1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-15 19:55:47 +00:00
hyperrogue/rogueviz/ads/math.cpp
2024-07-17 11:31:11 +02:00

190 lines
5.2 KiB
C++

#include "../rogueviz.h"
namespace hr {
namespace ads_game {
static constexpr auto TAU = 2*M_PI;
/** hyperpoint represents a point in the SL(2,R)-like AdS, while ads_point represents a point in the universal cover */
struct ads_point : shiftpoint {
ads_point(hyperpoint _h = C0, ld _s = 0) { h = _h; shift = _s; }
ads_point(shiftpoint _s) : shiftpoint(_s) {}
};
/** similarly, ads_matrix represents a transformation of the universal cover space */
struct ads_matrix : shiftmatrix {
ads_matrix(transmatrix _h = Id, ld _s = 0) { T = _h; shift = _s; }
ads_point operator* (const ads_point&) const;
ads_matrix operator* (const ads_matrix&) const;
ads_point operator* (const hyperpoint& h) const { return ads_point(T*h, shift); }
ads_matrix operator* (const transmatrix& h) const { return ads_matrix(T*h, shift); }
ads_matrix(shiftmatrix _s) : shiftmatrix(_s) {}
};
ads_point kz(ads_point x) { x.h = hr::kz(x.h); x.shift = hr::kz(x.shift); return x; }
ads_matrix kz(ads_matrix x) { x.T = hr::kz(x.T); x.shift = hr::kz(x.shift); return x; }
/** Lorentz boost. */
transmatrix lorentz(int a, int b, ld v) {
transmatrix T = Id;
T[a][a] = T[b][b] = cosh(v);
T[a][b] = T[b][a] = sinh(v);
return T;
}
void fixmatrix_ads(transmatrix& T) {
for(int x=0; x<4; x++) for(int y=x; y>=0; y--) {
ld dp = 0;
for(int z=0; z<4; z++) dp += T[z][x] * T[z][y] * sig(z);
if(y == x) dp = 1 - sqrt(sig(x)/dp);
else dp *= sig(y);
for(int z=0; z<4; z++) T[z][x] -= dp * T[z][y];
}
}
/* get_at(g) is at V; adjust g.second==0 and V accordingly */
void adjust_to_zero(ads_matrix& V, pair<cell*, int>& g, ld plev) {
V.shift -= plev * g.second;
g.second = 0;
}
using twist::chg_shift;
ads_point ads_matrix::operator*(const ads_point& h) const {
return ads_point(twist::nmul(self, h));
}
ads_matrix ads_matrix::operator*(const ads_matrix& h) const {
return ads_matrix(twist::nmul(self, h));
}
ads_matrix ads_inverse(const ads_matrix& T) {
return ads_matrix(twist::ninverse(T));
}
struct cross_result {
hyperpoint h;
ld shift;
};
extern ads_matrix current;
/** T represents a worldline of some object; find when does this worldline cross the time=0 slice.
* shift is T's proper time at the point of crossing, and h=(x,y,z) is the Minkowski hyperboloid point where it crosses.
**/
cross_result cross0_sim(ads_matrix hz) {
transmatrix deg90 = chg_shift(90*degree);
hyperpoint uhz = unshift(hz * C0);
hyperpoint uhz1 = unshift(hz * deg90 * C0);
ld cost, sint, tant;
ld t;
if(uhz1[2]) {
tant = - uhz[2] / uhz1[2];
cost = 1 / sqrt(1 + tant * tant);
sint = tant * cost;
t = atan2(sint, cost);
}
else {
cost = 0;
sint = 1;
t = 90*degree;
}
hyperpoint uhzt = unshift(hz * chg_shift(t) * C0);
if(uhzt[3] < 0) { t += 180*degree; uhzt = -uhzt; }
tie(uhzt[2], uhzt[3]) = make_pair(uhzt[3], -uhzt[2]);
t += twist::get_shift_cycles(-hz.shift-t);
return cross_result{uhzt, t};
}
/** 0 = draw time t=0, -1 = take light into account, +1 = predict future */
ld which_cross;
extern bool auto_rotate;
/** Similar as cross0_sim but detects a crossing with the light cone. That is,
* the spacetime event that was (which==-1) or will be (which==+1) seen by
* the frame of reference.
**/
cross_result cross0_cone(ads_matrix hz, ld which) {
// we use cross0_sim first to get the appropriate cycle
auto cr = cross0_sim(hz);
hz = hz * chg_shift(cr.shift);
auto uhz = unshift(hz);
// (hz.T * chg_shift(t) * C0)[3] = 1
// (hz.T * cspin(2, 3, t) * C0)[3] = 1
// (hz.T * [0, 0, sin(t), cos(t)])[3] = 1
ld a = uhz[3][3];
ld b = uhz[3][2];
// b sin(t) + a cos(t) = 1
// t = 2*atan((b +- sqrt(a^2 + b^2 - 1))/(a + 1))
ld underroot = a * a + b * b - 1;
if(underroot < 0) return { Hypc, 0 };
ld t = 2 * atan((b + which * sqrt(underroot)) / (a+1));
hyperpoint uhzt = uhz * chg_shift(t) * C0;
ld z = sqrt(uhzt[2]*uhzt[2] + uhzt[3]*uhzt[3]);
if(auto_rotate) {
tie(uhzt[0], uhzt[1]) =
make_pair(
uhzt[0] * uhzt[3] / z - uhzt[1] * uhzt[2] / z,
uhzt[0] * uhzt[2] / z + uhzt[1] * uhzt[3] / z
);
}
uhzt[2] = z;
uhzt[3] = 0;
return cross_result{uhzt, cr.shift + t};
}
cross_result cross0(const ads_matrix& T) {
return which_cross ? cross0_cone(T, which_cross) : cross0_sim(T);
}
/** Similar as cross0_sim but for light-like wordlines.
* The point returned by cross0_light(T) is the same as the limit of cross0(T * lorentz(0, 2, v)).
**/
cross_result cross0_light(ads_matrix hz) {
transmatrix uhz = unshift(hz);
ld t = uhz[2][3] / -(uhz[2][2] + uhz[2][0]);
hyperpoint uhzt = uhz * hyperpoint(t, 0, t, 1);
tie(uhzt[2], uhzt[3]) = make_pair(uhzt[3], -uhzt[2]);
if(uhzt[2] < 0) uhzt = -uhzt;
return cross_result{uhzt, t};
}
/** sample from Poisson distribution */
int rpoisson(ld lambda) {
ld prob = randd();
ld poisson = exp(-lambda);
int cnt = 0;
while(cnt < 2*lambda+100) {
if(prob < poisson) break;
prob -= poisson;
cnt++;
poisson *= lambda / cnt;
}
return cnt;
}
}
}