mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-25 00:16:59 +00:00
270 lines
7.6 KiB
C++
270 lines
7.6 KiB
C++
// Hyperbolic Rogue -- Arnold's cat map
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file asonov.cpp
|
|
* \brief Arnold's cat map
|
|
*/
|
|
|
|
|
|
#include "hyper.h"
|
|
|
|
//#include <cstdio>
|
|
//#include <cmath>
|
|
|
|
namespace hr {
|
|
|
|
EX namespace asonov {
|
|
|
|
#if !CAP_SOLV
|
|
#if HDR
|
|
inline bool in() { return false; }
|
|
#endif
|
|
#endif
|
|
|
|
EX int period_xy = 8;
|
|
EX int period_z = 8;
|
|
|
|
#if CAP_SOLV
|
|
|
|
EX bool in() { return cgflags & qCAT; }
|
|
|
|
EX hyperpoint tx, ty, tz;
|
|
EX transmatrix straighten;
|
|
|
|
#if HDR
|
|
struct coord: public array<int,3> {
|
|
coord() {}
|
|
coord(int x, int y, int z) : array<int,3>(make_array(zgmod(x, period_xy), zgmod(y, period_xy), zgmod(z, period_z))) {}
|
|
coord shift(int x, int y, int z=0) { return coord(self[0]+x, self[1]+y, self[2]+z); }
|
|
coord up() { return coord(self[0]*2-self[1], self[1]-self[0], self[2]+1); }
|
|
coord down() { return coord(self[0]+self[1], self[0]+self[1]*2, self[2]-1); }
|
|
coord addmove(int d);
|
|
coord operator - (coord b);
|
|
};
|
|
#endif
|
|
|
|
coord coord::addmove(int d) {
|
|
switch(d) {
|
|
case 0: return up().shift(0, 0);
|
|
case 1: return up().shift(1, -1);
|
|
case 2: return up().shift(-1, 0);
|
|
case 3: return up().shift(0, -1);
|
|
case 4: return shift(1, 0);
|
|
case 5: return shift(0, 1);
|
|
case 6: return down().shift(0, 0);
|
|
case 7: return down().shift(0, 1);
|
|
case 8: return down().shift(1, 1);
|
|
case 9: return down().shift(1, 2);
|
|
case 10: return shift(-1, 0);
|
|
case 11: return shift(0, -1);
|
|
default: throw hr_exception("error");
|
|
}
|
|
}
|
|
|
|
EX void prepare() {
|
|
using namespace hr;
|
|
transmatrix A = Id;
|
|
A[0][0] = 1;
|
|
A[0][1] = 1;
|
|
A[1][0] = 1;
|
|
A[1][1] = 2;
|
|
|
|
double det = hr::det(A);
|
|
if(det != 1) { printf("wrong det\n"); return; }
|
|
|
|
// (a00-x)(a11-x) - a01*a10 = 0
|
|
|
|
// x^2 - (a00+a11) x + 1 = 0
|
|
|
|
double b = (A[0][0] + A[1][1]) / 2;
|
|
|
|
// x^2 - 2b x + b^2 = b^2-1
|
|
|
|
// if(b*b <= 1) { printf("imaginary eigenvalues\n"); return 0; }
|
|
|
|
// x = b + sqrt(b^2-1)
|
|
|
|
hyperpoint lambda;
|
|
lambda[0] = b + sqrt(b*b-1);
|
|
lambda[1] = b - sqrt(b*b-1);
|
|
|
|
DEBB(DF_GEOM, ("b = ", b, " lambda = ", lambda));
|
|
|
|
transmatrix eigen = Id;
|
|
|
|
for(int i: {0,1}) {
|
|
eigen[0][i] = 1;
|
|
eigen[1][i] = (lambda[i] - A[0][0]) / A[0][1];
|
|
}
|
|
|
|
transmatrix ieigen = inverse(eigen);
|
|
|
|
tx = point3(ieigen[0][0], ieigen[1][0], 0) * vid.binary_width;
|
|
ty = point3(ieigen[0][1], ieigen[1][1], 0) * vid.binary_width;
|
|
tz = -point3(0, 0, log(lambda[0]));
|
|
|
|
DEBB(DF_GEOM, ("tx = ", tx, " ty = ", ty, " tz = ", tz));
|
|
|
|
straighten = inverse(build_matrix(asonov::tx/2, asonov::ty/2, asonov::tz/2, C0));
|
|
}
|
|
|
|
EX void prepare_walls() {
|
|
|
|
cgi.cellshape.clear();
|
|
|
|
auto pt = [&] (int x, int y, int z) { return asonov::tx*x/2 + asonov::ty*y/2 + asonov::tz*z/2 + C0; };
|
|
|
|
cgi.cellshape.push_back({pt(-1,-1,+1), pt(00,+1,+1), pt(+1,+1,+1)});
|
|
cgi.cellshape.push_back({pt(00,-1,+1), pt(+1,+1,+1), pt(+1,-1,+1)});
|
|
cgi.cellshape.push_back({pt(-1,+1,+1), pt(00,+1,+1), pt(-1,-1,+1)});
|
|
cgi.cellshape.push_back({pt(-1,-1,+1), pt(+1,+1,+1), pt(00,-1,+1)});
|
|
cgi.cellshape.push_back({pt(+1,-1,-1), pt(+1,00,-1), pt(+1,+1,-1), pt(+1,+1,+1), pt(+1,-1,+1)});
|
|
cgi.cellshape.push_back({pt(-1,+1,-1), pt(-1,+1,+1), pt(00,+1,+1), pt(+1,+1,+1), pt(+1,+1,-1)});
|
|
cgi.cellshape.push_back({pt(-1,-1,-1), pt(-1,00,-1), pt(+1,-1,-1)});
|
|
cgi.cellshape.push_back({pt(-1,00,-1), pt(-1,+1,-1), pt(+1,-1,-1)});
|
|
cgi.cellshape.push_back({pt(-1,+1,-1), pt(+1,00,-1), pt(+1,-1,-1)});
|
|
cgi.cellshape.push_back({pt(-1,+1,-1), pt(+1,+1,-1), pt(+1,00,-1)});
|
|
cgi.cellshape.push_back({pt(-1,+1,-1), pt(-1,00,-1), pt(-1,-1,-1), pt(-1,-1,+1), pt(-1,+1,+1)});
|
|
cgi.cellshape.push_back({pt(+1,-1,-1), pt(+1,-1,+1), pt(00,-1,+1), pt(-1,-1,+1), pt(-1,-1,-1)});
|
|
|
|
reg3::make_vertices_only();
|
|
}
|
|
|
|
transmatrix coord_to_matrix(coord c, coord zero) {
|
|
transmatrix T = Id;
|
|
|
|
while(zero[2] != c[2]) {
|
|
int z = szgmod(c[2] - zero[2], period_z);
|
|
if(z > 0) zero = zero.up(), T = eupush(tz) * eupush(ty/2) * T;
|
|
else zero = zero.down(), T = eupush(-ty/2) * eupush(-tz) * T;
|
|
}
|
|
return T * eupush(tx * szgmod(c[0]-zero[0], period_xy) + ty * szgmod(c[1]-zero[1], period_xy));
|
|
}
|
|
|
|
coord coord::operator - (coord b) {
|
|
auto c = self;
|
|
while(b[2]) {
|
|
int z = szgmod(b[2], period_z);
|
|
if(z > 0) b = b.down(), c = c.down();
|
|
else if(z < 0) b = b.up(), c = c.up();
|
|
}
|
|
c[0] = zgmod(c[0]-b[0], period_xy); b[0] = 0;
|
|
c[1] = zgmod(c[1]-b[1], period_xy); b[1] = 0;
|
|
return c;
|
|
}
|
|
|
|
EX transmatrix adjmatrix(int i) {
|
|
dynamicval<int> pxy(period_xy, 64);
|
|
dynamicval<int> pz(period_z, 64);
|
|
coord zero(0,0,0);
|
|
coord c = zero.addmove(i);
|
|
return coord_to_matrix(c, zero);
|
|
}
|
|
|
|
struct hrmap_asonov : hrmap {
|
|
map<coord, heptagon*> at;
|
|
map<heptagon*, coord> coords;
|
|
|
|
heptagon *getOrigin() override { return get_at(coord(0,0,0)); }
|
|
|
|
hrmap_asonov() { prepare(); }
|
|
|
|
~hrmap_asonov() {
|
|
for(auto& p: at) clear_heptagon(p.second);
|
|
}
|
|
|
|
heptagon *get_at(coord c) {
|
|
auto& h = at[c];
|
|
if(h) return h;
|
|
h = tailored_alloc<heptagon> (S7);
|
|
h->c7 = newCell(S7, h);
|
|
coords[h] = c;
|
|
h->dm4 = 0;
|
|
h->distance = c[2];
|
|
h->zebraval = c[0];
|
|
h->emeraldval = c[1];
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
return h;
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
auto p = coords[parent];
|
|
auto q = p.addmove(d);
|
|
auto child = get_at(q);
|
|
parent->c.connect(d, child, (d + 6) % 12, false);
|
|
return child;
|
|
}
|
|
|
|
transmatrix adj(heptagon *h, int i) override { return adjmatrix(i); }
|
|
|
|
virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
|
|
for(int a=0; a<S7; a++) if(h2 == h1->move(a)) return adjmatrix(a);
|
|
return coord_to_matrix(coords[h2], coords[h1]);
|
|
}
|
|
};
|
|
|
|
EX hrmap *new_map() { return new hrmap_asonov; }
|
|
|
|
EX coord get_coord(heptagon *h) { return ((hrmap_asonov*)currentmap)->coords[h]; }
|
|
|
|
EX heptagon *get_at(coord where) { return ((hrmap_asonov*)currentmap)->at[where]; }
|
|
|
|
EX int period_xy_edit, period_z_edit;
|
|
|
|
EX void set_flags() {
|
|
auto& flag = ginf[gArnoldCat].flags;
|
|
set_flag(flag, qANYQ, period_xy || period_z);
|
|
set_flag(flag, qBOUNDED, period_xy && period_z);
|
|
set_flag(flag, qSMALL, period_xy && period_z && (period_xy * period_xy * period_z <= 4096));
|
|
set_flag(flag, qHUGE_BOUNDED, period_xy * period_xy * period_z > 16384);
|
|
}
|
|
|
|
EX void prepare_config() {
|
|
period_xy_edit = period_xy;
|
|
period_z_edit = period_z;
|
|
}
|
|
|
|
EX void show_config() {
|
|
cmode = sm::SIDE | sm::MAYDARK;
|
|
gamescreen(1);
|
|
dialog::init(XLAT("Solv quotient spaces"));
|
|
|
|
dialog::addSelItem(XLAT("%1 period", "X/Y"), its(period_xy_edit), 'x');
|
|
dialog::add_action([=] {
|
|
dialog::editNumber(period_xy_edit, 0, 64, 1, 0, XLAT("%1 period", "X/Y"),
|
|
XLAT("Note: the value 0 functions effectively as the size of int (2^32).")
|
|
);
|
|
dialog::bound_low(0);
|
|
});
|
|
|
|
dialog::addSelItem(XLAT("%1 period", "Z"), its(period_z_edit), 'z');
|
|
dialog::add_action([=] {
|
|
dialog::editNumber(period_z_edit, 0, 64, 1, 0, XLAT("%1 period", "Z"),
|
|
XLAT("Set to 0 to make it non-periodic.")
|
|
);
|
|
dialog::bound_low(0);
|
|
});
|
|
|
|
dialog::addBreak(50);
|
|
|
|
dialog::addItem(XLAT("activate"), 'a');
|
|
dialog::add_action([] {
|
|
stop_game();
|
|
period_xy = period_xy_edit;
|
|
period_z = period_z_edit;
|
|
set_flags();
|
|
geometry = gArnoldCat;
|
|
start_game();
|
|
});
|
|
|
|
dialog::addBreak(50);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
}
|