mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-14 09:24:48 +00:00
1534 lines
39 KiB
C++
1534 lines
39 KiB
C++
// Hyperbolic Rogue -- cells
|
|
// Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// cells the game is played on
|
|
|
|
#define DEBMEM(x) // { x fflush(stdout); }
|
|
|
|
int fix6(int a) { return (a+MODFIXER)%S6; }
|
|
int fix7(int a) { return (a+MODFIXER)%S7; }
|
|
|
|
int dirdiff(int dd, int t) {
|
|
dd %= t;
|
|
if(dd<0) dd += t;
|
|
if(t-dd < dd) dd = t-dd;
|
|
return dd;
|
|
}
|
|
|
|
int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; }
|
|
|
|
int cellcount = 0;
|
|
|
|
void initcell(cell *c); // from game.cpp
|
|
|
|
cell *newCell(int type, heptagon *master) {
|
|
cell *c = new cell;
|
|
cellcount++;
|
|
c->type = type;
|
|
c->master = master;
|
|
for(int i=0; i<MAX_EDGE; i++) c->mov[i] = NULL;
|
|
initcell(c);
|
|
return c;
|
|
}
|
|
|
|
void merge(cell *c, int d, cell *c2, int d2, bool mirrored = false) {
|
|
c->mov[d] = c2;
|
|
tsetspin(c->spintable, d, d2 + (mirrored?8:0));
|
|
c2->mov[d2] = c;
|
|
tsetspin(c2->spintable, d2, d + (mirrored?8:0));
|
|
}
|
|
|
|
struct cdata {
|
|
int val[4];
|
|
int bits;
|
|
};
|
|
|
|
// -- hrmap ---
|
|
|
|
struct hrmap {
|
|
virtual heptagon *getOrigin() { return NULL; }
|
|
virtual cell *gamestart() { return getOrigin()->c7; }
|
|
virtual ~hrmap() { };
|
|
virtual vector<cell*>& allcells() { return dcal; }
|
|
virtual void verify() { }
|
|
};
|
|
|
|
hrmap *currentmap;
|
|
vector<hrmap*> allmaps;
|
|
|
|
// --- auxiliary hyperbolic map for horocycles ---
|
|
struct hrmap_alternate : hrmap {
|
|
heptagon *origin;
|
|
hrmap_alternate(heptagon *o) { origin = o; }
|
|
~hrmap_alternate() { clearfrom(origin); }
|
|
};
|
|
|
|
hrmap *newAltMap(heptagon *o) { return new hrmap_alternate(o); }
|
|
// --- hyperbolic geometry ---
|
|
|
|
struct hrmap_hyperbolic : hrmap {
|
|
heptagon *origin;
|
|
bool isnontruncated;
|
|
hrmap_hyperbolic() {
|
|
// printf("Creating hyperbolic map: %p\n", this);
|
|
origin = new heptagon;
|
|
heptagon& h = *origin;
|
|
h.s = hsOrigin;
|
|
h.emeraldval = 98;
|
|
h.zebraval = 40;
|
|
h.fiftyval = 0;
|
|
h.fieldval = 0;
|
|
h.rval0 = h.rval1 = 0;
|
|
h.cdata = NULL;
|
|
for(int i=0; i<MAX_EDGE; i++) h.move[i] = NULL;
|
|
h.spintable = 0;
|
|
h.alt = NULL;
|
|
h.distance = 0;
|
|
isnontruncated = nontruncated;
|
|
h.c7 = newCell(S7, origin);
|
|
}
|
|
heptagon *getOrigin() { return origin; }
|
|
~hrmap_hyperbolic() {
|
|
DEBMEM ( verifycells(origin); )
|
|
// printf("Deleting hyperbolic map: %p\n", this);
|
|
dynamicval<bool> ph(nontruncated, isnontruncated);
|
|
clearfrom(origin);
|
|
}
|
|
void verify() { verifycells(origin); }
|
|
};
|
|
|
|
// --- spherical geometry ---
|
|
|
|
int spherecells() {
|
|
if(S7 == 5) return (elliptic?6:12);
|
|
if(S7 == 4) return (elliptic?3:6);
|
|
if(S7 == 3) return 4;
|
|
if(S7 == 2) return (elliptic?1:2);
|
|
if(S7 == 1) return 1;
|
|
return 12;
|
|
}
|
|
|
|
struct hrmap_spherical : hrmap {
|
|
heptagon *dodecahedron[12];
|
|
bool isnontruncated;
|
|
|
|
hrmap_spherical() {
|
|
isnontruncated = nontruncated;
|
|
for(int i=0; i<spherecells(); i++) {
|
|
heptagon& h = *(dodecahedron[i] = new heptagon);
|
|
h.s = hsOrigin;
|
|
h.emeraldval = i;
|
|
h.zebraval = i;
|
|
h.fiftyval = i;
|
|
h.rval0 = h.rval1 = 0;
|
|
h.alt = NULL;
|
|
h.cdata = NULL;
|
|
h.spintable = 0;
|
|
for(int i=0; i<S7; i++) h.move[i] = NULL;
|
|
h.c7 = newCell(S7, &h);
|
|
}
|
|
for(int i=0; i<S7; i++) {
|
|
dodecahedron[0]->move[i] = dodecahedron[i+1];
|
|
dodecahedron[0]->setspin(i, 0);
|
|
dodecahedron[i+1]->move[0] = dodecahedron[0];
|
|
dodecahedron[i+1]->setspin(0, i);
|
|
|
|
dodecahedron[i+1]->move[1] = dodecahedron[(i+S7-1)%S7+1];
|
|
dodecahedron[i+1]->setspin(1, S7-1);
|
|
dodecahedron[i+1]->move[S7-1] = dodecahedron[(i+1)%S7+1];
|
|
dodecahedron[i+1]->setspin(S7-1, 1);
|
|
|
|
if(S7 == 5 && elliptic) {
|
|
dodecahedron[i+1]->move[2] = dodecahedron[(i+2)%S7+1];
|
|
dodecahedron[i+1]->setspin(2, 3 + 8);
|
|
dodecahedron[i+1]->move[3] = dodecahedron[(i+3)%S7+1];
|
|
dodecahedron[i+1]->setspin(3, 2 + 8);
|
|
}
|
|
|
|
else if(S7 == 5) {
|
|
dodecahedron[6]->move[i] = dodecahedron[7+i];
|
|
dodecahedron[6]->setspin(i, 0);
|
|
dodecahedron[7+i]->move[0] = dodecahedron[6];
|
|
dodecahedron[7+i]->setspin(0, i);
|
|
|
|
dodecahedron[i+7]->move[1] = dodecahedron[(i+4)%5+7];
|
|
dodecahedron[i+7]->setspin(1, 4);
|
|
dodecahedron[i+7]->move[4] = dodecahedron[(i+1)%5+7];
|
|
dodecahedron[i+7]->setspin(4, 1);
|
|
|
|
dodecahedron[i+1]->move[2] = dodecahedron[7+(10-i)%5];
|
|
dodecahedron[i+1]->setspin(2, 2);
|
|
dodecahedron[7+(10-i)%5]->move[2] = dodecahedron[1+i];
|
|
dodecahedron[7+(10-i)%5]->setspin(2, 2);
|
|
|
|
dodecahedron[i+1]->move[3] = dodecahedron[7+(9-i)%5];
|
|
dodecahedron[i+1]->setspin(3, 3);
|
|
dodecahedron[7+(9-i)%5]->move[3] = dodecahedron[i+1];
|
|
dodecahedron[7+(9-i)%5]->setspin(3, 3);
|
|
}
|
|
if(S7 == 4) {
|
|
dodecahedron[5]->move[3-i] = dodecahedron[i+1];
|
|
dodecahedron[5]->setspin(3-i, 2);
|
|
dodecahedron[i+1]->move[2] = dodecahedron[5];
|
|
dodecahedron[i+1]->setspin(2, 3-i);
|
|
}
|
|
}
|
|
}
|
|
|
|
heptagon *getOrigin() { return dodecahedron[0]; }
|
|
|
|
~hrmap_spherical() {
|
|
dynamicval<bool> ph(nontruncated, isnontruncated);
|
|
for(int i=0; i<spherecells(); i++) clearHexes(dodecahedron[i]);
|
|
for(int i=0; i<spherecells(); i++) delete dodecahedron[i];
|
|
}
|
|
|
|
void verify() {
|
|
for(int i=0; i<spherecells(); i++) for(int k=0; k<S7; k++) {
|
|
heptspin hs;
|
|
hs.h = dodecahedron[i];
|
|
hs.spin = k;
|
|
hs = hsstep(hs, 0);
|
|
hs = hsspin(hs, S7-1);
|
|
hs = hsstep(hs, 0);
|
|
hs = hsspin(hs, S7-1);
|
|
hs = hsstep(hs, 0);
|
|
hs = hsspin(hs, S7-1);
|
|
if(hs.h != dodecahedron[i]) printf("error %d,%d\n", i, k);
|
|
}
|
|
for(int i=0; i<spherecells(); i++) verifycells(dodecahedron[i]);
|
|
}
|
|
};
|
|
|
|
heptagon *getDodecahedron(int i) {
|
|
hrmap_spherical *s = dynamic_cast<hrmap_spherical*> (currentmap);
|
|
if(!s) return NULL;
|
|
return s->dodecahedron[i];
|
|
}
|
|
|
|
// --- euclidean geometry ---
|
|
|
|
cell*& euclideanAtCreate(eucoord x, eucoord y);
|
|
|
|
namespace torusconfig {
|
|
// the configuration of the torus topology.
|
|
// torus cells are indexed [0..qty),
|
|
// where the cell to the right from i is indexed i+dx,
|
|
// and the cell to the down-right is numbered i+dy
|
|
|
|
// Changed with command line option: -tpar <qty>,<dx>,<dy>
|
|
// Ideally, qty, dx, and dy should have the same "modulo 3"
|
|
// values as the default -- otherwise the three-color
|
|
// pattern breaks. Also, they should have no common
|
|
// prime divisor.
|
|
int def_qty = 127*3, dx = 1, def_dy = -11*2;
|
|
int qty = def_qty, dy = def_dy;
|
|
|
|
// new values to change
|
|
int newqty, newdy;
|
|
int torus_cx, torus_cy;
|
|
}
|
|
|
|
int decodeId(heptagon* h);
|
|
heptagon* encodeId(int id);
|
|
|
|
struct hrmap_torus : hrmap {
|
|
|
|
vector<cell*> all;
|
|
vector<int> dists;
|
|
|
|
virtual vector<cell*>& allcells() { return all; }
|
|
|
|
cell *gamestart() {
|
|
return all[0];
|
|
}
|
|
|
|
hrmap_torus() {
|
|
using namespace torusconfig;
|
|
all.resize(qty);
|
|
for(int i=0; i<qty; i++) {
|
|
all[i] = newCell(6, NULL);
|
|
all[i]->master = encodeId(i);
|
|
}
|
|
dx %= qty;
|
|
dy %= qty;
|
|
for(int i=0; i<qty; i++) {
|
|
all[i]->mov[0] = all[(i+dx+2*qty)%qty];
|
|
all[i]->mov[1] = all[(i+dy+2*qty)%qty];
|
|
all[i]->mov[2] = all[(i+dy-dx+2*qty)%qty];
|
|
all[i]->mov[3] = all[(i-dx+2*qty)%qty];
|
|
all[i]->mov[4] = all[(i-dy+2*qty)%qty];
|
|
all[i]->mov[5] = all[(i-dy+dx+2*qty)%qty];
|
|
for(int j=0; j<6; j++)
|
|
tsetspin(all[i]->spintable, j, (j+3) % 6);
|
|
}
|
|
celllister cl(gamestart(), 100, 100000000, NULL);
|
|
dists.resize(qty);
|
|
for(int i=0; i<size(cl.lst); i++)
|
|
dists[decodeId(cl.lst[i]->master)] = cl.dists[i];
|
|
}
|
|
|
|
~hrmap_torus() {
|
|
for(cell *c: all) delete c;
|
|
}
|
|
};
|
|
|
|
int toridMod(int id) {
|
|
using namespace torusconfig;
|
|
id %= qty; if(id < 0) id += qty;
|
|
return id;
|
|
}
|
|
|
|
hrmap_torus *torusmap() {
|
|
return dynamic_cast<hrmap_torus*> (currentmap);
|
|
}
|
|
|
|
cell *getTorusId(int id) {
|
|
hrmap_torus *cur = torusmap();
|
|
if(!cur) return NULL;
|
|
return cur->all[toridMod(id)];
|
|
}
|
|
|
|
|
|
struct hrmap_euclidean : hrmap {
|
|
|
|
cell *gamestart() {
|
|
return euclideanAtCreate(0,0);
|
|
}
|
|
|
|
struct euclideanSlab {
|
|
cell* a[256][256];
|
|
euclideanSlab() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
a[y][x] = NULL;
|
|
}
|
|
~euclideanSlab() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
if(a[y][x]) delete a[y][x];
|
|
}
|
|
};
|
|
|
|
euclideanSlab* euclidean[256][256];
|
|
|
|
hrmap_euclidean() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
euclidean[y][x] = NULL;
|
|
}
|
|
|
|
cell*& at(eucoord x, eucoord y) {
|
|
euclideanSlab*& slab = euclidean[y>>8][x>>8];
|
|
if(!slab) slab = new hrmap_euclidean::euclideanSlab;
|
|
return slab->a[y&255][x&255];
|
|
}
|
|
|
|
map<heptagon*, struct cdata> eucdata;
|
|
|
|
~hrmap_euclidean() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
if(euclidean[y][x]) {
|
|
delete euclidean[y][x];
|
|
euclidean[y][x] = NULL;
|
|
}
|
|
eucdata.clear();
|
|
}
|
|
};
|
|
|
|
union heptacoder {
|
|
heptagon *h;
|
|
struct { eucoord x; eucoord y; } c;
|
|
int id;
|
|
};
|
|
|
|
void decodeMaster(heptagon *h, eucoord& x, eucoord& y) {
|
|
if(torus) { printf("decodeMaster on torus\n"); exit(1); }
|
|
heptacoder u;
|
|
u.h = h; x = u.c.x; y = u.c.y;
|
|
}
|
|
|
|
int decodeId(heptagon* h) {
|
|
heptacoder u;
|
|
u.h = h; return u.id;
|
|
}
|
|
|
|
heptagon* encodeMaster(eucoord x, eucoord y) {
|
|
if(torus) { printf("encodeMaster on torus\n"); exit(1); }
|
|
heptacoder u;
|
|
u.c.x = x; u.c.y = y;
|
|
return u.h;
|
|
}
|
|
|
|
heptagon* encodeId(int id) {
|
|
heptacoder u;
|
|
u.id = id;
|
|
return u.h;
|
|
}
|
|
|
|
// --- quotient geometry ---
|
|
|
|
namespace quotientspace {
|
|
struct code {
|
|
int c[8];
|
|
};
|
|
|
|
bool operator == (const code& c1, const code &c2) {
|
|
for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return false;
|
|
return true;
|
|
}
|
|
|
|
bool operator < (const code& c1, const code &c2) {
|
|
for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i];
|
|
return false;
|
|
}
|
|
|
|
int cod(heptagon *h) {
|
|
return zebra40(h->c7);
|
|
}
|
|
|
|
code get(heptspin hs) {
|
|
code res;
|
|
res.c[0] = cod(hs.h);
|
|
for(int i=1; i<8; i++) {
|
|
res.c[i] = cod(hsstep(hs, 0).h);
|
|
hs = hsspin(hs, 1);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int rvadd = 0, rvdir = 1;
|
|
|
|
int rv(int x) { return (rvadd+x*rvdir) % 7; }
|
|
|
|
struct hrmap_quotient : hrmap {
|
|
|
|
hrmap_hyperbolic base;
|
|
|
|
vector<cell*> celllist;
|
|
|
|
cell *origin;
|
|
|
|
map<quotientspace::code, int> reachable;
|
|
vector<heptspin> bfsq;
|
|
|
|
vector<int> connections;
|
|
|
|
void add(const heptspin& hs) {
|
|
code g = get(hs);
|
|
if(!reachable.count(g)) {
|
|
reachable[g] = bfsq.size();
|
|
bfsq.push_back(hs);
|
|
add(hsspin(hs, 1));
|
|
}
|
|
}
|
|
|
|
vector<heptagon*> allh;
|
|
|
|
hrmap_quotient() {
|
|
|
|
if(quotient == 2) {
|
|
connections = currfp.connections;
|
|
}
|
|
else {
|
|
heptspin hs; hs.h = base.origin; hs.spin = 0;
|
|
reachable.clear();
|
|
bfsq.clear();
|
|
connections.clear();
|
|
add(hs);
|
|
|
|
for(int i=0; i<(int)bfsq.size(); i++) {
|
|
hs = hsstep(bfsq[i], 0);
|
|
add(hs);
|
|
connections.push_back(reachable[get(hs)]);
|
|
}
|
|
|
|
}
|
|
|
|
int TOT = connections.size() / S7;
|
|
printf("heptagons = %d\n", TOT);
|
|
printf("all cells = %d\n", TOT*(S7+S3)/S3);
|
|
if(!TOT) exit(1);
|
|
allh.resize(TOT);
|
|
for(int i=0; i<TOT; i++) allh[i] = new heptagon;
|
|
// heptagon *oldorigin = origin;
|
|
allh[0]->alt = base.origin;
|
|
|
|
for(int i=0; i<TOT; i++) {
|
|
heptagon *h = allh[i];
|
|
if(i) {
|
|
h->alt = NULL;
|
|
}
|
|
if(true) {
|
|
h->s = hsOrigin;
|
|
h->emeraldval = 0;
|
|
h->zebraval = 0;
|
|
h->fiftyval = 0;
|
|
h->fieldval = S7*i;
|
|
h->rval0 = h->rval1 = 0; h->cdata = NULL;
|
|
h->distance = 0;
|
|
h->c7 = newCell(S7, h);
|
|
}
|
|
for(int j=0; j<S7; j++) {
|
|
h->move[rv(j)] = allh[connections[i*S7+j]/S7];
|
|
h->setspin(rv(j), rv(connections[i*S7+j]%S7));
|
|
}
|
|
}
|
|
|
|
for(int i=0; i<TOT; i++) {
|
|
generateAlts(allh[i]);
|
|
allh[i]->emeraldval = allh[i]->alt->emeraldval;
|
|
allh[i]->zebraval = allh[i]->alt->zebraval;
|
|
allh[i]->fiftyval = allh[i]->alt->fiftyval;
|
|
allh[i]->distance = allh[i]->alt->distance;
|
|
/* for(int j=0; j<7; j++)
|
|
allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */
|
|
}
|
|
|
|
celllister cl(gamestart(), 100, 100000000, NULL);
|
|
celllist = cl.lst;
|
|
}
|
|
|
|
heptagon *getOrigin() { return allh[0]; }
|
|
|
|
~hrmap_quotient() {
|
|
for(int i=0; i<size(allh); i++) {
|
|
clearHexes(allh[i]);
|
|
delete allh[i];
|
|
}
|
|
}
|
|
|
|
vector<cell*>& allcells() { return celllist; }
|
|
};
|
|
|
|
};
|
|
|
|
// --- general ---
|
|
|
|
cell *createMov(cell *c, int d);
|
|
|
|
void cwspin(cellwalker& cw, int d) {
|
|
cw.spin = (cw.spin+(MIRR(cw)?-d:d) + MODFIXER) % cw.c->type;
|
|
}
|
|
|
|
bool cwstepcreates(cellwalker& cw) {
|
|
return cw.c->mov[cw.spin] == NULL;
|
|
}
|
|
|
|
cell *cwpeek(cellwalker cw, int dir) {
|
|
return createMov(cw.c, (cw.spin+MODFIXER+dir) % cw.c->type);
|
|
}
|
|
|
|
void cwmirrorat(cellwalker& cw, int d) {
|
|
cw.spin = (d+d - cw.spin + MODFIXER) % cw.c->type;
|
|
cw.mirrored = !cw.mirrored;
|
|
}
|
|
|
|
void cwstep(cellwalker& cw) {
|
|
createMov(cw.c, cw.spin);
|
|
int nspin = cw.c->spn(cw.spin);
|
|
if(cw.c->mirror(cw.spin)) cw.mirrored = !cw.mirrored;
|
|
cw.c = cw.c->mov[cw.spin];
|
|
cw.spin = nspin;
|
|
}
|
|
|
|
void cwrev(cellwalker& cw) {
|
|
cwspin(cw, cw.c->type/2 + ((cw.c->type&1)?hrand(2):0));
|
|
}
|
|
|
|
void cwrevstep(cellwalker& cw) {
|
|
cwrev(cw); cwstep(cw);
|
|
}
|
|
|
|
// very similar to createMove in heptagon.cpp
|
|
cell *createMov(cell *c, int d) {
|
|
|
|
if(euclid && !c->mov[d]) {
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
for(int dx=-1; dx<=1; dx++)
|
|
for(int dy=-1; dy<=1; dy++)
|
|
euclideanAtCreate(x+dx, y+dy);
|
|
if(!c->mov[d]) { printf("fail!\n"); }
|
|
}
|
|
|
|
if(c->mov[d]) return c->mov[d];
|
|
else if(nontruncated) {
|
|
heptagon *h2 = createStep(c->master, d);
|
|
merge(c,d,h2->c7,c->master->spin(d),false);
|
|
}
|
|
else if(c == c->master->c7) {
|
|
|
|
cell *n = newCell(S6, c->master);
|
|
|
|
merge(c,d,n,0,false);
|
|
|
|
heptspin hs; hs.h = c->master; hs.spin = d; hs.mirrored = false;
|
|
|
|
int a3 = c->type/2;
|
|
int a4 = a3+1;
|
|
|
|
/*
|
|
heptspin hs2 = hsstep(hsspin(hs, a3), -a4);
|
|
merge(hs2.h->c7, hs2.spin, n, 2, hs2.mirrored);
|
|
|
|
heptspin hs3 = hsstep(hsspin(hs, a4), -a3);
|
|
merge(hs3.h->c7, hs3.spin, n, S6-2, hs3.mirrored);
|
|
*/
|
|
|
|
for(int u=2; u<S6; u+=2) {
|
|
hs = hsstep(hsspin(hs, a3), -a4);
|
|
merge(hs.h->c7, hs.spin, n, u, hs.mirrored);
|
|
}
|
|
|
|
extern void verifycell(cell *c);
|
|
verifycell(n);
|
|
}
|
|
|
|
else {
|
|
bool mirr = c->mirror(d-1);
|
|
int di = fixrot(c->spn(d-1)-(mirr?-1:1));
|
|
cell *c2 = createMov(c->mov[d-1], di);
|
|
bool nmirr = mirr ^ c->mov[d-1]->mirror(di);
|
|
merge(c, d, c2, fix6(c->mov[d-1]->spn(di) - (nmirr?-1:1)), nmirr);
|
|
}
|
|
return c->mov[d];
|
|
}
|
|
|
|
cell *createMovR(cell *c, int d) {
|
|
d %= MODFIXER; d += MODFIXER; d %= c->type;
|
|
return createMov(c, d);
|
|
}
|
|
|
|
cell *getMovR(cell *c, int d) {
|
|
d %= MODFIXER; d += MODFIXER; d %= c->type;
|
|
return c->mov[d];
|
|
}
|
|
|
|
void eumerge(cell* c1, cell *c2, int s1, int s2) {
|
|
if(!c2) return;
|
|
c1->mov[s1] = c2; tsetspin(c1->spintable, s1, s2);
|
|
c2->mov[s2] = c1; tsetspin(c2->spintable, s2, s1);
|
|
}
|
|
|
|
// map<pair<eucoord, eucoord>, cell*> euclidean;
|
|
|
|
cell*& euclideanAt(eucoord x, eucoord y) {
|
|
if(torus) { printf("euclideanAt called\n"); exit(1); }
|
|
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
|
|
return euc->at(x, y);
|
|
}
|
|
|
|
cell*& euclideanAtCreate(eucoord x, eucoord y) {
|
|
cell*& c = euclideanAt(x,y);
|
|
if(!c) {
|
|
c = newCell(6, NULL);
|
|
c->master = encodeMaster(x,y);
|
|
euclideanAt(x,y) = c;
|
|
eumerge(c, euclideanAt(x+1,y), 0, 3);
|
|
eumerge(c, euclideanAt(x,y+1), 1, 4);
|
|
eumerge(c, euclideanAt(x-1,y+1), 2, 5);
|
|
eumerge(c, euclideanAt(x-1,y), 3, 0);
|
|
eumerge(c, euclideanAt(x,y-1), 4, 1);
|
|
eumerge(c, euclideanAt(x+1,y-1), 5, 2);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// initializer (also inits origin from heptagon.cpp)
|
|
void initcells() {
|
|
DEBB(DF_INIT, (debugfile,"initcells\n"));
|
|
|
|
if(torus) currentmap = new hrmap_torus;
|
|
else if(euclid) currentmap = new hrmap_euclidean;
|
|
else if(sphere) currentmap = new hrmap_spherical;
|
|
else if(quotient) currentmap = new quotientspace::hrmap_quotient;
|
|
else currentmap = new hrmap_hyperbolic;
|
|
|
|
allmaps.push_back(currentmap);
|
|
|
|
windmap::create();
|
|
|
|
// origin->emeraldval =
|
|
}
|
|
|
|
void clearcell(cell *c) {
|
|
if(!c) return;
|
|
DEBMEM ( printf("c%d %p\n", c->type, c); )
|
|
for(int t=0; t<c->type; t++) if(c->mov[t]) {
|
|
DEBMEM ( printf("mov %p [%p] S%d\n", c->mov[t], c->mov[t]->mov[c->spn(t)], c->spn(t)); )
|
|
if(c->mov[t]->mov[c->spn(t)] != NULL &&
|
|
c->mov[t]->mov[c->spn(t)] != c) {
|
|
printf("cell error\n");
|
|
exit(1);
|
|
}
|
|
c->mov[t]->mov[c->spn(t)] = NULL;
|
|
}
|
|
DEBMEM ( printf("DEL %p\n", c); )
|
|
delete c;
|
|
}
|
|
|
|
heptagon deletion_marker;
|
|
|
|
void clearHexes(heptagon *at) {
|
|
if(at->c7) {
|
|
if(!nontruncated) for(int i=0; i<7; i++)
|
|
clearcell(at->c7->mov[i]);
|
|
clearcell(at->c7);
|
|
}
|
|
}
|
|
|
|
void clearfrom(heptagon *at) {
|
|
queue<heptagon*> q;
|
|
q.push(at);
|
|
at->alt = &deletion_marker;
|
|
//int maxq = 0;
|
|
while(!q.empty()) {
|
|
at = q.front();
|
|
// if(q.size() > maxq) maxq = q.size();
|
|
q.pop();
|
|
DEBMEM ( printf("from %p\n", at); )
|
|
for(int i=0; i<7; i++) if(at->move[i]) {
|
|
if(at->move[i]->alt != &deletion_marker)
|
|
q.push(at->move[i]);
|
|
at->move[i]->alt = &deletion_marker;
|
|
DEBMEM ( printf("!mov %p [%p]\n", at->move[i], at->move[i]->move[at->spin(i)]); )
|
|
if(at->move[i]->move[at->spin(i)] != NULL &&
|
|
at->move[i]->move[at->spin(i)] != at) {
|
|
printf("hept error\n");
|
|
exit(1);
|
|
}
|
|
at->move[i]->move[at->spin(i)] = NULL;
|
|
at->move[i] = NULL;
|
|
}
|
|
clearHexes(at);
|
|
delete at;
|
|
}
|
|
//printf("maxq = %d\n", maxq);
|
|
}
|
|
|
|
void verifycell(cell *c) {
|
|
int t = c->type;
|
|
for(int i=0; i<t; i++) {
|
|
cell *c2 = c->mov[i];
|
|
if(c2) {
|
|
if(!euclid && !nontruncated && c == c->master->c7) verifycell(c2);
|
|
if(c2->mov[c->spn(i)] && c2->mov[c->spn(i)] != c) {
|
|
printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->spn(i), c2->type);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void verifycells(heptagon *at) {
|
|
for(int i=0; i<S7; i++) if(at->move[i] && at->move[i]->move[at->spin(i)] && at->move[i]->move[at->spin(i)] != at) {
|
|
printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->spin(i), at->move[i], at->move[i]->move[at->spin(i)]);
|
|
}
|
|
if(!sphere && !quotient)
|
|
for(int i=0; i<S7; i++) if(at->move[i] && at->spin(i) == 0 && at->s != hsOrigin)
|
|
verifycells(at->move[i]);
|
|
verifycell(at->c7);
|
|
}
|
|
|
|
int eupattern(cell *c) {
|
|
if(torus) return (decodeId(c->master)*2) % 3;
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
short z = (short(y+2*x))%3;
|
|
z %= 3;
|
|
if(z<0) z += 3;
|
|
return z;
|
|
}
|
|
|
|
|
|
bool ishept(cell *c) {
|
|
// EUCLIDEAN
|
|
if(euclid) return eupattern(c) == 0;
|
|
else return c->type != S6;
|
|
}
|
|
|
|
bool ishex1(cell *c) {
|
|
// EUCLIDEAN
|
|
if(euclid) return eupattern(c) == 1;
|
|
else return c->type != S6;
|
|
}
|
|
|
|
int emeraldval(cell *c) {
|
|
if(euclid) return eupattern(c);
|
|
if(sphere) return 0;
|
|
if(ctof(c))
|
|
return c->master->emeraldval >> 3;
|
|
else {
|
|
return emerald_hexagon(
|
|
emeraldval(createMov(c,0)),
|
|
emeraldval(createMov(c,2)),
|
|
emeraldval(createMov(c,4))
|
|
);
|
|
}
|
|
}
|
|
|
|
int eudist(short sx, short sy) {
|
|
int z0 = abs(sx);
|
|
int z1 = abs(sy);
|
|
int z2 = abs(sx+sy);
|
|
return max(max(z0,z1), z2);
|
|
}
|
|
|
|
int compdist(int dx[]) {
|
|
int mi = dx[0];
|
|
for(int u=0; u<S3; u++) mi = min(mi, dx[u]);
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] > mi+2)
|
|
return -1; // { printf("cycle error!\n"); exit(1); }
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] == mi+2)
|
|
return mi+1;
|
|
int cnt = 0;
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] == mi) cnt++;
|
|
if(cnt < 2)
|
|
return mi+1;
|
|
return mi;
|
|
}
|
|
|
|
int celldist(cell *c) {
|
|
if(euclid) {
|
|
if(torus)
|
|
return torusmap()->dists[decodeId(c->master)];
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
return eudist(x, y);
|
|
}
|
|
if(sphere) return celldistance(c, currentmap->gamestart());
|
|
if(ctof(c)) return c->master->distance;
|
|
int dx[MAX_S3];
|
|
for(int u=0; u<S3; u++)
|
|
dx[u] = createMov(c, u+u)->master->distance;
|
|
return compdist(dx);
|
|
}
|
|
|
|
#define ALTDIST_BOUNDARY 99999
|
|
#define ALTDIST_UNKNOWN 99998
|
|
|
|
#define ALTDIST_ERROR 90000
|
|
|
|
// defined in 'game'
|
|
int euclidAlt(short x, short y);
|
|
|
|
int celldistAlt(cell *c) {
|
|
if(euclid) {
|
|
if(torus) return celldist(c);
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
return euclidAlt(x, y);
|
|
}
|
|
if(sphere || quotient) {
|
|
return celldist(c) - 3;
|
|
}
|
|
if(!c->master->alt) return 0;
|
|
if(ctof(c)) return c->master->alt->distance;
|
|
int dx[MAX_S3]; dx[0] = 0;
|
|
for(int u=0; u<S3; u++) if(createMov(c, u+u)->master->alt == NULL)
|
|
return ALTDIST_UNKNOWN;
|
|
for(int u=0; u<S3; u++)
|
|
dx[u] = createMov(c, u+u)->master->alt->distance;
|
|
// return compdist(dx); -> not OK because of boundary conditions
|
|
int mi = dx[0];
|
|
for(int i=1; i<S3; i++) mi = min(mi, dx[i]);
|
|
for(int i=0; i<S3; i++) if(dx[i] > mi+2)
|
|
return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
|
|
for(int i=0; i<S3; i++) if(dx[i] == mi+2)
|
|
return mi+1;
|
|
return mi;
|
|
}
|
|
|
|
int dirfromto(cell *cfrom, cell *cto) {
|
|
for(int i=0; i<cfrom->type; i++) if(cfrom->mov[i] == cto) return i;
|
|
return -1;
|
|
}
|
|
|
|
// === FIFTYVALS ===
|
|
|
|
unsigned bitmajority(unsigned a, unsigned b, unsigned c) {
|
|
return (a&b) | ((a^b)&c);
|
|
}
|
|
|
|
int eufifty(cell *c) {
|
|
eucoord x, y;
|
|
if(torus) {
|
|
if(c->land == laWildWest) return decodeId(c->master) % 37;
|
|
else return decodeId(c->master) % 27;
|
|
}
|
|
decodeMaster(c->master, x, y);
|
|
int ix = short(x) + 99999 + short(y);
|
|
int iy = short(y) + 99999;
|
|
if(c->land == laWildWest)
|
|
return (ix + iy * 26 + 28) % 37;
|
|
else {
|
|
ix += (iy/3) * 3;
|
|
iy %= 3; ix %= 9;
|
|
return iy * 9 + ix;
|
|
}
|
|
}
|
|
|
|
int fiftyval(cell *c) {
|
|
if(euclid) return eufifty(c) * 32;
|
|
if(sphere || S7>7 || S6>6) return 0;
|
|
if(c->type == 7)
|
|
return c->master->fiftyval;
|
|
else {
|
|
return bitmajority(
|
|
fiftyval(createMov(c,0)),
|
|
fiftyval(createMov(c,2)),
|
|
fiftyval(createMov(c,4))) + 512;
|
|
}
|
|
}
|
|
|
|
int cdist50(cell *c) {
|
|
if(sphere || S7>7 || S6>6) return 0;
|
|
if(euclid) {
|
|
if(c->land == laWildWest)
|
|
return "0123333332112332223322233211233333322"[eufifty(c)] - '0';
|
|
else return "012333321112322232222321123"[eufifty(c)] - '0';
|
|
}
|
|
if(c->type != 6) return cdist50(fiftyval(c));
|
|
int a0 = cdist50(createMov(c,0));
|
|
int a1 = cdist50(createMov(c,2));
|
|
int a2 = cdist50(createMov(c,4));
|
|
if(a0 == 0 || a1 == 0 || a2 == 0) return 1;
|
|
return a0+a1+a2-5;
|
|
}
|
|
|
|
int land50(cell *c) {
|
|
if(c->type != 6) return land50(fiftyval(c));
|
|
else if(sphere || euclid) return 0;
|
|
else {
|
|
if(cdist50(createMov(c,0)) < 3) return land50(createMov(c,0));
|
|
if(cdist50(createMov(c,2)) < 3) return land50(createMov(c,2));
|
|
if(cdist50(createMov(c,4)) < 3) return land50(createMov(c,4));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int polara50(cell *c) {
|
|
if(c->type != 6) return polara50(fiftyval(c));
|
|
else if(sphere || euclid || S7>7 || S6>6) return 0;
|
|
else {
|
|
if(cdist50(createMov(c,0)) < 3) return polara50(createMov(c,0));
|
|
if(cdist50(createMov(c,2)) < 3) return polara50(createMov(c,2));
|
|
if(cdist50(createMov(c,4)) < 3) return polara50(createMov(c,4));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int polarb50(cell *c) {
|
|
if(euclid) return true;
|
|
if(c->type != 6) return polarb50(fiftyval(c));
|
|
else if(sphere || euclid || S7>7 || S6>6) return true;
|
|
else {
|
|
if(cdist50(createMov(c,0)) < 3) return polarb50(createMov(c,0));
|
|
if(cdist50(createMov(c,2)) < 3) return polarb50(createMov(c,2));
|
|
if(cdist50(createMov(c,4)) < 3) return polarb50(createMov(c,4));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int elhextable[28][3] = {
|
|
{0,1,2}, {1,2,9}, {1,9,-1}, {1,8,-1}, {1,-1,-1}
|
|
};
|
|
|
|
int fiftyval049(cell *c) {
|
|
if(c->type != 6 || euclid) return fiftyval(c) / 32;
|
|
else if(sphere) return 0;
|
|
else {
|
|
int a[3], qa=0;
|
|
int pa = polara50(c), pb = polarb50(c);
|
|
for(int i=0; i<6; i+=2) {
|
|
cell *c2 = c->mov[i];
|
|
if(polara50(c2) == pa && polarb50(c2) == pb)
|
|
a[qa++] = fiftyval049(c2);
|
|
}
|
|
// 0-1-2
|
|
sort(a, a+qa);
|
|
if(qa == 1) return 43+a[0]-1;
|
|
if(qa == 2 && a[1] == a[0]+7) return 36+a[0]-1;
|
|
if(qa == 2 && a[1] != a[0]+7) return 29+a[0]-1;
|
|
if(a[1] == 1 && a[2] == 7)
|
|
return 15 + 6;
|
|
if(a[2] >= 1 && a[2] <= 7)
|
|
return 15 + a[1]-1;
|
|
if(a[0] == 1 && a[1] == 7 && a[2] == 8)
|
|
return 22;
|
|
if(a[1] <= 7 && a[2] >= 8)
|
|
return 22 + a[1]-1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
{0,1,2} 15+0..15+6
|
|
{1,2,9},22+0..22+6
|
|
{1,9} 29+0..29+6
|
|
{1,8} 36+0..36+6
|
|
{1} 43+0..43+6
|
|
*/
|
|
|
|
// zebraval
|
|
|
|
int zebra40(cell *c) {
|
|
if(euclid) return eupattern(c);
|
|
else if(ctof(c)) return (c->master->zebraval/10);
|
|
else if(sphere) return 0;
|
|
else if(euclid) return eupattern(c);
|
|
else if(S3 == 4 && S7 == 6) {
|
|
return 8 + ((c->master->zebraval / 10 + c->spin(0))%2) * 2;
|
|
}
|
|
else {
|
|
int ii[3], z;
|
|
ii[0] = (c->mov[0]->master->zebraval/10);
|
|
ii[1] = (c->mov[2]->master->zebraval/10);
|
|
ii[2] = (c->mov[4]->master->zebraval/10);
|
|
for(int r=0; r<2; r++)
|
|
if(ii[1] < ii[0] || ii[2] < ii[0])
|
|
z = ii[0], ii[0] = ii[1], ii[1] = ii[2], ii[2] = z;
|
|
for(int i=0; i<28; i++)
|
|
if(zebratable6[i][0] == ii[0] && zebratable6[i][1] == ii[1] &&
|
|
zebratable6[i][2] == ii[2]) {
|
|
int ans = 16+i;
|
|
// if(ans >= 40) ans ^= 2;
|
|
// if(ans >= 4 && ans < 16) ans ^= 2;
|
|
return ans;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int zebra3(cell *c) {
|
|
if(c->type != 6) return (c->master->zebraval/10)/4;
|
|
else if(sphere || S7>7 || S6>6) return 0;
|
|
else {
|
|
int ii[3];
|
|
ii[0] = (c->mov[0]->master->zebraval/10)/4;
|
|
ii[1] = (c->mov[2]->master->zebraval/10)/4;
|
|
ii[2] = (c->mov[4]->master->zebraval/10)/4;
|
|
if(ii[0] == ii[1]) return ii[0];
|
|
if(ii[1] == ii[2]) return ii[1];
|
|
if(ii[2] == ii[0]) return ii[2];
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#define RPV_MODULO 5
|
|
|
|
#define RPV_RAND 0
|
|
#define RPV_ZEBRA 1
|
|
#define RPV_EMERALD 2
|
|
#define RPV_PALACE 3
|
|
#define RPV_CYCLE 4
|
|
|
|
int getCdata(cell *c, int j);
|
|
|
|
// x mod 5 = pattern type
|
|
// x mod (powers of 2) = pattern type specific
|
|
// (x/5) mod 15 = picture for drawing floors
|
|
// x mod 7 = chance of pattern-specific pic
|
|
// whole = randomization
|
|
|
|
bool randpattern(cell *c, int rval) {
|
|
int i, sw=0;
|
|
switch(rval%5) {
|
|
case 0:
|
|
if(rval&1) {
|
|
return hrandpos() < rval;
|
|
}
|
|
else {
|
|
int cd = getCdata(c, 0);
|
|
return !((cd/(((rval/2)&15)+1))&1);
|
|
}
|
|
case 1:
|
|
i = zebra40(c);
|
|
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
|
|
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
|
|
i >>= 2;
|
|
i--; i /= 3;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 2:
|
|
i = emeraldval(c);
|
|
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
|
|
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
|
|
i >>= 2; i--;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 3:
|
|
if(polara50(c)) { if(rval&4) sw^=1; }
|
|
if(polarb50(c)) { if(rval&8) sw^=1; }
|
|
i = fiftyval049(c); i += 6; i /= 7;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 4:
|
|
i = (rval&3);
|
|
if(i == 1 && (celldist(c)&1)) sw ^= 1;
|
|
if(i == 2 && (celldist(c)&2)) sw ^= 1;
|
|
if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
|
|
if(rval & (4<<towerval(c, celldist))) sw ^= 1;
|
|
return sw;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
extern int randompattern[landtypes];
|
|
|
|
string describeRPM(eLand l) {
|
|
int rval = randompattern[l];
|
|
switch(rval%5) {
|
|
case 0:
|
|
if(rval&1)
|
|
return "R:"+its(rval/(HRANDMAX/100))+"%";
|
|
else
|
|
return "Landscape/"+its(((rval/2)&15)+1);
|
|
case 1:
|
|
return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
|
|
case 2:
|
|
return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
|
|
case 3:
|
|
return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
|
|
case 4:
|
|
return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
int randpatternCode(cell *c, int rval) {
|
|
switch(rval % RPV_MODULO) {
|
|
case 1:
|
|
return zebra40(c);
|
|
case 2:
|
|
return emeraldval(c);
|
|
case 3:
|
|
return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
|
|
case 4:
|
|
return towerval(c, celldist) * 6 + celldist(c) % 6;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define RANDITER 31
|
|
|
|
char rpm_memoize[3][256][RANDITER+1];
|
|
|
|
void clearMemoRPM() {
|
|
for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
|
|
rpm_memoize[a][b][i] = 2;
|
|
}
|
|
|
|
bool randpatternMajority(cell *c, int ival, int iterations) {
|
|
int rval = 0;
|
|
if(ival == 0) rval = randompattern[laCaves];
|
|
if(ival == 1) rval = randompattern[laLivefjord];
|
|
if(ival == 2) rval = randompattern[laEmerald];
|
|
if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
|
|
int code = randpatternCode(c, rval);
|
|
char& memo(rpm_memoize[ival][code][iterations]);
|
|
if(memo < 2) return memo;
|
|
int z = 0;
|
|
if(iterations) for(int i=0; i<c->type; i++) {
|
|
if(randpatternMajority(createMov(c,i), ival, iterations-1))
|
|
z++;
|
|
else
|
|
z--;
|
|
}
|
|
if(z!=0) memo = (z>0);
|
|
else memo = randpattern(c, rval);
|
|
// printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
|
|
return memo;
|
|
}
|
|
|
|
map<heptagon*, int> spins;
|
|
|
|
#define RVAL_MASK 0x10000000
|
|
#define DATA_MASK 0x20000000
|
|
|
|
cdata orig_cdata;
|
|
|
|
void affect(cdata& d, short rv, signed char signum) {
|
|
if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
|
|
if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
|
|
if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
|
|
if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
|
|
int id = (rv>>4) & 63;
|
|
if(id < 32)
|
|
d.bits ^= (1 << id);
|
|
}
|
|
|
|
void setHeptagonRval(heptagon *h) {
|
|
if(!(h->rval0 || h->rval1)) {
|
|
h->rval0 = hrand(0x10000);
|
|
h->rval1 = hrand(0x10000);
|
|
}
|
|
}
|
|
|
|
cdata *getHeptagonCdata(heptagon *h) {
|
|
if(h->cdata) return h->cdata;
|
|
|
|
if(sphere || quotient) h = currentmap->gamestart()->master;
|
|
|
|
if(h == currentmap->gamestart()->master) {
|
|
return h->cdata = new cdata(orig_cdata);
|
|
}
|
|
|
|
cdata mydata = *getHeptagonCdata(h->move[0]);
|
|
|
|
for(int di=3; di<5; di++) {
|
|
heptspin hs; hs.h = h; hs.spin = di;
|
|
int signum = +1;
|
|
while(true) {
|
|
heptspin hstab[15];
|
|
hstab[7] = hs;
|
|
|
|
for(int i=8; i<12; i++) {
|
|
hstab[i] = hsspin(hstab[i-1], (i&1) ? 4 : 3);
|
|
hstab[i] = hsstep(hstab[i], 0);
|
|
hstab[i] = hsspin(hstab[i], (i&1) ? 3 : 4);
|
|
}
|
|
|
|
for(int i=6; i>=3; i--) {
|
|
hstab[i] = hsspin(hstab[i+1], (i&1) ? 3 : 4);
|
|
hstab[i] = hsstep(hstab[i], 0);
|
|
hstab[i] = hsspin(hstab[i], (i&1) ? 4 : 3);
|
|
}
|
|
|
|
if(hstab[3].h->distance < hstab[7].h->distance) {
|
|
hs = hstab[3]; continue;
|
|
}
|
|
|
|
if(hstab[11].h->distance < hstab[7].h->distance) {
|
|
hs = hstab[11]; continue;
|
|
}
|
|
|
|
int jj = 7;
|
|
for(int k=3; k<12; k++) if(hstab[k].h->distance < hstab[jj].h->distance) jj = k;
|
|
|
|
int ties = 0, tiespos = 0;
|
|
for(int k=3; k<12; k++) if(hstab[k].h->distance == hstab[jj].h->distance)
|
|
ties++, tiespos += (k-jj);
|
|
|
|
// printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
|
|
if(ties == 2) jj += tiespos/2;
|
|
|
|
if(jj&1) signum = -1;
|
|
hs = hstab[jj];
|
|
|
|
break;
|
|
}
|
|
hs = hsstep(hsspin(hs, 3), 0);
|
|
setHeptagonRval(hs.h);
|
|
|
|
affect(mydata, hs.spin ? hs.h->rval0 : hs.h->rval1, signum);
|
|
|
|
/* if(!(spins[hs.h] & hs.spin)) {
|
|
spins[hs.h] |= (1<<hs.spin);
|
|
int t = 0;
|
|
for(int k=0; k<7; k++) if(spins[hs.h] & (1<<k)) t++;
|
|
static bool wast[256];
|
|
if(!wast[spins[hs.h]]) {
|
|
printf("%p %4x\n", hs.h, spins[hs.h]);
|
|
wast[spins[hs.h]] = true;
|
|
}
|
|
} */
|
|
}
|
|
|
|
return h->cdata = new cdata(mydata);
|
|
}
|
|
|
|
cdata *getEuclidCdata(heptagon *h) {
|
|
|
|
if(torus) {
|
|
static cdata xx;
|
|
return &xx;
|
|
}
|
|
|
|
eucoord x, y;
|
|
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
|
|
if(euc->eucdata.count(h)) return &(euc->eucdata[h]);
|
|
|
|
decodeMaster(h, x, y);
|
|
|
|
if(x == 0 && y == 0) {
|
|
cdata xx;
|
|
for(int i=0; i<4; i++) xx.val[i] = 0;
|
|
xx.bits = 0;
|
|
return &(euc->eucdata[h] = xx);
|
|
}
|
|
int ord = 1, bid = 0;
|
|
while(!((x|y)&ord)) ord <<= 1, bid++;
|
|
|
|
for(int k=0; k<3; k++) {
|
|
eucoord x1 = x + (k<2 ? ord : 0);
|
|
eucoord y1 = y - (k>0 ? ord : 0);
|
|
if((x1&ord) || (y1&ord)) continue;
|
|
eucoord x2 = x - (k<2 ? ord : 0);
|
|
eucoord y2 = y + (k>0 ? ord : 0);
|
|
|
|
cdata *d1 = getEuclidCdata(encodeMaster(x1,y1));
|
|
cdata *d2 = getEuclidCdata(encodeMaster(x2,y2));
|
|
cdata xx;
|
|
double disp = pow(2, bid/2.) * 6;
|
|
|
|
for(int i=0; i<4; i++) {
|
|
double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
|
|
xx.val[i] = floor(dv);
|
|
if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
|
|
}
|
|
xx.bits = 0;
|
|
|
|
for(int b=0; b<32; b++) {
|
|
bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
|
|
int flipchance = (1<<bid);
|
|
if(flipchance > 512) flipchance = 512;
|
|
if(hrand(1024) < flipchance) gbit = !gbit;
|
|
if(gbit) xx.bits |= (1<<b);
|
|
}
|
|
|
|
return &(euc->eucdata[h] = xx);
|
|
}
|
|
|
|
// impossible!
|
|
return NULL;
|
|
}
|
|
|
|
int getCdata(cell *c, int j) {
|
|
if(euclid) return getEuclidCdata(c->master)->val[j];
|
|
else if(geometry) return 0;
|
|
else if(c->type != 6) return getHeptagonCdata(c->master)->val[j]*3;
|
|
else {
|
|
int jj = 0;
|
|
for(int k=0; k<6; k++) if(c->mov[k] && c->mov[k]->type == 7)
|
|
jj += getHeptagonCdata(c->mov[k]->master)->val[j];
|
|
return jj;
|
|
}
|
|
}
|
|
|
|
int getBits(cell *c) {
|
|
if(euclid) return getEuclidCdata(c->master)->bits;
|
|
else if(geometry) return 0;
|
|
else if(c->type != 6) return getHeptagonCdata(c->master)->bits;
|
|
else {
|
|
int b0 = getHeptagonCdata(createMov(c, 0)->master)->bits;
|
|
int b1 = getHeptagonCdata(createMov(c, 2)->master)->bits;
|
|
int b2 = getHeptagonCdata(createMov(c, 4)->master)->bits;
|
|
return (b0 & b1) | (b1 & b2) | (b2 & b0);
|
|
}
|
|
}
|
|
|
|
cell *heptatdir(cell *c, int d) {
|
|
if(d&1) {
|
|
cell *c2 = createMov(c, d);
|
|
int s = c->spin(d);
|
|
s += 3; s %= 6;
|
|
return createMov(c2, s);
|
|
}
|
|
else return createMov(c, d);
|
|
}
|
|
|
|
namespace fieldpattern {
|
|
|
|
pair<int, bool> fieldval(cell *c) {
|
|
if(ctof(c)) return make_pair(c->master->fieldval, false);
|
|
else return make_pair(btspin(c->master->fieldval, c->spin(0)), true);
|
|
}
|
|
|
|
int fieldval_uniq(cell *c) {
|
|
if(sphere) {
|
|
if(ctof(c)) return c->master->fieldval;
|
|
else return createMov(c, 0)->master->fieldval + 256 * createMov(c,2)->master->fieldval + (1<<16) * createMov(c,4)->master->fieldval;
|
|
}
|
|
else if(torus) {
|
|
return decodeId(c->master);
|
|
}
|
|
else if(euclid) {
|
|
eucoord x, y;
|
|
decodeMaster(c->master, x, y);
|
|
int i = (short int)(x) * torusconfig::dx + (short int)(y) * torusconfig::dy;
|
|
i %= torusconfig::qty;
|
|
if(i<0) i += torusconfig::qty;
|
|
return i;
|
|
}
|
|
if(ctof(c)) return c->master->fieldval/S7;
|
|
else {
|
|
int z = 0;
|
|
for(int u=0; u<S6; u+=2)
|
|
z = max(z, btspin(createMov(c, u)->master->fieldval, c->spin(u)));
|
|
return -1-z;
|
|
}
|
|
}
|
|
|
|
int fieldval_uniq_rand(cell *c, int randval) {
|
|
if(sphere || torus || euclid)
|
|
// we do not care in these cases
|
|
return fieldval_uniq(c);
|
|
if(ctof(c)) return currfp.gmul(c->master->fieldval, randval)/7;
|
|
else {
|
|
int z = 0;
|
|
for(int u=0; u<6; u+=2)
|
|
z = max(z, btspin(currfp.gmul(createMov(c, u)->master->fieldval, randval), c->spin(u)));
|
|
return -1-z;
|
|
}
|
|
}
|
|
|
|
int subpathid = currfp.matcode[currfp.strtomatrix("RRRPRRRRRPRRRP")];
|
|
int subpathorder = currfp.order(currfp.matrices[subpathid]);
|
|
|
|
pair<int, int> subval(cell *c, int _subpathid = subpathid, int _subpathorder = subpathorder) {
|
|
if(!ctof(c)) {
|
|
auto m = subval(createMov(c, 0));
|
|
for(int u=2; u<S6; u+=2)
|
|
m = min(m, subval(createMov(c, u)));
|
|
return m;
|
|
}
|
|
else {
|
|
pair<int, int> pbest, pcur;
|
|
pcur.first = c->master->fieldval;
|
|
pcur.second = 0;
|
|
pbest = pcur;
|
|
for(int i=0; i<_subpathorder; i++) {
|
|
pcur.first = currfp.gmul(pcur.first, _subpathid);
|
|
pcur.second++;
|
|
if(pcur < pbest) pbest = pcur;
|
|
}
|
|
return pbest;
|
|
}
|
|
}
|
|
|
|
}
|
|
int celldistance(cell *c1, cell *c2) {
|
|
int d = 0;
|
|
|
|
if(euclid) {
|
|
if(torus)
|
|
return torusmap()->dists[toridMod(decodeId(c1->master)-decodeId(c2->master))];
|
|
eucoord x1, y1, x2, y2;
|
|
decodeMaster(c1->master, x1, y1);
|
|
decodeMaster(c2->master, x2, y2);
|
|
return eudist(x1-x2, y1-y2);
|
|
}
|
|
|
|
if(sphere || quotient == 1) {
|
|
celllister cl(c1, 64, 1000, c2);
|
|
for(int i=0; i<size(cl.lst); i++)
|
|
if(cl.lst[i] == c2) return cl.dists[i];
|
|
}
|
|
|
|
if(quotient == 2)
|
|
return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2));
|
|
|
|
int d1 = celldist(c1), d2 = celldist(c2);
|
|
|
|
cell *cl1=c1, *cr1=c1, *cl2=c2, *cr2=c2;
|
|
while(true) {
|
|
|
|
if(weirdhyperbolic) {
|
|
if(cl1 == cl2) return d;
|
|
if(cl1 == cr2) return d;
|
|
if(cr1 == cl2) return d;
|
|
if(cr1 == cr2) return d;
|
|
|
|
if(isNeighbor(cl1, cl2)) return d+1;
|
|
if(isNeighbor(cl1, cr2)) return d+1;
|
|
if(isNeighbor(cr1, cl2)) return d+1;
|
|
if(isNeighbor(cr1, cr2)) return d+1;
|
|
}
|
|
|
|
if(d1 == d2) for(int u=0; u<2; u++) {
|
|
cell *ac0 = u ? cr1 : cr2, *ac = ac0;
|
|
cell *tgt = u ? cl2 : cl1;
|
|
cell *xtgt = u ? cr2 : cr1;
|
|
if(ac == tgt) return d;
|
|
ac = chosenDown(ac, 1, 1, celldist);
|
|
if(ac == tgt) return d+1;
|
|
if(ac == xtgt) return d;
|
|
ac = chosenDown(ac, 1, 1, celldist);
|
|
if(ac == tgt) return d+2;
|
|
if(!nontruncated) {
|
|
ac = chosenDown(ac, 1, 1, celldist);
|
|
if(ac == tgt) {
|
|
if(chosenDown(ac0, 1, 0, celldist) ==
|
|
chosenDown(tgt, -1, 0, celldist))
|
|
return d+2;
|
|
return d+3;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(weirdhyperbolic) {
|
|
forCellEx(c, cl2) if(isNeighbor(c, cr1)) return d+2;
|
|
forCellEx(c, cl1) if(isNeighbor(c, cr2)) return d+2;
|
|
|
|
forCellEx(ca, cl2) forCellEx(cb, cr1) if(isNeighbor(ca, cb)) return d+3;
|
|
forCellEx(ca, cl1) forCellEx(cb, cr2) if(isNeighbor(ca, cb)) return d+3;
|
|
|
|
forCellEx(ca, cl2) forCellEx(cb, cr1) forCellEx(cc, cb) if(isNeighbor(ca, cc)) return d+4;
|
|
forCellEx(ca, cl1) forCellEx(cb, cr2) forCellEx(cc, cb) if(isNeighbor(ca, cc)) return d+4;
|
|
}
|
|
|
|
if(d1 >= d2) {
|
|
cl1 = chosenDown(cl1, -1, 0, celldist);
|
|
// cl1->item = eItem(rand() % 10);
|
|
cr1 = chosenDown(cr1, 1, 0, celldist);
|
|
// cr1->item = eItem(rand() % 10);
|
|
d++; d1--;
|
|
}
|
|
if(d1 < d2) {
|
|
cl2 = chosenDown(cl2, -1, 0, celldist);
|
|
// cl2->item = eItem(rand() % 10);
|
|
cr2 = chosenDown(cr2, 1, 0, celldist);
|
|
// cr2->item = eItem(rand() % 10);
|
|
d++; d2--;
|
|
}
|
|
}
|
|
}
|
|
|
|
void clearCellMemory() {
|
|
for(int i=0; i<size(allmaps); i++) delete allmaps[i];
|
|
allmaps.clear();
|
|
}
|
|
|
|
auto cellhooks = addHook(clearmemory, 500, clearCellMemory);
|
|
|
|
int getHemisphere(cell *c, int which) {
|
|
if(torus) return 0;
|
|
if(ctof(c)) {
|
|
int id = c->master->fiftyval;
|
|
if(S7 == 5) {
|
|
int hemitable[3][12] = {
|
|
{ 6, 3, 3, 3, 3, 3,-6,-3,-3,-3,-3,-3},
|
|
{ 6, 3, 6, 3, 0, 0,-6,-3,-6,-3, 0, 0},
|
|
{-3, 0, 3, 0,-6,-6, 3, 0,-3, 0, 6, 6}
|
|
};
|
|
return hemitable[which][id];
|
|
}
|
|
else if(S7 == 4) {
|
|
int hemitable[3][6] = {
|
|
{ 2, 2, 2,-1,-1,-1},
|
|
{ 2,-1, 2, 2,-1,-1},
|
|
{ 2,-1,-1, 2, 2,-1},
|
|
};
|
|
return hemitable[which][id];
|
|
}
|
|
else if(S7 == 3) {
|
|
int hemitable[3][4] = {
|
|
{ 2, 2,-1,-1},
|
|
{ 2,-1, 2,-1},
|
|
{ 2,-1,-1, 2},
|
|
};
|
|
return hemitable[which][id];
|
|
}
|
|
else return 0;
|
|
}
|
|
else {
|
|
int score = 0;
|
|
for(int i=0; i<6; i+=2)
|
|
score += getHemisphere(c->mov[i], which) * (c->mirror(i) ? -1 : 1);
|
|
return score/3;
|
|
}
|
|
}
|
|
|