mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-12 02:10:34 +00:00
1385 lines
43 KiB
C++
1385 lines
43 KiB
C++
// Hyperbolic Rogue -- Euclidean geometry
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file euclid.cpp
|
|
* \brief Euclidean geometry, including 2D, 3D, and quotient spaces
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
EX namespace euc {
|
|
|
|
#if HDR
|
|
struct coord : array<int, 3> {
|
|
explicit coord() = default;
|
|
constexpr explicit coord(int x, int y, int z) : array<int,3> {{x,y,z}} {}
|
|
coord& operator += (coord b) { for(int i: {0,1,2}) self[i] += b[i]; return self; }
|
|
coord& operator -= (coord b) { for(int i: {0,1,2}) self[i] -= b[i]; return self; }
|
|
coord operator + (coord b) const { coord a = self; return a += b; }
|
|
coord operator - (coord b) const { coord a = self; return a -= b; }
|
|
coord operator -() const { return coord(-self[0], -self[1], -self[2]); }
|
|
coord& operator +() { return self; }
|
|
const coord& operator +() const { return self; }
|
|
coord operator *(int x) const { return coord(x*self[0], x*self[1], x*self[2]); }
|
|
friend coord operator *(int x, const coord& y) { return coord(x*y[0], x*y[1], x*y[2]); }
|
|
};
|
|
|
|
typedef array<coord, 3> intmatrix;
|
|
#endif
|
|
|
|
EX const coord euzero = coord(0,0,0);
|
|
EX const coord eutester = coord(3,7,0);
|
|
EX intmatrix euzeroall = make_array<coord>(euzero, euzero, euzero);
|
|
|
|
static constexpr intmatrix main_axes = make_array<coord>(coord(1,0,0), coord(0,1,0), coord(0,0,1));
|
|
|
|
EX vector<coord> get_shifttable() {
|
|
static const coord D0 = main_axes[0];
|
|
static const coord D1 = main_axes[1];
|
|
static const coord D2 = main_axes[2];
|
|
vector<coord> shifttable;
|
|
|
|
/* for portal spaces... */
|
|
auto g = geometry;
|
|
if(S7 == 6 && WDIM == 3) g = gCubeTiling;
|
|
|
|
switch(g) {
|
|
case gCubeTiling:
|
|
case gMengerSponge:
|
|
shifttable = { +D0, +D1, +D2 };
|
|
break;
|
|
|
|
case gRhombic3:
|
|
case gSierpinskiTet:
|
|
shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 };
|
|
break;
|
|
|
|
case gBitrunc3:
|
|
shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 };
|
|
break;
|
|
|
|
case gEuclid:
|
|
case gSierpinski3:
|
|
case gSixFlake:
|
|
shifttable = { D0, D1, D1-D0, -D0, -D1, D0-D1 };
|
|
break;
|
|
|
|
case gEuclidSquare:
|
|
case gSierpinski4:
|
|
shifttable = { D0, D1, -D0, -D1 };
|
|
break;
|
|
|
|
default:
|
|
throw hr_exception("euc::get_shifttable() called in geometry that is not euclid3");
|
|
}
|
|
|
|
// reverse everything
|
|
int s = isize(shifttable);
|
|
for(int i=0; i<s; i++) shifttable.push_back(-shifttable[i]);
|
|
return shifttable;
|
|
}
|
|
|
|
EX coord basic_canonicalize(coord x);
|
|
|
|
#if HDR
|
|
struct torus_config {
|
|
/** periods entered by the user */
|
|
intmatrix user_axes;
|
|
/** OR'ed flags: 1 -- flip X in 3D, 2 -- flip Y in 3D, 4 -- flip X/Y in 3D, 8 -- Klein bottle in 2D, 16 -- third turn in 3D, 32 -- Hantzsche-Wendt in 3D */
|
|
int twisted;
|
|
|
|
torus_config() {}
|
|
torus_config(intmatrix user_axes, int twisted) : user_axes(user_axes), twisted(twisted) {}
|
|
};
|
|
|
|
struct torus_config_full : torus_config {
|
|
/** optimal representation of the periods */
|
|
intmatrix optimal_axes;
|
|
/** regular axes (?) */
|
|
intmatrix regular_axes;
|
|
/** in 2D: the period vector which is reflected */
|
|
gp::loc twisted_vec;
|
|
/** in 2D: a vector orthogonal to twisted_vec */
|
|
gp::loc ortho_vec;
|
|
/** determinant */
|
|
int det;
|
|
/** the number of infinite dimensions */
|
|
int infinite_dims;
|
|
/** ? */
|
|
intmatrix inverse_axes;
|
|
/** for canonicalization on tori */
|
|
map<coord, int> hash;
|
|
vector<coord> seq;
|
|
int index;
|
|
|
|
void reset() { index = 0; hash.clear(); seq.clear(); }
|
|
|
|
/** add to the tori canonicalization list */
|
|
void add(coord val);
|
|
|
|
/** get the representative on the tori canonicalization list */
|
|
coord get(coord x);
|
|
|
|
/** find the equivalence class of coo */
|
|
coord compute_cat(coord coo);
|
|
|
|
/** canonicalize coord x; in case of twisting, adjust d, M, and mirr accordingly */
|
|
void canonicalize(coord& x, coord& d, transmatrix& M, bool& mirr);
|
|
};
|
|
#endif
|
|
EX torus_config eu_input, eu_edit;
|
|
EX torus_config_full eu;
|
|
|
|
struct hrmap_euclidean : hrmap_standard {
|
|
vector<coord> shifttable;
|
|
vector<transmatrix> tmatrix;
|
|
map<coord, heptagon*> spacemap;
|
|
map<heptagon*, coord> ispacemap;
|
|
cell *camelot_center;
|
|
|
|
map<gp::loc, struct cdata> eucdata;
|
|
|
|
void compute_tmatrix() {
|
|
cgi.require_basics();
|
|
shifttable = get_shifttable();
|
|
tmatrix.resize(S7);
|
|
for(int i=0; i<S7; i++) tmatrix[i] = eumove(shifttable[i]);
|
|
}
|
|
|
|
void on_dim_change() override {
|
|
compute_tmatrix();
|
|
}
|
|
|
|
vector<cell*> toruscells;
|
|
vector<cell*>& allcells() override {
|
|
if(closed_manifold && !disksize) {
|
|
if(isize(toruscells) == 0) {
|
|
celllister cl(getOrigin()->c7, 1000, 1000000, NULL);
|
|
toruscells = cl.lst;
|
|
}
|
|
return toruscells;
|
|
}
|
|
return hrmap::allcells();
|
|
}
|
|
|
|
hrmap_euclidean() {
|
|
compute_tmatrix();
|
|
camelot_center = NULL;
|
|
build_torus3(geometry);
|
|
#if CAP_IRR
|
|
if(!valid_irr_torus()) {
|
|
addMessage(XLAT("Error: period mismatch"));
|
|
eu_input = irr::base_config;
|
|
build_torus3(geometry);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
heptagon *getOrigin() override {
|
|
return get_at(euzero);
|
|
}
|
|
|
|
heptagon *get_at(coord at) {
|
|
if(spacemap.count(at))
|
|
return spacemap[at];
|
|
else {
|
|
auto h = init_heptagon(S7);
|
|
if(!IRREGULAR)
|
|
h->c7 = newCell(S7, h);
|
|
#if CAP_IRR
|
|
else {
|
|
coord m0 = shifttable[0];
|
|
transmatrix dummy;
|
|
bool mirr;
|
|
auto ati = at;
|
|
irr::base_config.canonicalize(ati, m0, dummy, mirr);
|
|
indenter id(2);
|
|
for(int spin=0; spin<S7; spin++) if(shifttable[spin] == m0) {
|
|
irr::link_to_base(h, heptspin(((hrmap_euclidean*)irr::base)->get_at(ati), spin, mirr));
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if(S7 != 14)
|
|
h->zebraval = gmod(at[0] + at[1] * 2 + at[2] * 4, 5);
|
|
else
|
|
h->zebraval = at[0] & 1;
|
|
spacemap[at] = h;
|
|
ispacemap[h] = at;
|
|
|
|
return h;
|
|
}
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
int d1 = (d+S7/2)%S7;
|
|
bool mirr = false;
|
|
transmatrix I;
|
|
auto v = ispacemap[parent] + shifttable[d];
|
|
auto st = shifttable[d1];
|
|
eu.canonicalize(v, st, I, mirr);
|
|
if(eu.twisted)
|
|
for(int i=0; i<S7; i++) if(shifttable[i] == st) d1 = i;
|
|
|
|
heptagon *h = get_at(v);
|
|
h->c.connect(d1, parent, d, mirr);
|
|
return h;
|
|
}
|
|
|
|
transmatrix adj(heptagon *h, int i) override {
|
|
if(!eu.twisted) return tmatrix[i];
|
|
transmatrix res = tmatrix[i];
|
|
coord id = ispacemap[h];
|
|
id += shifttable[i];
|
|
auto dummy = euzero;
|
|
bool dm = false;
|
|
eu.canonicalize(id, dummy, res, dm);
|
|
|
|
return res;
|
|
}
|
|
|
|
transmatrix adj(cell *c, int i) override {
|
|
if(dont_inverse()) return adj(c->master, i);
|
|
if(WDIM == 3) return adj(c->master, i);
|
|
else return hrmap_standard::adj(c, i);
|
|
}
|
|
|
|
void draw_at(cell *at, const shiftmatrix& where) override {
|
|
dq::clear_all();
|
|
dq::enqueue_by_matrix(at->master, where * master_relative(centerover, true));
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = p.first;
|
|
shiftmatrix V = p.second;
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
|
|
bool draw = drawcell_subs(c, V * spin(master_to_c7_angle()));
|
|
if(in_wallopt() && isWall3(c) && isize(dq::drawqueue) > 1000 && !hybrid::pmap) continue;
|
|
|
|
if(draw) for(int i=0; i<S7; i++) {
|
|
auto V1 = V * adj(h, i);
|
|
if(geom3::apply_break_cylinder && cgi.emb->break_cylinder(V, V1)) continue;
|
|
dq::enqueue_by_matrix(h->move(i), optimized_shift(V1));
|
|
}
|
|
}
|
|
}
|
|
|
|
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
|
|
if(eu.twisted) {
|
|
if(h1 == h2) return Id;
|
|
for(int s=0; s<S7; s++) if(h2 == h1->move(s)) return adj(h1, s);
|
|
coord c1 = ispacemap[h1];
|
|
coord c2 = ispacemap[h2];
|
|
transmatrix T = eumove(c2 - c1);
|
|
|
|
transmatrix I = Id;
|
|
coord cs = c1;
|
|
for(int s=0; s<4; s++) {
|
|
for(int a=-1; a<=1; a++)
|
|
for(int b=-1; b<=1; b++) {
|
|
if(b && WDIM == 2) continue;
|
|
transmatrix T1 = I * eumove((c2 - cs) + a*eu.user_axes[0] + b*eu.user_axes[1]);
|
|
if(hdist(tC0(T1), hint) < hdist(tC0(T), hint))
|
|
T = T1;
|
|
}
|
|
auto co = eu.user_axes[WDIM-1];
|
|
cs += co;
|
|
I = I * eumove(co);
|
|
auto dummy = euzero;
|
|
bool dm = false;
|
|
eu.canonicalize(cs, dummy, I, dm);
|
|
}
|
|
return T;
|
|
}
|
|
auto d = ispacemap[h2] - ispacemap[h1];
|
|
d = basic_canonicalize(d);
|
|
return eumove(d);
|
|
}
|
|
|
|
subcellshape& get_cellshape(cell* c) override {
|
|
return *cgi.heptshape;
|
|
}
|
|
};
|
|
|
|
hrmap_euclidean* cubemap() {
|
|
if(fake::in()) return FPIU(cubemap());
|
|
return ((hrmap_euclidean*) currentmap);
|
|
}
|
|
|
|
hrmap_euclidean* eucmap() {
|
|
return cubemap();
|
|
}
|
|
|
|
EX vector<coord>& get_current_shifttable() { return cubemap()->shifttable; }
|
|
EX map<coord, heptagon*>& get_spacemap() { return cubemap()->spacemap; }
|
|
EX map<heptagon*, coord>& get_ispacemap() { return cubemap()->ispacemap; }
|
|
EX cell *& get_camelot_center() { return cubemap()->camelot_center; }
|
|
|
|
EX heptagon* get_at(coord co) { return cubemap()->get_at(co); }
|
|
|
|
EX hrmap* new_map() {
|
|
return new hrmap_euclidean;
|
|
}
|
|
|
|
EX transmatrix move_matrix(heptagon *h, int i) {
|
|
return cubemap()->adj(h, i);
|
|
}
|
|
|
|
EX bool pseudohept(cell *c) {
|
|
if(cgflags & qPORTALSPACE) return false;
|
|
coord co = cubemap()->ispacemap[c->master];
|
|
if(S7 == 12) {
|
|
for(int i=0; i<3; i++) if((co[i] & 1)) return false;
|
|
}
|
|
else {
|
|
for(int i=0; i<3; i++) if(!(co[i] & 1)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
EX int dist_alt(cell *c) {
|
|
if(WDIM == 2) {
|
|
auto v = full_coords2(c);
|
|
return euclidAlt(v.first, v.second);
|
|
}
|
|
if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c);
|
|
auto v = cubemap()->ispacemap[c->master];
|
|
if(S7 == 6) return v[2];
|
|
else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2;
|
|
else return v[2]/2;
|
|
}
|
|
|
|
EX bool get_emerald(cell *c) {
|
|
auto v = cubemap()->ispacemap[c->master];
|
|
int s0 = 0, s1 = 0;
|
|
for(int i=0; i<3; i++) {
|
|
v[i] = gmod(v[i], 6);
|
|
int d = min(v[i], 6-v[i]);;
|
|
s0 += min(v[i], 6-v[i]);
|
|
s1 += 3-d;
|
|
}
|
|
if(s0 == s1) println(hlog, "equality");
|
|
return s0 > s1;
|
|
}
|
|
|
|
bool cellvalid(coord v) {
|
|
if(S7 == 6) return true;
|
|
if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0;
|
|
if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2;
|
|
return false;
|
|
}
|
|
|
|
EX int celldistance(coord v) {
|
|
if(S7 == 6)
|
|
return abs(v[0]) + abs(v[1]) + abs(v[2]);
|
|
else {
|
|
for(int i=0; i<3; i++) v[i] = abs(v[i]);
|
|
sort(v.begin(), v.end());
|
|
int dist = 0;
|
|
if(S7 == 12) {
|
|
int d = v[1] - v[0]; v[1] -= d; v[2] -= d;
|
|
dist += d;
|
|
int m = min((v[2] - v[0]), v[0]);
|
|
dist += 2 * m;
|
|
v[0] -= m; v[1] -= m; v[2] -= m * 2;
|
|
if(v[0])
|
|
dist += (v[0] + v[1] + v[2]) / 2;
|
|
else
|
|
dist += v[2];
|
|
}
|
|
else {
|
|
dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2;
|
|
}
|
|
return dist;
|
|
}
|
|
}
|
|
|
|
EX int celldistance(cell *c1, cell *c2) {
|
|
auto cm = cubemap();
|
|
if(GDIM == 2)
|
|
return dist(full_coords2(c1), full_coords2(c2));
|
|
return celldistance(basic_canonicalize(cm->ispacemap[c1->master] - cm->ispacemap[c2->master]));
|
|
}
|
|
|
|
EX void set_land(cell *c) {
|
|
if(cgflags & qPORTALSPACE) return;
|
|
setland(c, specialland);
|
|
auto m = cubemap();
|
|
auto co = m->ispacemap[c->master];
|
|
|
|
int dv = 1;
|
|
if(geometry != gCubeTiling) dv = 2;
|
|
|
|
int hash = 0;
|
|
for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4;
|
|
|
|
set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash);
|
|
}
|
|
|
|
EX int dist_relative(cell *c) {
|
|
auto m = cubemap();
|
|
auto& cc = m->camelot_center;
|
|
int r = roundTableRadius(NULL);
|
|
cell *start = m->gamestart();
|
|
if(!cc) {
|
|
cc = start;
|
|
while(euc::celldistance(cc, start) < r + 5)
|
|
cc = cc->cmove(hrand(cc->type));
|
|
}
|
|
|
|
return euc::celldistance(cc, c) - r;
|
|
}
|
|
|
|
/* quotient spaces */
|
|
|
|
int determinant(const intmatrix T) {
|
|
int det = 0;
|
|
for(int i=0; i<3; i++)
|
|
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
|
|
for(int i=0; i<3; i++)
|
|
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
|
|
return det;
|
|
}
|
|
|
|
intmatrix scaled_inverse(const intmatrix T) {
|
|
intmatrix T2;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++)
|
|
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]);
|
|
return T2;
|
|
}
|
|
|
|
EX torus_config torus3(int x, int y, int z) {
|
|
intmatrix T0 = euzeroall;
|
|
tie(T0[0][0], T0[1][1], T0[2][2]) = make_tuple(x, y, z);
|
|
return {T0, 0};
|
|
}
|
|
|
|
EX torus_config clear_torus3() {
|
|
return {euzeroall, 0};
|
|
}
|
|
|
|
coord torus_config_full::compute_cat(coord coo) {
|
|
coord cat = euzero;
|
|
auto& T2 = inverse_axes;
|
|
for(int i=0; i<3; i++) {
|
|
int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2];
|
|
if(i < WDIM - infinite_dims) val = gmod(val, det);
|
|
cat += val * main_axes[i];
|
|
}
|
|
return cat;
|
|
}
|
|
|
|
EX bool valid_third_turn(const intmatrix& m) {
|
|
if(m[0][2] != -m[0][0]-m[0][1]) return false;
|
|
if(m[1][0] != m[0][1]) return false;
|
|
if(m[1][1] != m[0][2]) return false;
|
|
if(m[1][2] != m[0][0]) return false;
|
|
if(m[2][0] != m[2][1]) return false;
|
|
if(m[2][0] != m[2][2]) return false;
|
|
return true;
|
|
}
|
|
|
|
EX torus_config make_hantzsche_wendt(int v) {
|
|
intmatrix im;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) im[i][j] = 0;
|
|
|
|
for(int i=0; i<3; i++) {
|
|
im[i][i] = v;
|
|
im[i][(i+1)%3] = v;
|
|
}
|
|
|
|
return {im, 32};
|
|
}
|
|
|
|
EX bool valid_hantzsche_wendt(const intmatrix& m) {
|
|
return m[0][0] > 0 && m == make_hantzsche_wendt(m[0][0]).user_axes;
|
|
}
|
|
|
|
EX torus_config make_third_turn(int a, int b, int c) {
|
|
intmatrix T0;
|
|
T0[0][0] = a;
|
|
T0[0][1] = b;
|
|
T0[2][0] = c;
|
|
T0[0][2] = -T0[0][0]-T0[0][1];
|
|
T0[1][0] = T0[0][1];
|
|
T0[1][1] = T0[0][2];
|
|
T0[1][2] = T0[0][0];
|
|
T0[2][1] = T0[2][2] = c;
|
|
return {T0, 8};
|
|
}
|
|
|
|
EX torus_config make_quarter_turn(int a, int b, int c) {
|
|
intmatrix T0 = euzeroall;
|
|
T0[0][0] = a;
|
|
T0[0][1] = b;
|
|
T0[2][0] = c;
|
|
return {T0, 5};
|
|
}
|
|
|
|
void torus_config_full::add(coord val) {
|
|
auto cat = compute_cat(val); if(hash.count(cat)) return; hash[cat] = isize(seq); seq.push_back(val);
|
|
}
|
|
|
|
coord torus_config_full::get(coord x) {
|
|
auto cat = compute_cat(x);
|
|
auto& st = cubemap()->shifttable;
|
|
while(!hash.count(cat)) {
|
|
if(index == isize(seq)) throw hr_exception();
|
|
auto v = seq[index++];
|
|
for(auto s: st) add(v + s);
|
|
}
|
|
return seq[hash[cat]];
|
|
}
|
|
|
|
EX bool valid_irr_torus() {
|
|
#if CAP_IRR
|
|
if(!IRREGULAR) return true;
|
|
if(eu.twisted) return false;
|
|
for(int i=0; i<2; i++) {
|
|
auto x = eu.user_axes[i];
|
|
coord dm = eutester;
|
|
transmatrix dummy = Id;
|
|
bool mirr = false;
|
|
irr::base_config.canonicalize(x, dm, dummy, mirr);
|
|
auto x0 = eu.user_axes[i];
|
|
auto dm0 = eutester;
|
|
eu.canonicalize(x0, dm0, dummy, mirr);
|
|
if(x0 != euzero || dm0 != eutester) return false;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
EX void build_torus3(eGeometry g) {
|
|
|
|
int dim = ginf[g].g.gameplay_dimension;
|
|
|
|
eu.user_axes = eu_input.user_axes;
|
|
if(dim == 2) eu.user_axes[2] = euzero;
|
|
|
|
eu.optimal_axes = eu.user_axes;
|
|
|
|
again:
|
|
for(int i=0; i<dim; i++) if(eu.optimal_axes[i] < euzero) eu.optimal_axes[i] = -eu.optimal_axes[i];
|
|
if(eu.optimal_axes[0] < eu.optimal_axes[1]) swap(eu.optimal_axes[0], eu.optimal_axes[1]);
|
|
if(eu.optimal_axes[1] < eu.optimal_axes[dim-1]) swap(eu.optimal_axes[1], eu.optimal_axes[dim-1]);
|
|
if(eu.optimal_axes[0] < eu.optimal_axes[1]) swap(eu.optimal_axes[0], eu.optimal_axes[1]);
|
|
for(int i=0; i<3; i++) {
|
|
int i1 = (i+1) % 3;
|
|
int i2 = (i+2) % 3;
|
|
for(int a=-10; a<=10; a++)
|
|
for(int b=-10; b<=10; b++) {
|
|
coord cand = eu.optimal_axes[i] + eu.optimal_axes[i1] * a + eu.optimal_axes[i2] * b;
|
|
if(celldistance(cand) < celldistance(eu.optimal_axes[i])) {
|
|
eu.optimal_axes[i] = cand;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
|
|
eu.regular_axes = eu.optimal_axes;
|
|
eu.infinite_dims = dim;
|
|
for(int i=0; i<dim; i++) if(eu.optimal_axes[i] != euzero) eu.infinite_dims--;
|
|
|
|
int attempt = 0;
|
|
next_attempt:
|
|
for(int i=dim-eu.infinite_dims; i<3; i++)
|
|
eu.regular_axes[i] = main_axes[(attempt+i)%3];
|
|
|
|
eu.det = determinant(eu.regular_axes);
|
|
if(eu.det == 0) {
|
|
attempt++;
|
|
if(attempt == 3) {
|
|
println(hlog, "weird singular!\n");
|
|
exit(1);
|
|
}
|
|
goto next_attempt;
|
|
}
|
|
|
|
if(eu.det < 0) eu.det = -eu.det;
|
|
|
|
eu.inverse_axes = scaled_inverse(eu.regular_axes);
|
|
eu.reset();
|
|
eu.add(euzero);
|
|
|
|
eu.twisted = eu_input.twisted;
|
|
if(dim == 3) {
|
|
auto &T0 = eu.user_axes;
|
|
if(valid_third_turn(eu.user_axes)) {
|
|
eu.twisted &= 16;
|
|
if(g == gRhombic3 && (T0[2][2]&1)) eu.twisted = 0;
|
|
if(g == gBitrunc3 && (T0[0][0]&1)) eu.twisted = 0;
|
|
if(g == gBitrunc3 && (T0[1][1]&1)) eu.twisted = 0;
|
|
}
|
|
else if(valid_hantzsche_wendt(eu.user_axes)) {
|
|
eu.twisted &= 32;
|
|
if(g == gBitrunc3 && (T0[0][0]&1)) eu.twisted = 0;
|
|
}
|
|
else {
|
|
eu.twisted &= 7;
|
|
if(g != gCubeTiling && ((T0[0][0]+T0[2][2]) & 1)) eu.twisted &=~ 1;
|
|
if(g != gCubeTiling && ((T0[1][1]+T0[2][2]) & 1)) eu.twisted &=~ 2;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
if(i != j && T0[i][j]) eu.twisted = 0;
|
|
if(T0[2][2] == 0) eu.twisted = 0;
|
|
if(T0[0][0] != T0[1][1]) eu.twisted &= 3;
|
|
}
|
|
}
|
|
else {
|
|
eu.twisted &= 8;
|
|
eu.twisted_vec = to_loc(eu.user_axes[1]);
|
|
eu.ortho_vec = to_loc(eu.user_axes[0]);
|
|
if(eu.twisted_vec == gp::loc{0,0}) eu.twisted = 0;
|
|
if(chiral(eu.twisted_vec)) eu.twisted = 0;
|
|
if(dscalar(eu.twisted_vec, eu.ortho_vec))
|
|
eu.twisted = 0;
|
|
}
|
|
|
|
set_flag(ginf[g].flags, qANYQ, eu.infinite_dims < dim);
|
|
set_flag(ginf[g].flags, qCLOSED, eu.infinite_dims == 0);
|
|
set_flag(ginf[g].flags, qSMALL, eu.infinite_dims == 0 && eu.det <= 4096);
|
|
bool nonori = false;
|
|
if(eu.twisted&1) nonori = !nonori;
|
|
if(eu.twisted&2) nonori = !nonori;
|
|
if(eu.twisted&4) nonori = !nonori;
|
|
if(eu.twisted&8) nonori = !nonori;
|
|
set_flag(ginf[g].flags, qNONORIENTABLE, nonori);
|
|
}
|
|
|
|
EX void build_torus3() {
|
|
for(eGeometry g: { gEuclid, gEuclidSquare, gCubeTiling, gRhombic3, gBitrunc3})
|
|
build_torus3(g);
|
|
}
|
|
|
|
void swap01(transmatrix& M) {
|
|
for(int i=0; i<4; i++) swap(M[i][0], M[i][1]);
|
|
}
|
|
|
|
gp::loc ort1() { return (S3 == 3 ? gp::loc(1, -2) : gp::loc(0, 1)); }
|
|
|
|
int diagonal_cross(const coord& a, const coord& b) {
|
|
return a[0]*b[1] + a[1]*b[2] + a[2]*b[0]
|
|
- b[0]*a[1] - b[1]*a[2] - b[2]*a[0];
|
|
}
|
|
|
|
void torus_config_full::canonicalize(coord& x, coord& d, transmatrix& M, bool& mirr) {
|
|
if(!twisted) {
|
|
if(infinite_dims == WDIM) return;
|
|
if(infinite_dims == WDIM-1) {
|
|
auto& o = optimal_axes;
|
|
while(celldistance(x + o[0]) <= celldistance(x)) x += o[0];
|
|
while(celldistance(x - o[0]) < celldistance(x)) x -= o[0];
|
|
return;
|
|
}
|
|
x = get(x);
|
|
return;
|
|
}
|
|
auto& T0 = user_axes;
|
|
if(twisted & 32) {
|
|
int period = T0[0][0];
|
|
auto& coo = x;
|
|
|
|
while(true) {
|
|
restart:
|
|
/* These coordinates cause the algorithm below to go in circles. We simply break if they are detected */
|
|
if(coo[0] >= 0 && coo[1] == period - coo[0] && coo[2] == -coo[1] && coo[0]*2 > period && coo[0] < period) return;
|
|
if(coo[0]*2 <= -period && coo[0] >= -period && coo[2] == period+coo[0] && coo[2] == -coo[1]) return;
|
|
|
|
/* apply periods */
|
|
for(int i=0; i<3; i++) {
|
|
int j = (i+1) % 3;
|
|
int k = (i+2) % 3;
|
|
int v1 = coo[i] + coo[j];
|
|
int v2 = coo[i] - coo[j];
|
|
if(v1 >= period) {
|
|
coo[i] -= period; coo[j] -= period;
|
|
}
|
|
else if(v1 < -period) {
|
|
coo[i] += period; coo[j] += period;
|
|
}
|
|
else if(v2 >= period) {
|
|
coo[i] -= period; coo[j] += period;
|
|
}
|
|
else if(v2 < -period) {
|
|
coo[i] += period; coo[j] -= period;
|
|
}
|
|
else continue;
|
|
d[j] = -d[j]; d[k] = -d[k];
|
|
coo[j] = -coo[j]; coo[k] = -coo[k];
|
|
transmatrix S = Id;
|
|
S[j][j] = -1; S[k][k] = -1;
|
|
M = M * S;
|
|
goto restart;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
#if MAXMDIM >= 4
|
|
if(twisted & 16) {
|
|
int period = T0[2][2];
|
|
transmatrix RotYZX = Zero;
|
|
RotYZX[1][0] = 1;
|
|
RotYZX[2][1] = 1;
|
|
RotYZX[0][2] = 1;
|
|
RotYZX[3][3] = 1;
|
|
auto& coo = x;
|
|
while(true) {
|
|
auto coosum = coo[0] + coo[1] + coo[2];
|
|
if(coosum >= 3 * period) {
|
|
coo[0] -= period, coo[1] -= period, coo[2] -= period;
|
|
tie(d[0], d[1], d[2]) = make_tuple(d[1], d[2], d[0]);
|
|
tie(coo[0], coo[1], coo[2]) = make_tuple(coo[1], coo[2], coo[0]);
|
|
M = M * RotYZX;
|
|
}
|
|
else if(coosum < 0) {
|
|
coo[0] += period, coo[1] += period, coo[2] += period;
|
|
tie(d[0], d[1], d[2]) = make_tuple(d[2], d[0], d[1]);
|
|
tie(coo[0], coo[1], coo[2]) = make_tuple(coo[2], coo[0], coo[1]);
|
|
M = M * RotYZX * RotYZX;
|
|
}
|
|
else break;
|
|
}
|
|
if(T0[0] != euzero) {
|
|
while(diagonal_cross(coo, T0[1]) < 0) coo -= T0[0];
|
|
while(diagonal_cross(coo, T0[1]) > 0) coo += T0[0];
|
|
while(diagonal_cross(coo, T0[0]) > 0) coo -= T0[1];
|
|
while(diagonal_cross(coo, T0[0]) < 0) coo += T0[1];
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
if(WDIM == 3) {
|
|
#if MAXMDIM >= 4
|
|
auto& coo = x;
|
|
while(coo[2] >= T0[2][2]) {
|
|
coo[2] -= T0[2][2];
|
|
if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
|
|
if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY;
|
|
if(twisted & 4) swap(coo[0], coo[1]), swap01(M), swap(d[0], d[1]);
|
|
}
|
|
while(coo[2] < 0) {
|
|
coo[2] += T0[2][2];
|
|
if(twisted & 4) swap(coo[0], coo[1]), swap(d[0], d[1]), swap01(M);
|
|
if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
|
|
if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY;
|
|
}
|
|
for(int i: {0,1})
|
|
if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]);
|
|
return;
|
|
#endif
|
|
}
|
|
else {
|
|
gp::loc coo = to_loc(x);
|
|
gp::loc ort = ort1() * twisted_vec;
|
|
int dsc = dscalar(twisted_vec, twisted_vec);
|
|
gp::loc d0 (d[0], d[1]);
|
|
hyperpoint h = eumove(to_coord(twisted_vec)) * C0;
|
|
while(true) {
|
|
int dsx = dscalar(coo, twisted_vec);
|
|
if(dsx >= dsc) coo = coo - twisted_vec;
|
|
else if (dsx < 0) coo = coo + twisted_vec;
|
|
else break;
|
|
M = M * spintox(h) * MirrorY * rspintox(h);
|
|
auto s = ort * dscalar(d0, ort) * 2;
|
|
auto v = dscalar(ort, ort);
|
|
s.first /= v;
|
|
s.second /= v;
|
|
d0 = d0 - s;
|
|
s = ort * dscalar(coo, ort) * 2;
|
|
s.first /= v;
|
|
s.second /= v;
|
|
coo = coo - s;
|
|
mirr = !mirr;
|
|
}
|
|
if(ortho_vec != gp::loc{0,0}) {
|
|
int osc = dscalar(ortho_vec, ortho_vec);
|
|
while(true) {
|
|
int dsx = dscalar(coo, ortho_vec);
|
|
if(dsx >= osc) coo = coo - ortho_vec;
|
|
else if(dsx < 0) coo = coo + ortho_vec;
|
|
else break;
|
|
}
|
|
}
|
|
d[0] = d0.first; d[1] = d0.second;
|
|
x = to_coord(coo);
|
|
return;
|
|
}
|
|
}
|
|
|
|
coord basic_canonicalize(coord x) {
|
|
transmatrix M = Id;
|
|
auto dummy = euzero;
|
|
bool dm = false;
|
|
eu.canonicalize(x, dummy, M, dm);
|
|
return x;
|
|
}
|
|
|
|
EX void prepare_torus3() {
|
|
eu_edit = eu_input;
|
|
}
|
|
|
|
EX void show_fundamental() {
|
|
initquickqueue();
|
|
shiftmatrix M = ggmatrix(cwt.at);
|
|
shiftpoint h0 = M*C0;
|
|
auto& T_edit = eu_edit.user_axes;
|
|
hyperpoint ha = M.T*(eumove(T_edit[0]) * C0 - C0) / 2;
|
|
hyperpoint hb = M.T*(eumove(T_edit[1]) * C0 - C0) / 2;
|
|
if(WDIM == 3) {
|
|
hyperpoint hc = M.T*(eumove(T_edit[2]) * C0 - C0) / 2;
|
|
for(int d:{-1,1}) for(int e:{-1,1}) {
|
|
queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF);
|
|
queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF);
|
|
queueline(h0+d*hc+e*ha-hb, h0+d*hc+e*ha+hb, 0xFFFFFFFF);
|
|
}
|
|
}
|
|
else {
|
|
queueline(h0+ha+hb, h0+ha-hb, 0xFFFFFFFF);
|
|
queueline(h0-ha+hb, h0-ha-hb, 0xFFFFFFFF);
|
|
queueline(h0+ha+hb, h0-ha+hb, 0xFFFFFFFF);
|
|
queueline(h0+ha-hb, h0-ha-hb, 0xFFFFFFFF);
|
|
}
|
|
|
|
quickqueue();
|
|
}
|
|
|
|
intmatrix on_periods(gp::loc a, gp::loc b) {
|
|
intmatrix res;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++) res[i][j] = 0;
|
|
res[0][0] = a.first;
|
|
res[0][1] = a.second;
|
|
res[1][0] = b.first;
|
|
res[1][1] = b.second;
|
|
res[2][2] = 1;
|
|
return res;
|
|
}
|
|
|
|
torus_config single_row_torus(int qty, int dy) {
|
|
return { on_periods(gp::loc{dy, -1}, gp::loc{qty, 0}), 0 };
|
|
}
|
|
|
|
torus_config regular_torus(gp::loc p) {
|
|
return { on_periods(p, gp::loc(0,1) * p), 0 };
|
|
}
|
|
|
|
EX torus_config rectangular_torus(int x, int y, bool klein) {
|
|
if(S3 == 3) y /= 2;
|
|
return { on_periods(ort1() * gp::loc(y,0), gp::loc(x,0)), klein?8:0 };
|
|
}
|
|
|
|
void torus_config_option(string name, char key, torus_config tc) {
|
|
dialog::addBoolItem(name, eu_edit.user_axes == tc.user_axes && eu_edit.twisted == tc.twisted && PURE, key);
|
|
dialog::add_action([tc] {
|
|
stop_game();
|
|
eu_input = eu_edit = tc;
|
|
set_variation(eVariation::pure);
|
|
start_game();
|
|
});
|
|
}
|
|
|
|
EX int quotient_size = 2;
|
|
|
|
EX void show_torus3() {
|
|
int dim = WDIM;
|
|
auto& T_edit = eu_edit.user_axes;
|
|
auto& twisted_edit = eu_edit.twisted;
|
|
cmode = sm::SIDE | sm::MAYDARK | sm::TORUSCONFIG;
|
|
gamescreen();
|
|
dialog::init(XLAT("Euclidean quotient spaces"));
|
|
|
|
for(int y=0; y<dim+1; y++)
|
|
dialog::addBreak(100);
|
|
|
|
dialog::addInfo(XLAT("columns specify periods"));
|
|
dialog::addInfo(XLAT("(vectors you need to take to get back to start)"));
|
|
|
|
dialog::addBreak(50);
|
|
|
|
show_fundamental();
|
|
if(dim == 3) {
|
|
bool nondiag = false;
|
|
for(int i=0; i<dim; i++)
|
|
for(int j=0; j<dim; j++)
|
|
if(T_edit[i][j] && i != j) nondiag = true;
|
|
|
|
if(valid_third_turn(T_edit)) {
|
|
auto g = geometry;
|
|
if(g == gCubeTiling ||
|
|
(g == gRhombic3 && T_edit[2][2] % 2 == 0) ||
|
|
(g == gBitrunc3 && T_edit[0][0] % 2 == 0 && T_edit[1][1] % 2 == 0))
|
|
dialog::addBoolItem(XLAT("third-turn space"), twisted_edit & 16, 'x');
|
|
else
|
|
dialog::addBoolItem(XLAT("make it even"), twisted_edit & 16, 'x');
|
|
dialog::add_action([] { eu_edit.twisted ^= 16; });
|
|
}
|
|
|
|
if(valid_hantzsche_wendt(T_edit)) {
|
|
auto g = geometry;
|
|
if(g == gCubeTiling || g == gRhombic3 || (g == gBitrunc3 && T_edit[0][0] % 2 == 0))
|
|
dialog::addBoolItem(XLAT("Hantzsche-Wendt space"), twisted_edit & 32, 'x');
|
|
else
|
|
dialog::addBoolItem(XLAT("make it even"), twisted_edit & 32, 'x');
|
|
dialog::add_action([] { eu_edit.twisted ^= 32; });
|
|
}
|
|
|
|
if(nondiag) {
|
|
dialog::addInfo(XLAT("twisting implemented only for diagonal matrices"));
|
|
dialog::addInfo(XLAT("or for columns : (A,B,C), (B,C,A), (D,D,D) where A+B+C=0"));
|
|
dialog::addBreak(200);
|
|
}
|
|
else if(T_edit[dim-1][dim-1] == 0) {
|
|
dialog::addInfo(XLAT("nothing to twist"));
|
|
dialog::addInfo(XLAT("change the bottom left corner"));
|
|
dialog::addBreak(100);
|
|
}
|
|
else {
|
|
auto g = geometry;
|
|
if(g == gCubeTiling || (T_edit[0][0]+T_edit[2][2]) % 2 == 0)
|
|
dialog::addBoolItem(XLAT("flip X coordinate"), twisted_edit & 1, 'x');
|
|
else
|
|
dialog::addBoolItem(XLAT("flipping X impossible"), twisted_edit & 1, 'x');
|
|
dialog::add_action([] { eu_edit.twisted ^= 1; });
|
|
|
|
if(g == gCubeTiling || (T_edit[1][1]+T_edit[2][2]) % 2 == 0)
|
|
dialog::addBoolItem(XLAT("flip Y coordinate"), twisted_edit & 2, 'y');
|
|
else
|
|
dialog::addBoolItem(XLAT("flipping Y impossible"), twisted_edit & 2, 'y');
|
|
dialog::add_action([] { eu_edit.twisted ^= 2; });
|
|
|
|
if(T_edit[0][0] == T_edit[1][1])
|
|
dialog::addBoolItem(XLAT("swap X and Y"), twisted_edit & 4, 'z');
|
|
else
|
|
dialog::addBoolItem(XLAT("swapping impossible"), twisted_edit & 4, 'z');
|
|
dialog::add_action([] { eu_edit.twisted ^= 4; });
|
|
}
|
|
dialog::addBreak(50);
|
|
dialog::addItem("special manifolds", 'S');
|
|
dialog::add_action([] {
|
|
dialog::editNumber(quotient_size, 1, 12, 1, 2, "special manifold size", "");
|
|
dialog::get_di().extra_options = [] {
|
|
auto q = quotient_size;
|
|
torus_config_option(XLAT("third-turn space"), 'A', make_third_turn(q,0,q));
|
|
torus_config_option(XLAT("quarter-turn space"), 'B', make_quarter_turn(q,0,q));
|
|
torus_config_option(XLAT("Hantzsche-Wendt space"), 'C', make_hantzsche_wendt(q));
|
|
};
|
|
});
|
|
}
|
|
else {
|
|
if(T_edit[1][0] == 0 && T_edit[1][1] == 0)
|
|
dialog::addInfo(XLAT("change the second column for Möbius bands and Klein bottles"));
|
|
else if(chiral(to_loc(T_edit[1])))
|
|
dialog::addInfo(XLAT("second period is chiral -- cannot be mirrored"));
|
|
else if(dscalar(to_loc(T_edit[1]), to_loc(T_edit[0])))
|
|
dialog::addInfo(XLAT("periods must be orthogonal for mirroring"));
|
|
else {
|
|
dialog::addBoolItem(XLAT("mirror flip in the second period"), twisted_edit & 8, 'x');
|
|
dialog::add_action([] { eu_edit.twisted ^= 8; });
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
torus_config_option(XLAT("single-cell torus"), 'A', regular_torus(gp::loc{1,0}));
|
|
torus_config_option(XLAT("large regular torus"), 'B', regular_torus(gp::loc{12, 0}));
|
|
torus_config_option(XLAT("Klein bottle"), 'C', rectangular_torus(12, 6, true));
|
|
torus_config_option(XLAT("cylinder"), 'D', rectangular_torus(6, 0, false));
|
|
torus_config_option(XLAT("Möbius band"), 'E', rectangular_torus(6, 0, true));
|
|
if(S3 == 3) torus_config_option(XLAT("seven-colorable torus"), 'F', regular_torus(gp::loc{1,2}));
|
|
if(S3 == 3) torus_config_option(XLAT("HyperRogue classic torus"), 'G', single_row_torus(381, -22));
|
|
torus_config_option(XLAT("no quotient"), 'H', rectangular_torus(0, 0, false));
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
dialog::addBoolItem(XLAT("standard rotation"), eqmatrix(models::euclidean_spin, Id), 's');
|
|
dialog::add_action([] { rotate_view(models::euclidean_spin); });
|
|
|
|
#if CAP_RUG
|
|
if(GDIM == 2) {
|
|
dialog::addBoolItem(XLAT("hypersian rug mode"), (rug::rugged), 'u');
|
|
dialog::add_action(rug::select);
|
|
}
|
|
#endif
|
|
|
|
dialog::addBreak(50);
|
|
|
|
char xch = 'p';
|
|
for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3}) {
|
|
if(dim == 2) g = geometry;
|
|
dialog::addItem(XLAT(ginf[g].menu_displayed_name), xch++);
|
|
dialog::add_action([g] {
|
|
stop_game();
|
|
set_geometry(g);
|
|
eu_input = eu_edit;
|
|
start_game();
|
|
});
|
|
if(dim == 2) break;
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
|
|
int i = -1;
|
|
for(auto& v: dialog::items) if(v.type == dialog::diBreak) {
|
|
if(i >= 0 && i < dim) {
|
|
for(int j=0; j < dim; j++) {
|
|
char ch = 'a' + i * 3 + j;
|
|
if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-(dim-1.)/2), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8))
|
|
getcstat = ch;
|
|
dialog::add_key_action(ch, [i, j] {
|
|
auto& T_edit = eu_edit.user_axes;
|
|
dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT(
|
|
"This matrix lets you play on the quotient spaces of three-dimensional. "
|
|
"Euclidean space. Every column specifies a translation vector which "
|
|
"takes you back to the starting point. For example, if you put "
|
|
"set 2, 6, 0 on the diagonal, you get back to the starting point "
|
|
"if you move 2 steps in the X direction, 6 steps in the Y direction "
|
|
"(the quotient space is infinite in the Z direction).\n\n"
|
|
"You can also introduce twists for diagonal matrices: after going "
|
|
"the given number of steps in the Z direction, the space is also "
|
|
"mirrored or rotated. (More general 'twisted' spaces are currently "
|
|
"not implemented.)"
|
|
)
|
|
);
|
|
dialog::get_di().extra_options = show_fundamental;
|
|
});
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
#if CAP_COMMANDLINE
|
|
int euArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-t3")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
auto& T0 = eu_input.user_axes;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) {
|
|
shift(); T0[i][j] = argi();
|
|
}
|
|
build_torus3();
|
|
}
|
|
else if(argis("-t2")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
auto& T0 = eu_input.user_axes;
|
|
for(int i=0; i<2; i++)
|
|
for(int j=0; j<2; j++) {
|
|
shift(); T0[i][j] = argi();
|
|
}
|
|
shift(); eu_input.twisted = argi();
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twistthird")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
shift(); int a = argi();
|
|
shift(); int b = argi();
|
|
shift(); int c = argi();
|
|
eu_input = make_third_turn(a, b, c);
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twist3")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
auto& T0 = eu_input.user_axes;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) T0[i][j] = 0;
|
|
|
|
for(int i=0; i<3; i++) {
|
|
shift(); T0[i][i] = argi();
|
|
}
|
|
shift(); eu_input.twisted = argi();
|
|
build_torus3();
|
|
}
|
|
else if(argis("-hw")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
shift();
|
|
eu_input = make_hantzsche_wendt(argi());
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twisttest")) {
|
|
start_game();
|
|
celllister cl(cwt.at, 10000, 10000, NULL);
|
|
for(cell *c: cl.lst) {
|
|
heptagon *h = c->master;
|
|
for(int i=0; i<S7; i++)
|
|
for(int j=0; j<S7; j++)
|
|
for(int k=0; k<S7; k++)
|
|
for(int l=0; l<S7; l++)
|
|
if(h->move(i) && c->move(k) && h->move(i)->move(j) == h->move(k)->move(l) && h->move(i)->move(j)) {
|
|
transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j);
|
|
transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l);
|
|
if(!eqmatrix(T1, T2)) {
|
|
println(hlog, c, " @ ", cubemap()->ispacemap[c->master], " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto euhook = addHook(hooks_args, 100, euArgs);
|
|
#endif
|
|
|
|
EX int dscalar(gp::loc e1, gp::loc e2) {
|
|
return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0);
|
|
}
|
|
|
|
EX int dsquare(gp::loc e) { return dscalar(e, e)/2; }
|
|
|
|
EX int dcross(gp::loc e1, gp::loc e2) {
|
|
return e1.first * e2.second - e1.second*e2.first;
|
|
}
|
|
|
|
EX gp::loc full_coords2(cell *c) {
|
|
if(INVERSE) {
|
|
cell *c1 = gp::get_mapped(c);
|
|
return UIU(full_coords2(c1));
|
|
}
|
|
auto ans = eucmap()->ispacemap[c->master];
|
|
if(S7 == 4 && BITRUNCATED) {
|
|
if(c == c->master->c7) return to_loc(ans) * gp::loc(1,1);
|
|
else {
|
|
auto res = full_coords2(c->cmove(0)) + full_coords2(c->cmove(4));
|
|
res.first /= 2;
|
|
res.second /= 2;
|
|
return res;
|
|
}
|
|
}
|
|
if(BITRUNCATED)
|
|
return to_loc(ans) * gp::loc(1,1) + (c == c->master->c7 ? gp::loc(0,0) : gp::eudir((c->c.spin(0)+4)%6));
|
|
if(GOLDBERG) {
|
|
auto li = gp::get_local_info(c);
|
|
gp::loc shift(0,0);
|
|
if(li.first_dir >= 0) shift = gp::eudir(li.last_dir) * li.relative;
|
|
return to_loc(ans) * gp::param + shift;
|
|
}
|
|
return to_loc(ans);
|
|
}
|
|
|
|
/** this is slow, but we use it only for small p's */
|
|
EX cell* at(gp::loc p) {
|
|
cellwalker cw(currentmap->gamestart());
|
|
while(p.first--) cw += revstep;
|
|
cw ++;
|
|
while(p.second--) cw += revstep;
|
|
return cw.at;
|
|
}
|
|
|
|
EX coord to_coord(gp::loc p) { return coord(p.first, p.second, 0); }
|
|
|
|
EX gp::loc sdxy() { return to_loc(eu.user_axes[1]) * gp::univ_param(); }
|
|
|
|
EX pair<bool, string> coord_display(const shiftmatrix& V, cell *c) {
|
|
if(c != c->master->c7) return {false, ""};
|
|
hyperpoint hx = eumove(main_axes[0]) * C0;
|
|
hyperpoint hy = eumove(main_axes[1]) * C0;
|
|
hyperpoint hz = WDIM == 2 ? C0 : eumove(main_axes[2]) * C0;
|
|
hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse_shift(ggmatrix(cwt.at->master->c7), V) * C0);
|
|
|
|
if(WDIM == 3)
|
|
return {true, fts(h[0]) + "," + fts(h[1]) + "," + fts(h[2]) };
|
|
else
|
|
return {true, fts(h[0]) + "," + fts(h[1]) };
|
|
}
|
|
|
|
EX gp::loc to_loc(const coord& v) { return gp::loc(v[0], v[1]); }
|
|
|
|
EX map<gp::loc, cdata>& get_cdata() { return eucmap()->eucdata; }
|
|
|
|
EX transmatrix eumove(coord co) {
|
|
const double q3 = sqrt(double(3));
|
|
if(WDIM == 3) {
|
|
return eupush3(co[0], co[1], co[2]);
|
|
}
|
|
transmatrix Mat = Id;
|
|
if(a4) {
|
|
Mat[0][2] += co[0] * cgi.tessf;
|
|
Mat[1][2] += co[1] * cgi.tessf;
|
|
}
|
|
else {
|
|
Mat[0][2] += (co[0] + co[1] * .5) * cgi.tessf;
|
|
Mat[1][2] += co[1] * q3 /2 * cgi.tessf;
|
|
}
|
|
if(embedded_plane) Mat = cgi.emb->base_to_actual(Mat);
|
|
return Mat;
|
|
}
|
|
|
|
EX transmatrix eumove(gp::loc co) { return eumove(to_coord(co)); }
|
|
|
|
EX bool chiral(gp::loc g) {
|
|
int x = g.first;
|
|
int y = g.second;
|
|
if(x == 0) return false;
|
|
if(y == 0) return false;
|
|
if(x+y == 0) return false;
|
|
if(x==y) return false;
|
|
if(S3 == 3 && y == -2*x) return false;
|
|
if(S3 == 3 && x == -2*y) return false;
|
|
return true;
|
|
}
|
|
|
|
EX void twist_once(gp::loc coo) {
|
|
coo = coo - eu.twisted_vec * gp::univ_param();
|
|
if(eu.twisted&8) {
|
|
gp::loc ort = ort1() * eu.twisted_vec * gp::univ_param();
|
|
auto s = ort * dscalar(coo, ort) * 2;
|
|
auto v = dscalar(ort, ort);
|
|
s.first /= v;
|
|
s.second /= v;
|
|
coo = coo - s;
|
|
}
|
|
}
|
|
|
|
EX int dist(int sx, int sy, bool reduce IS(true)) {
|
|
int z0 = abs(sx);
|
|
int z1 = abs(sy);
|
|
if(a4 && BITRUNCATED)
|
|
return (z0 == z1 && z0 > 0 && !reduce) ? z0+1: max(z0, z1);
|
|
if(a4) return z0 + z1;
|
|
int z2 = abs(sx+sy);
|
|
return max(max(z0,z1), z2);
|
|
}
|
|
|
|
EX int dist(gp::loc a, gp::loc b) {
|
|
return dist(a.first-b.first, a.second-b.second, (a.first ^ a.second)&1);
|
|
}
|
|
|
|
EX int cyldist(gp::loc a, gp::loc b) {
|
|
a = to_loc(basic_canonicalize(to_coord(a)));
|
|
b = to_loc(basic_canonicalize(to_coord(b)));
|
|
|
|
if(!quotient) return dist(a, b);
|
|
|
|
int best = 0;
|
|
for(int sa=0; sa<16; sa++) {
|
|
auto _a = a, _b = b;
|
|
if(sa&1) twist_once(_a);
|
|
if(sa&2) twist_once(_b);
|
|
if(sa&4) _a = _a + eu.ortho_vec * gp::univ_param();
|
|
if(sa&8) _b = _b + eu.ortho_vec * gp::univ_param();
|
|
int val = dist(_a, _b);
|
|
if(sa == 0 || val < best) best = val;
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
EX void generate() {
|
|
|
|
#if MAXMDIM >= 4
|
|
if(fake::in()) {
|
|
fake::generate();
|
|
return;
|
|
}
|
|
|
|
auto v = euc::get_shifttable();
|
|
|
|
auto& hsh = get_hsh();
|
|
|
|
auto& cs = hsh.faces;
|
|
|
|
cgi.loop = 4;
|
|
cgi.schmid = 3;
|
|
|
|
cs.clear();
|
|
cs.resize(S7);
|
|
|
|
if(S7 == 6) {
|
|
cgi.adjcheck = 1;
|
|
cgi.face = 4;
|
|
for(int w=0; w<6; w++) {
|
|
for(int a=0; a<4; a++) {
|
|
int t[3];
|
|
t[0] = (w>=3) ? -1 : 1;
|
|
t[1] = among(a, 0, 3) ? -1 : 1;
|
|
t[2] = among(a, 2, 3) ? -1 : 1;
|
|
int x = w%3;
|
|
int y = (x+2)%3;
|
|
int z = (y+2)%3;
|
|
cs[w].push_back(hpxy3(t[x]/2., t[y]/2., t[z]/2.));
|
|
}
|
|
}
|
|
}
|
|
|
|
if(S7 == 12) {
|
|
cgi.adjcheck = sqrt(2);
|
|
cgi.face = 4;
|
|
for(int w=0; w<12; w++) {
|
|
auto co = v[w];
|
|
vector<int> valid;
|
|
for(int c=0; c<3; c++) if(co[c]) valid.push_back(c);
|
|
int third = 3 - valid[1] - valid[0];
|
|
hyperpoint v0 = cpush0(valid[0], co[valid[0]] > 0 ? 1 : -1);
|
|
hyperpoint v1 = cpush0(valid[1], co[valid[1]] > 0 ? 1 : -1);
|
|
cs[w].push_back(v0);
|
|
cs[w].push_back(v0/2 + v1/2 + cpush0(third, .5) - C0);
|
|
cs[w].push_back(v1);
|
|
cs[w].push_back(v0/2 + v1/2 + cpush0(third, -.5) - C0);
|
|
}
|
|
}
|
|
|
|
if(S7 == 14) {
|
|
cgi.adjcheck = 2;
|
|
cgi.face = 4; /* the first face */
|
|
auto v = euc::get_shifttable();
|
|
for(int w=0; w<14; w++) {
|
|
if(w%7 < 3) {
|
|
int z = w>=7?-1:1;
|
|
cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+1)%3, 1/2.) - C0);
|
|
cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+2)%3, 1/2.) - C0);
|
|
cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+1)%3,-1/2.) - C0);
|
|
cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+2)%3,-1/2.) - C0);
|
|
}
|
|
else {
|
|
auto t = v[w];
|
|
ld x = t[0], y = t[1], z = t[2];
|
|
for(hyperpoint h: {
|
|
hpxy3(x, y/2, 0), hpxy3(x/2, y, 0), hpxy3(0, y, z/2),
|
|
hpxy3(0, y/2, z), hpxy3(x/2, 0, z), hpxy3(x, 0, z/2)
|
|
}) cs[w].push_back(h);
|
|
}
|
|
}
|
|
}
|
|
|
|
hsh.compute_hept();
|
|
#endif
|
|
}
|
|
|
|
/** @brief returns true if the current geometry is based on this module
|
|
* (For example, Archimedean, kite, or fake with underlying non-Euclidean geometry returns false)
|
|
*/
|
|
EX bool in() {
|
|
if(fake::in()) return FPIU(in());
|
|
if(geometry == gCubeTiling && (reg3::cubes_reg3 || !PURE)) return false;
|
|
if(cgflags & qEXPERIMENTAL) return false;
|
|
return meuclid && standard_tiling();
|
|
}
|
|
|
|
EX bool in(int dim) { return in() && WDIM == dim; }
|
|
EX bool in(int dim, int s7) { return in(dim) && S7 == s7; }
|
|
|
|
EX }
|
|
|
|
EX gp::loc euc2_coordinates(cell *c) {
|
|
if(euc::in()) return euc::full_coords2(c);
|
|
hyperpoint h = calc_relative_matrix(c, currentmap->gamestart(), C0) * C0;
|
|
return gp::loc(floor(h[0]), floor(h[1]));
|
|
}
|
|
|
|
}
|