hyperrogue/raycaster.cpp

527 lines
18 KiB
C++

// Hyperbolic Rogue -- raycaster
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file raycaster.cpp
* \brief A raycaster to draw walls.
*/
#include "hyper.h"
namespace hr {
GLuint txConnections = 0, txWallcolor = 0, txMatrixid = 0;
#define IN_ODS 0
struct raycaster : glhr::GLprogram {
GLint uStart, uStartid, uN, uM, uLength, uFovX, uFovY, uIPD;
GLint uWallstart, uWallX, uWallY;
GLint tConnections, tWallcolor, tMatrixid;
GLint uBinaryWidth;
raycaster(string vsh, string fsh) : GLprogram(vsh, fsh) {
println(hlog, "assigning");
uStart = glGetUniformLocation(_program, "uStart");
uStartid = glGetUniformLocation(_program, "uStartid");
uN = glGetUniformLocation(_program, "uN");
uM = glGetUniformLocation(_program, "uM");
uLength = glGetUniformLocation(_program, "uLength");
uFovX = glGetUniformLocation(_program, "uFovX");
uFovY = glGetUniformLocation(_program, "uFovY");
uIPD = glGetUniformLocation(_program, "uIPD");
uWallstart = glGetUniformLocation(_program, "uWallstart");
uWallX = glGetUniformLocation(_program, "uWallX");
uWallY = glGetUniformLocation(_program, "uWallY");
uBinaryWidth = glGetUniformLocation(_program, "uBinaryWidth");
tConnections = glGetUniformLocation(_program, "tConnections");
tWallcolor = glGetUniformLocation(_program, "tWallcolor");
tMatrixid = glGetUniformLocation(_program, "tMatrixid");
}
};
shared_ptr<raycaster> our_raycaster;
void enable_raycaster() {
if(!our_raycaster) {
string vsh =
"#define PI 3.14159265358979324\n"
"attribute vec4 aPosition;\n"
"uniform float uFovX, uFovY;\n"
"varying vec4 at;\n"
"void main() { \n"
" gl_Position = aPosition; at = aPosition; \n"
#if IN_ODS
" at[0] *= PI; at[1] *= PI; \n"
#else
" at[0] *= uFovX; at[1] *= uFovY; \n"
#endif
" }\n";
string fsh =
"varying vec4 at;\n"
"uniform int uN;\n"
"uniform int uLength;\n"
"uniform float uIPD;\n"
"uniform mat4 uStart;\n"
"uniform mat4 uM[203];\n"
"uniform mat4 uTest;\n"
"uniform float uStartid;\n"
"uniform sampler1D tConnections;\n"
"uniform sampler1D tWallcolor;\n"
"uniform sampler2D tWallTexture;\n"
"uniform sampler1D tMatrixid;\n"
"uniform vec4 uWallX[60];\n"
"uniform vec4 uWallY[60];\n"
"uniform int uWallstart[16];\n";
if(IN_ODS) fsh +=
"mat4 xpush(float x) { return mat4("
"cosh(x), 0., 0., sinh(x),\n"
"0., 1., 0., 0.,\n"
"0., 0., 1., 0.,\n"
"sinh(x), 0., 0., cosh(x)"
");}\n"
"mat4 xzspin(float x) { return mat4("
"cos(x), 0., sin(x), 0.,\n"
"0., 1., 0., 0.,\n"
"-sin(x), 0., cos(x), 0.,\n"
"0., 0., 0., 1."
");}\n"
"mat4 yzspin(float x) { return mat4("
"1., 0., 0., 0.,\n"
"0., cos(x), sin(x), 0.,\n"
"0., -sin(x), cos(x), 0.,\n"
"0., 0., 0., 1."
");}\n";
fsh +=
"vec2 map_texture(vec4 pos, int which) {\n";
if(nil) fsh += "if(which == 2 || which == 5) pos.z = 0.;\n";
if(hyperbolic) fsh +=
"pos /= pos.w;\n";
fsh +=
"int s = uWallstart[which];\n"
"int e = uWallstart[which+1];\n"
"for(int i=s; i<e; i++) {\n"
"vec2 v = vec2(dot(uWallX[i], pos), dot(uWallY[i], pos));\n"
"if(v.x >= 0. && v.y >= 0. && v.x + v.y <= 1.) return v;\n"
"}\n"
"return vec2(0.5, 0.5);\n"
"}\n";
string fmain = "void main() {\n";
if(IN_ODS) fmain +=
" float lambda = at[0];\n" // -PI to PI
" float phi;\n"
" float eye;\n"
" if(at.y < 0.) { phi = at.y + PI/2.; eye = uIPD / 2.; }\n" // right
" else { phi = at.y - PI/2.; eye = -uIPD / 2.; }\n"
" mat4 vw = uStart * xzspin(-lambda) * xpush(eye) * yzspin(phi);\n"
" vec4 at0 = vec4(0., 0., 1., 0.);\n";
else fmain +=
" mat4 vw = uStart;\n"
" vec4 at0 = at;\n"
" at0.y = -at.y;\n"
" at0.w = 0.;\n"
" at0.xyz = at0.xyz / length(at0.xyz);\n";
if(hyperbolic) fsh += " float len(vec4 x) { return x[3]; }\n";
else fsh += " float len(vec4 x) { return length(x.xyz); }\n";
if(nonisotropic) fmain +=
" const float maxstep = .03;\n"
" const float minstep = .001;\n"
" float next = maxstep;\n";
fmain +=
" vec4 position = vw * vec4(0., 0., 0., 1.);\n"
" vec4 tangent = vw * at0;\n"
" float go = 0.;\n"
" float cid = uStartid;\n"
" for(int iter=0; iter<600; iter++) {\n";
fmain +=
" float dist = 100.;\n";
fmain +=
" int which = -1;\n";
if(IN_ODS) fmain +=
" if(go == 0.) {\n"
" float best = len(position);\n"
" for(int i=0; i<uN; i++) {\n"
" float cand = len(uM[i] * position);\n"
" if(cand < best - .001) { dist = 0.; best = cand; which = i; }\n"
" }\n"
" }\n";
if(!nonisotropic) {
fmain +=
" if(which == -1) for(int i=0; i<uN; i++) {\n";
if(hyperbolic) fmain +=
" float v = ((position - uM[i] * position)[3] / (uM[i] * tangent - tangent)[3]);\n"
" if(v > 1. || v < -1.) continue;\n"
" float d = atanh(v);\n"
" vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if(next_tangent[3] < (uM[i] * next_tangent)[3]) continue;\n";
else fmain +=
" float deno = dot(position, tangent) - dot(uM[i]*position, uM[i]*tangent);\n"
" if(deno < 1e-6 && deno > -1e-6) continue;\n"
" float d = (dot(uM[i]*position, uM[i]*position) - dot(position, position)) / 2. / deno;\n"
" if(d < 0.) continue;\n"
" vec4 next_position = position + d * tangent;\n"
" if(dot(next_position, tangent) < dot(uM[i]*next_position, uM[i]*tangent)) continue;\n";
fmain +=
" if(d < dist) { dist = d; which = i; }\n"
"}\n";
fmain +=
" if(dist < 0.) { dist = 0.; }\n";
fmain +=
" if(which == -1 && dist == 0.) { gl_FragColor = vec4(0., 0., 0., 1.); return; }";
}
// shift d units
if(hyperbolic) fmain +=
" float ch = cosh(dist); float sh = sinh(dist);\n"
" vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch + position * sh;\n"
" position = v;\n";
else if(nonisotropic) {
if(sol) fsh +=
"vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n"
" return vec4(-vel.z*tra.x - vel.x*tra.z, vel.z*tra.y + vel.y * tra.z, vel.x*tra.x * exp(2.*pos.z) - vel.y * tra.y * exp(-2.*pos.z), 0.);\n"
" }\n";
else fsh +=
"vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n"
" float x = pos.x;\n"
" return vec4(x*vel.y*tra.y - 0.5*dot(vel.yz,tra.zy), -.5*x*dot(vel.yx,tra.xy) + .5 * dot(vel.zx,tra.xz), -.5*(x*x-1.)*dot(vel.yx,tra.xy)+.5*x*dot(vel.zx,tra.xz), 0.);\n"
// " return vec4(0.,0.,0.,0.);\n"
" }\n";
if(sol) fsh += "uniform float uBinaryWidth;\n";
fmain +=
" dist = next < minstep ? 2.*next : next;\n";
if(nil) fsh +=
"vec4 translate(vec4 a, vec4 b) {\n"
"return vec4(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1], b[3]);\n"
"}\n"
"vec4 translatev(vec4 a, vec4 t) {\n"
"return vec4(t[0], t[1], t[2] + a[0] * t[1], 0.);\n"
"}\n"
"vec4 itranslate(vec4 a, vec4 b) {\n"
"return vec4(-a[0] + b[0], -a[1] + b[1], -a[2] + b[2] - a[0] * (b[1]-a[1]), b[3]);\n"
"}\n"
"vec4 itranslatev(vec4 a, vec4 t) {\n"
"return vec4(t[0], t[1], t[2] - a[0] * t[1], 0.);\n"
"}\n";
if(nil) fmain += "tangent = translate(position, itranslate(position, tangent));\n";
if(sol) fmain +=
"vec4 acc = christoffel(position, tangent, tangent);\n"
"vec4 pos2 = position + tangent * dist / 2.;\n"
"vec4 tan2 = tangent + acc * dist / 2.;\n"
"vec4 acc2 = christoffel(pos2, tan2, tan2);\n"
"vec4 nposition = position + tangent * dist + acc2 / 2. * dist * dist;\n";
if(nil) {
fmain +=
"vec4 xp, xt;\n"
"vec4 back = itranslatev(position, tangent);\n"
"if(back.x == 0. && back.y == 0.) {\n"
" xp = vec4(0., 0., back.z*dist, 1.);\n"
" xt = back;\n"
" }\n"
"else if(abs(back.z) == 0.) {\n"
" xp = vec4(back.x*dist, back.y*dist, back.x*back.y*dist*dist/2., 1.);\n"
" xt = vec4(back.x, back.y, dist*back.x*back.y, 0.);\n"
" }\n"
"else if(abs(back.z) < 1e-1) {\n"
// we use the midpoint method here, because the formulas below cause glitches due to float precision
" vec4 acc = christoffel(vec4(0,0,0,1), back, back);\n"
" vec4 pos2 = back * dist / 2.;\n"
" vec4 tan2 = back + acc * dist / 2.;\n"
" vec4 acc2 = christoffel(pos2, tan2, tan2);\n"
" xp = vec4(0,0,0,1) + back * dist + acc2 / 2. * dist * dist;\n"
" xt = back + acc * dist;\n"
" }\n"
"else {\n"
" float alpha = atan2(back.y, back.x);\n"
" float w = back.z * dist;\n"
" float c = length(back.xy) / back.z;\n"
" xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n"
" xt = back.z * vec4("
"c*cos(alpha+w),"
"c*sin(alpha+w),"
"1. + c*c*2.*sin(w/2.)*sin(alpha+w)*cos(alpha+w/2.),"
"0.);\n"
" }\n"
"vec4 nposition = translate(position, xp);\n";
}
if(nil) fmain +=
"float rz = (abs(nposition.x) > abs(nposition.y) ? -nposition.x*nposition.y : 0.) + nposition.z;\n";
fmain +=
"if(next >= minstep) {\n";
if(sol) fmain +=
"if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > log(2.)/2.) {\n";
else fmain +=
"if(abs(nposition.x) > .5 || abs(nposition.y) > .5 || abs(rz) > .5) {\n";
fmain +=
"next = dist / 2.; continue;\n"
"}\n"
"if(next < maxstep) next = next / 2.;\n"
"}\n"
"else {\n";
if(sol) fmain +=
"if(nposition.x > uBinaryWidth) which = 0;\n"
"if(nposition.x <-uBinaryWidth) which = 4;\n"
"if(nposition.y > uBinaryWidth) which = 1;\n"
"if(nposition.y <-uBinaryWidth) which = 5;\n"
"if(nposition.z > log(2.)/2.) which = nposition.x > 0. ? 3 : 2;\n"
"if(nposition.z <-log(2.)/2.) which = nposition.y > 0. ? 7 : 6;\n";
else fmain +=
"if(nposition.x > .5) which = 3;\n"
"if(nposition.x <-.5) which = 0;\n"
"if(nposition.y > .5) which = 4;\n"
"if(nposition.y <-.5) which = 1;\n"
"if(rz > .5) which = 5;\n"
"if(rz <-.5) which = 2;\n";
fmain +=
"next = maxstep;\n"
"}\n";
if(nil) fmain +=
"tangent = translatev(position, xt);\n";
fmain +=
"position = nposition;\n";
if(!nil) fmain +=
"tangent = tangent + acc * dist;\n";
}
else fmain +=
"position = position + tangent * dist;\n";
fmain += " go = go + dist;\n";
fmain += "if(which == -1) continue;\n";
// apply wall color
fmain +=
" float u = cid + float(which) / float(uLength);\n"
" vec4 col = texture1D(tWallcolor, u);\n"
" if(col[3] > 0.0) {\n"
" vec2 inface = map_texture(position, which);\n"
" float bright = min(1., 10. * (1.-inface.x-inface.y));\n"; // texture2D(tWallTexture, (inface.yz + vec2(1.,1.))/2.).r;\n"
if(nil) fmain +=
" if(abs(abs(position.x)-abs(position.y)) < .005) bright /= 2.;\n";
fmain +=
// " float bright = min(1., 10. * (1.-inface.x-inface.y));\n" // texture2D(tWallTexture, (inface.yz + vec2(1.,1.))/2.).r;\n"
// " col.xyz = col.xyz * bright * max(1.-go/7., 0.5 * exp(-go/4.));\n" // exp(-go/4.);\n"
" col.xyz = col.xyz * bright * exp(- go / 4.);\n"
// " col.xyz = col.xyz * bright * max(1.-go/7., 0.5 * exp(-go/4.));\n" // exp(-go/4.);\n"
" col.w = 1.;\n"
// " if(purp == 1) { col.rgb = (col.rgb + vec3(1., 0., 1.)) / 2; }\n"
" gl_FragColor = col;\n"
" return;\n"
" }\n";
// next cell
fmain +=
" float rot = texture1D(tMatrixid, u).r;\n"
" int mid = int(rot * float(uLength));\n"
" position = uM[mid] * position;\n"
" tangent = uM[mid] * tangent;\n"
" cid = texture1D(tConnections, u).r;\n";
fmain +=
" }"
" gl_FragColor = vec4(0.,0.,0.,1.); \n"
" }";
fsh += fmain;
our_raycaster = make_shared<raycaster> (vsh, fsh);
}
full_enable(our_raycaster);
}
void bind_array(vector<float>& v, GLint t, GLuint& tx, int id) {
if(t == -1) println(hlog, "bind to nothing");
glUniform1i(t, id);
if(tx == 0) glGenTextures(1, &tx);
glActiveTexture(GL_TEXTURE0 + id);
glBindTexture(GL_TEXTURE_1D, tx);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage1D(GL_TEXTURE_1D, 0, GL_R32F, isize(v), 0, GL_RED, GL_FLOAT, &v[0]);
}
void bind_array(vector<array<float, 4>>& v, GLint t, GLuint& tx, int id) {
if(t == -1) println(hlog, "bind to nothing");
glUniform1i(t, id);
if(tx == 0) glGenTextures(1, &tx);
glActiveTexture(GL_TEXTURE0 + id);
glBindTexture(GL_TEXTURE_1D, tx);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, isize(v), 0, GL_RGBA, GL_FLOAT, &v[0]);
GLERR("bind_array");
}
EX void do_raycast() {
enable_raycaster();
if(ray_comparison_mode)
glColorMask( GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE );
auto& o = our_raycaster;
vector<glvertex> screen = {
glhr::makevertex(-1, -1, 1),
glhr::makevertex(-1, +1, 1),
glhr::makevertex(+1, -1, 1),
glhr::makevertex(-1, +1, 1),
glhr::makevertex(+1, -1, 1),
glhr::makevertex(+1, +1, 1)
};
auto& cd = current_display;
glUniform1f(o->uFovX, cd->tanfov);
glUniform1f(o->uFovY, cd->tanfov * cd->ysize / cd->xsize);
celllister cl(viewctr.at->c7, 10, 3000, NULL);
vector<cell*> lst = cl.lst;
int maxl = 32768 / S7;
if(isize(lst) > maxl) lst.resize(maxl);
map<cell*, int> ids;
for(int i=0; i<isize(lst); i++) ids[lst[i]] = i;
int length = next_p2(isize(lst) * S7);
glUniform1i(o->uLength, length);
GLERR("uniform length");
auto enc = [&] (int i) { return float((i+.5) / length); };
// for(auto &m: reg3::spins) println(hlog, m);
glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose(inverse(View)).as_array());
GLERR("uniform start");
glUniform1i(o->uN, S7);
GLERR("uniform N");
glUniform1f(o->uStartid, enc(ids[viewctr.at->c7] * S7));
GLERR("uniform startid");
glUniform1f(o->uIPD, vid.ipd);
GLERR("uniform IPD");
vector<transmatrix> ms;
if(sol || nil) ;
else if(euclid)
for(int j=0; j<S7; j++) ms.push_back(currentmap->relative_matrix(cwt.at->master, cwt.at->cmove(j)->master));
else
for(int j=0; j<S7; j++) inverse(reg3::adjmoves[j]);
vector<float> connections(length);
vector<array<float, 4>> wallcolor(length);
vector<float> matrixid(length);
if(1) for(cell *c: lst) {
int id = ids[c];
forCellIdEx(c1, i, c) {
int u = id * S7 + i;
if(!ids.count(c1)) {
wallcolor[u] = glhr::acolor(0xFF);
continue;
}
connections[u] = enc(ids[c1] * S7);
if(isWall3(c1)) {
color_t wcol;
color_t fcol;
setcolors(c1, wcol, fcol);
wcol = darkena(wcol, 0, 0xFF);
wallcolor[u] = glhr::acolor(wcol);
}
else
wallcolor[u] = glhr::acolor(0);
transmatrix T = currentmap->relative_matrix(c->master, c1->master);
for(int k=0; k<=isize(ms); k++) {
if(k < isize(ms) && !eqmatrix(ms[k], T)) continue;
if(k == isize(ms)) ms.push_back(T);
matrixid[u] = enc(k);
break;
}
}
}
vector<GLint> wallstart;
for(auto i: cgi.wallstart) wallstart.push_back(i);
glUniform1iv(o->uWallstart, isize(wallstart), &wallstart[0]);
vector<glvertex> wallx, wally;
for(auto& m: cgi.raywall) {
wallx.push_back(glhr::pointtogl(m[0]));
wally.push_back(glhr::pointtogl(m[1]));
}
glUniform4fv(o->uWallX, isize(wallx), &wallx[0][0]);
glUniform4fv(o->uWallY, isize(wally), &wally[0][0]);
if(o->uBinaryWidth != -1)
glUniform1f(o->uBinaryWidth, vid.binary_width * log(2) / 2);
vector<glhr::glmatrix> gms;
for(auto& m: ms) gms.push_back(glhr::tmtogl_transpose(m));
glUniformMatrix4fv(o->uM, isize(gms), 0, gms[0].as_array());
bind_array(wallcolor, o->tWallcolor, txWallcolor, 4);
bind_array(connections, o->tConnections, txConnections, 3);
bind_array(matrixid, o->tMatrixid, txMatrixid, 5);
glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), &screen[0]);
glhr::set_depthtest(false);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDrawArrays(GL_TRIANGLES, 0, 6);
GLERR("finish");
glActiveTexture(GL_TEXTURE0 + 0);
}
}