.wall_height *= -1;
|
|
}
|
|
}
|
|
if(spatial_embedding == seCliffordTorus) configure_clifford_torus();
|
|
if(spatial_embedding == seProductS) configure_cylinder();
|
|
if(spatial_embedding == seCylinderE) configure_cylinder();
|
|
if(spatial_embedding == seCylinderH) configure_cylinder();
|
|
if(spatial_embedding == seCylinderHE) configure_cylinder();
|
|
if(spatial_embedding == seCylinderSL2) configure_cylinder();
|
|
}
|
|
|
|
EX void invoke_embed(geom3::eSpatialEmbedding se) {
|
|
if(GDIM == 3) { if(geom3::auto_configure) geom3::switch_fpp(); else geom3::switch_always3(); }
|
|
if(in_tpp()) geom3::switch_tpp();
|
|
if(se != geom3::seNone) {
|
|
geom3::spatial_embedding = se;
|
|
if(geom3::auto_configure) geom3::switch_fpp(); else geom3::switch_always3();
|
|
delete_sky();
|
|
resetGL();
|
|
}
|
|
}
|
|
|
|
geom3::eSpatialEmbedding embed_by_name(string ss) {
|
|
using namespace geom3;
|
|
auto& seo = spatial_embedding_options;
|
|
for(int i=0; i<isize(seo); i++) if(seo[i].first == ss) return eSpatialEmbedding(i);
|
|
bool numeric = true;
|
|
for(char c: ss) if(c < '0' || c > '9') numeric = false;
|
|
if(numeric) return eSpatialEmbedding(atoi(ss.c_str()));
|
|
for(int i=0; i<isize(seo); i++) if(appears(seo[i].first, ss)) return eSpatialEmbedding(i);
|
|
for(int i=0; i<isize(seo); i++) if(appears(seo[i].second, ss)) return eSpatialEmbedding(i);
|
|
return seNone;
|
|
}
|
|
|
|
auto ah_embed = arg::add2("-seo", [] { arg::shift(); invoke_embed(embed_by_name(arg::args())); });
|
|
|
|
}
|