1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-27 14:37:16 +00:00
hyperrogue/heptagon.cpp
Eryk Kopczyński 3237ff455e Updated to 8.3j
2016-08-26 11:58:03 +02:00

184 lines
5.1 KiB
C++

// Hyperbolic Rogue
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
// heptagon here refers to underlying heptagonal tesselation
// (which you can see by changing the conditions in graph.cpp)
// automaton state
enum hstate { hsOrigin, hsA, hsB, hsError };
int fixrot(int a) { return (a+98)% 7; }
int fix42(int a) { return (a+420)% 42; }
struct heptagon;
struct cell;
cell *newCell(int type, heptagon *master);
#define CDATA
struct heptagon {
// automaton state
hstate s : 8;
// we are spin[i]-th neighbor of move[i]
unsigned char spin[7];
// neighbors; move[0] always goes towards origin,
// and then we go clockwise
heptagon* move[7];
// distance from the origin
short distance;
// emerald/wineyard generator
short emeraldval;
// fifty generator
short fiftyval;
// zebra generator (1B actually)
short zebraval;
#ifdef CDATA
// evolution data
short rval0, rval1;
struct cdata *cdata;
#endif
// central cell
cell *c7;
// associated generator of alternate structure, for Camelot and horocycles
heptagon *alt;
// functions
heptagon*& modmove(int i) { return move[fixrot(i)]; }
unsigned char& gspin(int i) { return spin[fixrot(i)]; }
};
// the automaton is used to generate each heptagon in an unique way
// (you can see the tree obtained by changing the conditions in graph.cpp)
// from the origin we can go further in any direction, and from other heptagons
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
// and sometimes in direction 5
hstate transition(hstate s, int dir) {
if(s == hsOrigin) return hsA;
if(s == hsA && dir >= 3 && dir <= 4) return hsA;
if(s == hsA && dir == 5) return hsB;
if(s == hsB && dir == 4) return hsB;
if(s == hsB && dir == 3) return hsA;
return hsError;
}
heptagon origin;
vector<heptagon*> allAlts;
// create h->move[d] if not created yet
heptagon *createStep(heptagon *h, int d);
// create a new heptagon
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0) {
heptagon *h = new heptagon;
h->alt = NULL;
h->s = s;
for(int i=0; i<7; i++) h->move[i] = NULL;
h->move[pard] = parent; h->spin[pard] = d;
parent->move[d] = h; parent->spin[d] = pard;
if(parent->c7) {
h->c7 = newCell(7, h);
h->emeraldval = emerald_heptagon(parent->emeraldval, d);
h->zebraval = zebra_heptagon(parent->zebraval, d);
#ifdef CDATA
h->rval0 = h->rval1 = 0; h->cdata = NULL;
#endif
if(parent == &origin)
h->fiftyval = fiftytable[0][d];
else
h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d);
}
else {
h->c7 = NULL;
h->emeraldval = 0;
h->fiftyval = 0;
}
//generateEmeraldval(parent);
//generateEmeraldval(h);
if(pard == 0) {
if(purehepta) h->distance = parent->distance + 1;
else if(parent->s == hsOrigin) h->distance = 2;
else if(h->spin[0] == 5)
h->distance = parent->distance + 1;
else if(h->spin[0] == 4 && h->move[0]->s == hsB)
h->distance = createStep(h->move[0], (h->spin[0]+2)%7)->distance + 3;
else h->distance = parent->distance + 2;
}
else h->distance = parent->distance - (purehepta?1:2);
return h;
}
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
rot = fixrot(rot);
createStep(from, rot);
h->move[d] = from->move[rot];
h->spin[d] = fixrot(from->spin[rot] + spin);
h->move[d]->move[fixrot(from->spin[rot] + spin)] = h;
h->move[d]->spin[fixrot(from->spin[rot] + spin)] = d;
//generateEmeraldval(h->move[d]); generateEmeraldval(h);
}
extern int hrand(int);
heptagon *createStep(heptagon *h, int d) {
d = fixrot(d);
if(h->s != hsOrigin && !h->move[0]) {
buildHeptagon(h, 0, hsA, 3 + hrand(2));
}
if(h->move[d]) return h->move[d];
if(h->s == hsOrigin) {
buildHeptagon(h, d, hsA);
}
else if(d == 1) {
addSpin(h, d, h->move[0], h->spin[0]-1, -1);
}
else if(d == 6) {
addSpin(h, d, h->move[0], h->spin[0]+1, +1);
}
else if(d == 2) {
createStep(h->move[0], h->spin[0]-1);
addSpin(h, d, h->move[0]->modmove(h->spin[0]-1), 5 + h->move[0]->gspin(h->spin[0]-1), -1);
}
else if(d == 5 && h->s == hsB) {
createStep(h->move[0], h->spin[0]+1);
addSpin(h, d, h->move[0]->modmove(h->spin[0]+1), 2 + h->move[0]->gspin(h->spin[0]+1), +1);
}
else
buildHeptagon(h, d, (d == 5 || (h->s == hsB && d == 4)) ? hsB : hsA);
return h->move[d];
}
// a structure used to walk on the heptagonal tesselation
// (remembers not only the heptagon, but also direction)
struct heptspin {
heptagon *h;
int spin;
};
heptspin hsstep(const heptspin &hs, int spin) {
createStep(hs.h, hs.spin);
heptspin res;
res.h = hs.h->move[hs.spin];
res.spin = fixrot(hs.h->spin[hs.spin] + spin);
return res;
}
heptspin hsspin(const heptspin &hs, int val) {
heptspin res;
res.h = hs.h;
res.spin = fixrot(hs.spin + val);
return res;
}
// display the coordinates of the heptagon
void backtrace(heptagon *pos) {
if(pos == &origin) return;
backtrace(pos->move[0]);
printf(" %d", pos->spin[0]);
}
void hsshow(const heptspin& t) {
printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin);
}