mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-11 18:00:34 +00:00
504 lines
18 KiB
C++
504 lines
18 KiB
C++
// Hyperbolic Rogue -- Locations
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file locations.cpp
|
|
* \brief definition of connection tables, walkers, cell and heptagon structures
|
|
*
|
|
* The standard geometry uses 'heptagons' for the underlying heptagonal tessellation,
|
|
* and 'cells' for the tessellation that the game is actually played on.
|
|
* Other geometries also use the class 'heptagon' even if they are not heptagon-based;
|
|
* there may be one 'heptagon' per each cell. Heptagons are not used in masterless
|
|
* geometries, though. This file implements the basic types and functions for navigating both graphs.
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
#if HDR
|
|
|
|
extern int cellcount, heptacount;
|
|
|
|
#define NODIR 126
|
|
#define NOBARRIERS 127
|
|
|
|
/** \brief Cell information for the game. struct cell builds on this */
|
|
struct gcell {
|
|
|
|
#if CAP_BITFIELD
|
|
/** \brief which land does this cell belong to */
|
|
eLand land : 8;
|
|
/** \brief wall type (waNone for no walls) */
|
|
eWall wall : 8;
|
|
/** \brief monster on this cell -- note that player characters are handled separately */
|
|
eMonster monst : 8;
|
|
/** \brief item on this cell */
|
|
eItem item : 8;
|
|
|
|
/** \brief if this is a barrier, what lands on are on the sides? */
|
|
eLand barleft : 8, barright : 8;
|
|
|
|
/** \brief is it currently sparkling with lightning? */
|
|
unsigned ligon : 1;
|
|
|
|
signed
|
|
mpdist : 7, ///< minimum player distance, the smaller value, the more generated it is */
|
|
pathdist : 8, ///< distance from the target -- actual meaning may change
|
|
cpdist : 8; ///< current distance to the player
|
|
|
|
unsigned
|
|
mondir : 8, ///< which direction the monster is facing (if relevant), also used for boats
|
|
bardir : 8, ///< may equal NODIR (no barrier here), NOBARRIERS (barriers not allowed here), or the barrier direction
|
|
stuntime : 8, ///< for stunned monsters, stun time left; also used for Mutant Ivy timing
|
|
hitpoints : 7, ///< hitpoints left, for Palace monsters, Dragons, Krakens etc. Also reused as cpid for mirrors
|
|
monmirror : 1; ///< monster mirroring state for nonorientable geometries
|
|
|
|
unsigned landflags : 8; ///< some lands need additional flags
|
|
#else
|
|
eLand land;
|
|
eWall wall;
|
|
eMonster monst;
|
|
eItem item;
|
|
eLand barleft, barright;
|
|
bool ligon, monmirror;
|
|
signed char pathdist, cpdist, mpdist;
|
|
|
|
unsigned char mondir, bardir, stuntime, hitpoints;
|
|
unsigned char landflags;
|
|
#endif
|
|
|
|
/** 'landparam' is used for:
|
|
* heat in Icy/Cocytus;
|
|
* heat in Dry (0..10);
|
|
* CR2 structure;
|
|
* hive Weird Rock color / pheromones;
|
|
* Ocean/coast depth;
|
|
* Bomberbird Egg hatch time / mine marking;
|
|
* number of Ancient Jewelry;
|
|
* improved tracking in Trollheim
|
|
*/
|
|
union {
|
|
int32_t landpar;
|
|
unsigned int landpar_color;
|
|
float heat;
|
|
char bytes[4];
|
|
struct fieldinfo {
|
|
uint16_t fieldval;
|
|
unsigned rval : 4;
|
|
unsigned flowerdist : 4;
|
|
unsigned walldist : 4;
|
|
unsigned walldist2 : 4;
|
|
} fi;
|
|
|
|
} LHU;
|
|
|
|
/** \brief wall parameter, used e.g. for remaining power of Bonfires and Thumpers */
|
|
char wparam;
|
|
|
|
#ifdef CELLID
|
|
int cellid;
|
|
#endif
|
|
|
|
gcell() {
|
|
#ifdef CELLID
|
|
cellid = cellcount;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
#define landparam LHU.landpar
|
|
#define landparam_color LHU.landpar_color
|
|
#define fval LHU.fi.fieldval
|
|
|
|
#define FULL_EDGE 120
|
|
|
|
template<class T> struct walker;
|
|
|
|
/** Connection tables are used by heptagon and cell structures. They basically
|
|
* describe the structure of the graph on the given manifold. We assume that
|
|
* the class T has a field c of type connection_table<T>,
|
|
* as its last field. Edges are listed in the clockwise order (for 2D tilings,
|
|
* for 3D tilings the order is more arbitrary). For each edge we remember which other T
|
|
* we are connected to, as well as the index of this edge in the other T, and whether it is
|
|
* mirrored (for graphs on non-orientable manifolds).
|
|
* To conserve memory, these classes need to be allocated with tailored_alloc
|
|
* and freed with tailored_free.
|
|
*/
|
|
|
|
int gmod(int i, int j);
|
|
|
|
template<class T> struct connection_table {
|
|
|
|
/** \brief Table of moves. This is the maximum size, but tailored_alloc allocates less. */
|
|
T* move_table[FULL_EDGE + (FULL_EDGE + sizeof(char*) - 1) / sizeof(char*)];
|
|
|
|
unsigned char *spintable() { return (unsigned char*) (&move_table[full()->degree()]); }
|
|
|
|
/** \brief get the full T from the pointer to this connection table */
|
|
T* full() { T* x = (T*) this; return (T*)((char*)this - ((char*)(&(x->c)) - (char*)x)); }
|
|
/** \brief for the edge d, set the `spin` and `mirror` attributes */
|
|
void setspin(int d, int spin, bool mirror) {
|
|
unsigned char& c = spintable() [d];
|
|
c = spin;
|
|
if(mirror) c |= 128;
|
|
}
|
|
/** \brief we are spin(i)-th neighbor of move[i] */
|
|
int spin(int d) { return spintable() [d] & 127; }
|
|
/** \brief on non-orientable surfaces, the d-th edge may be mirrored */
|
|
bool mirror(int d) { return spintable() [d] & 128; }
|
|
/** \brief 'fix' the edge number d to get the actual index in [0, degree()) */
|
|
int fix(int d) { return gmod(d, full()->degree()); }
|
|
/** \brief T in the direction i */
|
|
T*& move(int i) { return move_table[i]; }
|
|
/** \brief T in the direction i, modulo degree() */
|
|
T*& modmove(int i) { return move(fix(i)); }
|
|
unsigned char modspin(int i) { return spin(fix(i)); }
|
|
/** \brief initialize the table */
|
|
void fullclear() {
|
|
for(int i=0; i<full()->degree(); i++) move_table[i] = NULL;
|
|
}
|
|
/** \brief connect this in direction d0 to c1 in direction d1, possibly mirrored */
|
|
void connect(int d0, T* c1, int d1, bool m) {
|
|
move(d0) = c1;
|
|
c1->move(d1) = full();
|
|
setspin(d0, d1, m);
|
|
c1->c.setspin(d1, d0, m);
|
|
}
|
|
/* like the other connect, but take the parameters of the other cell from a walker */
|
|
void connect(int d0, walker<T> hs) {
|
|
connect(d0, hs.at, hs.spin, hs.mirrored);
|
|
}
|
|
};
|
|
|
|
/** \brief Allocate a class T with a connection_table, but with only `degree` connections.
|
|
*
|
|
* Also set yet unknown connections to NULL.
|
|
*
|
|
* Generating the hyperbolic world consumes lots of
|
|
* RAM, so we really need to be careful on low memory devices.
|
|
*/
|
|
|
|
template<class T> T* tailored_alloc(int degree) {
|
|
const T* sample = (T*) °ree;
|
|
T* result;
|
|
#ifndef NO_TAILORED_ALLOC
|
|
int b = (char*)&sample->c.move_table[degree] + degree - (char*) sample;
|
|
result = (T*) new char[b];
|
|
new (result) T();
|
|
#else
|
|
result = new T;
|
|
#endif
|
|
result->type = degree;
|
|
for(int i=0; i<degree; i++) result->c.move_table[i] = NULL;
|
|
return result;
|
|
}
|
|
|
|
/** \brief Counterpart to hr::tailored_alloc(). */
|
|
template<class T> void tailored_delete(T* x) {
|
|
x->~T();
|
|
delete[] ((char*) (x));
|
|
}
|
|
|
|
static const struct wstep_t { wstep_t() {} } wstep;
|
|
static const struct wmirror_t { wmirror_t() {}} wmirror;
|
|
static const struct rev_t { rev_t() {} } rev;
|
|
static const struct revstep_t { revstep_t() {}} revstep;
|
|
|
|
extern int hrand(int);
|
|
|
|
/** \brief the walker structure is used for walking on surfaces defined via \ref connection_table. */
|
|
template<class T> struct walker {
|
|
/** \brief where we are at */
|
|
T *at;
|
|
/** \brief in which direction (edge) we are facing */
|
|
int spin;
|
|
/** \brief are we mirrored */
|
|
bool mirrored;
|
|
walker<T> (T *at = NULL, int s = 0, bool m = false) : at(at), spin(s), mirrored(m) { if(at) s = at->c.fix(s); }
|
|
/** \brief spin by i to the left (or right, when mirrored */
|
|
walker<T>& operator += (int i) {
|
|
spin = at->c.fix(spin+(mirrored?-i:i));
|
|
return (*this);
|
|
}
|
|
/** \brief spin by i to the right (or left, when mirrored */
|
|
walker<T>& operator -= (int i) {
|
|
spin = at->c.fix(spin-(mirrored?-i:i));
|
|
return (*this);
|
|
}
|
|
/** \brief add wmirror to mirror this walker */
|
|
walker<T>& operator += (wmirror_t) {
|
|
mirrored = !mirrored;
|
|
return (*this);
|
|
}
|
|
/** \brief add wstep to make a single step, after which we are facing the T we were originally on */
|
|
walker<T>& operator += (wstep_t) {
|
|
at->cmove(spin);
|
|
int nspin = at->c.spin(spin);
|
|
if(at->c.mirror(spin)) mirrored = !mirrored;
|
|
at = at->move(spin);
|
|
spin = nspin;
|
|
return (*this);
|
|
}
|
|
/** \brief add wrev to face the other direction, may be non-deterministic and use hrand */
|
|
walker<T>& operator += (rev_t) {
|
|
auto rd = reverse_directions(at, spin);
|
|
if(rd.size() == 1) spin = rd[0];
|
|
else spin = rd[hrand(rd.size())];
|
|
return (*this);
|
|
}
|
|
/** \brief adding revstep is equivalent to adding rev and step */
|
|
walker<T>& operator += (revstep_t) {
|
|
(*this) += rev; return (*this) += wstep;
|
|
}
|
|
bool operator != (const walker<T>& x) const {
|
|
return at != x.at || spin != x.spin || mirrored != x.mirrored;
|
|
}
|
|
bool operator == (const walker<T>& x) const {
|
|
return at == x.at && spin == x.spin && mirrored == x.mirrored;
|
|
}
|
|
|
|
bool operator < (const walker<T>& cw2) const {
|
|
return tie(at, spin, mirrored) < tie(cw2.at, cw2.spin, cw2.mirrored);
|
|
}
|
|
|
|
walker<T>& operator ++ (int) { return (*this) += 1; }
|
|
walker<T>& operator -- (int) { return (*this) -= 1; }
|
|
template<class U> walker operator + (U t) const { walker<T> w = *this; w += t; return w; }
|
|
template<class U> walker operator - (U t) const { walker<T> w = *this; w += (-t); return w; }
|
|
/** \brief what T are we facing, without creating it */
|
|
T*& peek() { return at->move(spin); }
|
|
/** \brief what T are we facing, with creating it */
|
|
T* cpeek() { return at->cmove(spin); }
|
|
/** \brief would we create a new T if we stepped forwards? */
|
|
bool creates() { return !peek(); }
|
|
/** \brief mirror this walker with respect to the d-th edge */
|
|
walker<T> mirrorat(int d) { return walker<T> (at, at->c.fix(d+d - spin), !mirrored); }
|
|
};
|
|
|
|
struct cell;
|
|
|
|
// automaton state
|
|
enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC };
|
|
|
|
struct cell *createMov(struct cell *c, int d);
|
|
struct heptagon *createStep(struct heptagon *c, int d);
|
|
|
|
struct cdata {
|
|
int val[4];
|
|
int bits;
|
|
};
|
|
|
|
/** \brief Limit on the 'distance' value in heptagon.
|
|
*
|
|
* This value is signed (negative distances are used
|
|
* in horocycle implementation. Distance is currently a short, and we need a bit of breathing room.
|
|
* It would not be a technical problem to use a larger type, but 32000 is close to what fits in
|
|
* the memory of a normal computer. Farlands appear close to this limit.
|
|
**/
|
|
|
|
constexpr int global_distance_limit = 32000;
|
|
|
|
/** This value is used in iterative algorithms to prevent infinite loops created by incorrect
|
|
data (e.g., circular dragon). It should be larger than global_distance_limit */
|
|
constexpr int iteration_limit = 10000000;
|
|
|
|
/** \brief underlying tiling
|
|
* in bitruncated/irregular/Goldberg geometries, heptagons form the
|
|
* underlying regular tiling (not necessarily heptagonal); in pure
|
|
* geometries, they correspond 1-1 to tiles; in 'masterless' geometries
|
|
* heptagons are unused
|
|
*/
|
|
|
|
struct heptagon {
|
|
/** \brief Automata are used to generate the standard maps. s is the state of this automaton */
|
|
hstate s : 6;
|
|
/** \brief distance modulo 4, in heptagons */
|
|
unsigned int dm4: 2;
|
|
/** \brief distance from the origin; based on the final geometry of cells, not heptagons themselves */
|
|
short distance;
|
|
/** \brief Wmerald/wineyard generator. May have different meaning in other geometries. */
|
|
short emeraldval;
|
|
/** \brief Palace pattern generator. May have different meaning in other geometries. */
|
|
short fiftyval;
|
|
/** \brief Zebra pattern generator. May have different meaning in other geometries. */
|
|
short zebraval;
|
|
/** \brief Field quotient pattern ID. May have different meaning in other geometries. */
|
|
int fieldval : 24;
|
|
/** \brief the number of adjacent heptagons */
|
|
unsigned char type : 8;
|
|
/** \brief data for fractal landscapes */
|
|
short rval0, rval1;
|
|
/** for the main map, it contains the fractal landscape data
|
|
*
|
|
* For alternate structures, cdata contains the pointer to the original.
|
|
*/
|
|
struct cdata *cdata;
|
|
/** \brief which central cell does this heptagon correspond too
|
|
*
|
|
* For alternate geometries, c7 is NULL
|
|
*/
|
|
cell *c7;
|
|
/** \brief associated generator of alternate structure, for Camelot and horocycles */
|
|
heptagon *alt;
|
|
/** \brief connection table */
|
|
connection_table<heptagon> c;
|
|
// DO NOT add any fields after connection_table! (see tailored_alloc)
|
|
heptagon*& move(int d) { return c.move(d); }
|
|
heptagon*& modmove(int d) { return c.modmove(d); }
|
|
// functions
|
|
heptagon () { heptacount++; }
|
|
~heptagon () { heptacount--; }
|
|
heptagon *cmove(int d) { return createStep(this, d); }
|
|
heptagon *cmodmove(int d) { return createStep(this, c.fix(d)); }
|
|
inline int degree() { return type; }
|
|
|
|
// prevent accidental copying
|
|
heptagon(const heptagon&) = delete;
|
|
heptagon& operator=(const heptagon&) = delete;
|
|
};
|
|
|
|
struct cell : gcell {
|
|
char type; ///< our degree
|
|
int degree() { return type; }
|
|
|
|
int listindex; ///< used by celllister
|
|
heptagon *master; ///< heptagon who owns us; for 'masterless' tilings it contains coordinates instead
|
|
|
|
connection_table<cell> c;
|
|
// DO NOT add any fields after connection_table! (see tailored_alloc)
|
|
|
|
cell*& move(int d) { return c.move(d); }
|
|
cell*& modmove(int d) { return c.modmove(d); }
|
|
cell* cmove(int d) { return createMov(this, d); }
|
|
cell* cmodmove(int d) { return createMov(this, c.fix(d)); }
|
|
cell() {}
|
|
|
|
// prevent accidental copying
|
|
cell(const cell&) = delete;
|
|
heptagon& operator=(const cell&) = delete;
|
|
};
|
|
|
|
/** abbreviations */
|
|
typedef walker<heptagon> heptspin;
|
|
typedef walker<cell> cellwalker;
|
|
|
|
/** \brief A structure useful when walking on the cell graph in arbitrary way, or listing cells in general.
|
|
*
|
|
* Only one celllister may be active at a time, using the stack semantics.
|
|
* Only the most recently created one works; the previous one will resume
|
|
* working when this one is destroyed.
|
|
*/
|
|
struct manual_celllister {
|
|
/** \brief list of cells in this list */
|
|
vector<cell*> lst;
|
|
vector<int> tmps;
|
|
|
|
/** \brief is the given cell on the list? */
|
|
bool listed(cell *c) {
|
|
return c->listindex >= 0 && c->listindex < isize(lst) && lst[c->listindex] == c;
|
|
}
|
|
|
|
/** \brief add a cell to the list */
|
|
bool add(cell *c) {
|
|
if(listed(c)) return false;
|
|
tmps.push_back(c->listindex);
|
|
c->listindex = isize(lst);
|
|
lst.push_back(c);
|
|
return true;
|
|
}
|
|
|
|
~manual_celllister() {
|
|
for(int i=0; i<isize(lst); i++) lst[i]->listindex = tmps[i];
|
|
}
|
|
};
|
|
|
|
/** \brief automatically generate a list of nearby cells */
|
|
struct celllister : manual_celllister {
|
|
vector<int> dists;
|
|
|
|
void add_at(cell *c, int d) {
|
|
if(add(c)) dists.push_back(d);
|
|
}
|
|
|
|
/** \brief automatically generate a list of nearby cells
|
|
@param orig where to start
|
|
@param maxdist maximum distance to cover
|
|
@param maxcount maximum number of cells to cover
|
|
@param breakon we are actually looking for this cell, so stop when reaching it
|
|
*/
|
|
celllister(cell *orig, int maxdist, int maxcount, cell *breakon) {
|
|
add_at(orig, 0);
|
|
cell *last = orig;
|
|
for(int i=0; i<isize(lst); i++) {
|
|
cell *c = lst[i];
|
|
if(maxdist) forCellCM(c2, c) {
|
|
add_at(c2, dists[i]+1);
|
|
if(c2 == breakon) return;
|
|
}
|
|
if(c == last) {
|
|
if(isize(lst) >= maxcount || dists[i]+1 == maxdist) break;
|
|
last = lst[isize(lst)-1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief for a given cell c on the list, return its distance from orig */
|
|
int getdist(cell *c) { return dists[c->listindex]; }
|
|
};
|
|
|
|
/** \brief translate heptspins to cellwalkers and vice versa */
|
|
static const struct cth_t { cth_t() {}} cth;
|
|
inline heptspin operator+ (cellwalker cw, cth_t) { return heptspin(cw.at->master, cw.spin * DUALMUL, cw.mirrored); }
|
|
inline cellwalker operator+ (heptspin hs, cth_t) { return cellwalker(hs.at->c7, hs.spin / DUALMUL, hs.mirrored); }
|
|
|
|
#endif
|
|
|
|
EX bool proper(cell *c, int d) { return d >= 0 && d < c->type; }
|
|
|
|
#if HDR
|
|
|
|
constexpr int STRONGWIND = 99;
|
|
constexpr int FALL = 98;
|
|
constexpr int NO_SPACE = 97;
|
|
constexpr int TELEPORT = 96;
|
|
constexpr int JUMP = 95;
|
|
constexpr int STAY = 94;
|
|
|
|
namespace whirlwind { cell *jumpDestination(cell*); }
|
|
|
|
/** \brief a structure for representing movements
|
|
*
|
|
* mostly for 'proper' moves where s->move(d) == t,
|
|
* but also sometimes for other moves
|
|
*/
|
|
|
|
struct movei {
|
|
cell *s;
|
|
cell *t;
|
|
int d;
|
|
bool op() { return s != t; }
|
|
bool proper() const { return d >= 0 && d < s->type && s->move(d) == t; }
|
|
movei(cell *_s, int _d) : s(_s), d(_d) {
|
|
if(d == STRONGWIND) t = whirlwind::jumpDestination(s);
|
|
else if(d < 0 || d >= s->type) t = s;
|
|
else t = s->move(d);
|
|
}
|
|
movei(cell *_s, cell *_t, int _d) : s(_s), t(_t), d(_d) {}
|
|
movei(cellwalker cw) : s(cw.at), t(cw.cpeek()), d(cw.spin) {}
|
|
movei rev() const { return movei(t, s, rev_dir_or(d)); }
|
|
int dir_or(int x) const { return proper() ? d : x; }
|
|
int rev_dir_or(int x) const { return proper() ? s->c.spin(d) : x; }
|
|
int rev_dir_mirror() const { return proper() ? s->c.spin(d) : d; }
|
|
int rev_dir_force() const { hassert(proper()); return s->c.spin(d); }
|
|
bool mirror() { return s->c.mirror(d); }
|
|
};
|
|
#endif
|
|
|
|
EX movei moveimon(cell *c) { return movei(c, c->mondir); }
|
|
|
|
EX movei match(cell *f, cell *t) {
|
|
for(int i=0; i<f->type; i++) if(f->move(i) == t) return movei(f, t, i);
|
|
return movei(f, t, -1);
|
|
}
|
|
|
|
}
|