mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-11 18:00:34 +00:00
487 lines
12 KiB
C++
487 lines
12 KiB
C++
// Hyperbolic Rogue
|
|
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
enum eGeometry {gNormal, gEuclid, gSphere, gElliptic, gQuotient, gQuotient2, gTorus, gGUARD};
|
|
eGeometry geometry, targetgeometry = gEuclid;
|
|
#define euclid (geometry == gEuclid || geometry == gTorus)
|
|
#define sphere (geometry == gSphere || geometry == gElliptic)
|
|
#define elliptic (geometry == gElliptic)
|
|
#define quotient (geometry == gQuotient ? 1 : geometry == gQuotient2 ? 2 : 0)
|
|
#define torus (geometry == gTorus)
|
|
#define doall (quotient || torus)
|
|
|
|
#define smallbounded (sphere || quotient == 1 || torus)
|
|
|
|
|
|
// for the pure heptagonal grid
|
|
bool purehepta = false;
|
|
|
|
// hyperbolic points and matrices
|
|
|
|
// basic functions and types
|
|
//===========================
|
|
|
|
#ifdef SINHCOSH
|
|
// ld sinh(ld alpha) { return (exp(alpha) - exp(-alpha)) / 2; }
|
|
// ld cosh(ld alpha) { return (exp(alpha) + exp(-alpha)) / 2; }
|
|
|
|
/* ld inverse_sinh(ld z) {
|
|
return log(z+sqrt(1+z*z));
|
|
}
|
|
|
|
double inverse_cos(double c) {
|
|
double s = sqrt(1-c*c);
|
|
double r = atan(s/c);
|
|
if(r < 0) r = -r;
|
|
return r;
|
|
}
|
|
|
|
// ld tanh(ld x) { return sinh(x) / cosh(x); }
|
|
ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
|
|
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979
|
|
#endif
|
|
|
|
ld squar(ld x) { return x*x; }
|
|
|
|
int sig(int z) { return (sphere || z<2)?1:-1; }
|
|
|
|
// hyperbolic point:
|
|
//===================
|
|
|
|
// we represent the points on the hyperbolic plane
|
|
// by points in 3D space (Minkowski space) such that x^2+y^2-z^2 == -1, z > 0
|
|
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)
|
|
|
|
struct hyperpoint {
|
|
ld tab[3];
|
|
ld& operator [] (int i) { return tab[i]; }
|
|
const ld& operator [] (int i) const { return tab[i]; }
|
|
};
|
|
|
|
hyperpoint hpxyz(ld x, ld y, ld z) {
|
|
// EUCLIDEAN
|
|
hyperpoint r; r[0] = x; r[1] = y; r[2] = z; return r;
|
|
}
|
|
|
|
hyperpoint hpxy(ld x, ld y) {
|
|
// EUCLIDEAN
|
|
return hpxyz(x,y, euclid ? 1 : sphere ? sqrt(1-x*x-y*y) : sqrt(1+x*x+y*y));
|
|
}
|
|
|
|
// center of the pseudosphere
|
|
const hyperpoint Hypc = { {0,0,0} };
|
|
|
|
// origin of the hyperbolic plane
|
|
const hyperpoint C0 = { {0,0,1} };
|
|
|
|
// a point (I hope this number needs no comments ;) )
|
|
const hyperpoint Cx1 = { {1,0,1.41421356237} };
|
|
|
|
// this function returns approximate square of distance between two points
|
|
// (in the spherical analogy, this would be the distance in the 3D space,
|
|
// through the interior, not on the surface)
|
|
// also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2
|
|
|
|
ld intval(const hyperpoint &h1, const hyperpoint &h2) {
|
|
if(elliptic) {
|
|
double d1 = squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]);
|
|
double d2 = squar(h1[0]+h2[0]) + squar(h1[1]+h2[1]) + squar(h1[2]+h2[2]);
|
|
return min(d1, d2);
|
|
}
|
|
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + (sphere?1:euclid?0:-1) * squar(h1[2]-h2[2]);
|
|
}
|
|
|
|
ld intvalxy(const hyperpoint &h1, const hyperpoint &h2) {
|
|
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]);
|
|
}
|
|
|
|
ld zlevel(const hyperpoint &h) {
|
|
if(euclid) return h[2];
|
|
else if(sphere) return sqrt(intval(h, Hypc));
|
|
else return sqrt(-intval(h, Hypc));
|
|
}
|
|
|
|
// display a hyperbolic point
|
|
char *display(const hyperpoint& H) {
|
|
static char buf[100];
|
|
sprintf(buf, "%8.4f:%8.4f:%8.4f", double(H[0]), double(H[1]), double(H[2]));
|
|
return buf;
|
|
}
|
|
|
|
// get the center of the line segment from H1 to H2
|
|
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
|
|
|
|
hyperpoint H3;
|
|
H3[0] = H1[0] + H2[0];
|
|
H3[1] = H1[1] + H2[1];
|
|
H3[2] = H1[2] + H2[2];
|
|
|
|
ld Z = 2;
|
|
|
|
if(sphere) Z = sqrt(intval(H3, Hypc));
|
|
else if(!euclid) {
|
|
Z = intval(H3, Hypc);
|
|
Z = sqrt(-Z);
|
|
}
|
|
|
|
for(int c=0; c<3; c++) H3[c] /= Z;
|
|
|
|
return H3;
|
|
}
|
|
|
|
// like mid, but take 3D into account
|
|
hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
|
|
|
|
hyperpoint H3;
|
|
H3[0] = H1[0] + H2[0];
|
|
H3[1] = H1[1] + H2[1];
|
|
H3[2] = H1[2] + H2[2];
|
|
|
|
ld Z = 2;
|
|
|
|
if(sphere || !euclid) Z = zlevel(H3) * 2 / (zlevel(H1) + zlevel(H2));
|
|
for(int c=0; c<3; c++) H3[c] /= Z;
|
|
|
|
return H3;
|
|
}
|
|
|
|
// matrices
|
|
//==========
|
|
|
|
// matrices represent isometries of the hyperbolic plane
|
|
// (just like isometries of the sphere are represented by rotation matrices)
|
|
|
|
struct transmatrix {
|
|
ld tab[3][3];
|
|
ld * operator [] (int i) { return tab[i]; }
|
|
const ld * operator [] (int i) const { return tab[i]; }
|
|
};
|
|
|
|
// identity matrix
|
|
const transmatrix Id = {{{1,0,0}, {0,1,0}, {0,0,1}}};
|
|
|
|
// mirror image
|
|
const transmatrix Mirror = {{{1,0,0}, {0,-1,0}, {0,0,1}}};
|
|
|
|
// mirror image
|
|
const transmatrix MirrorX = {{{-1,0,0}, {0,1,0}, {0,0,1}}};
|
|
|
|
// rotate by PI
|
|
const transmatrix pispin = {{{-1,0,0}, {0,-1,0}, {0,0,1}}};
|
|
|
|
hyperpoint operator * (const transmatrix& T, const hyperpoint& H) {
|
|
hyperpoint z;
|
|
for(int i=0; i<3; i++) {
|
|
z[i] = 0;
|
|
for(int j=0; j<3; j++) z[i] += T[i][j] * H[j];
|
|
}
|
|
return z;
|
|
}
|
|
|
|
// T * C0, optimized
|
|
inline hyperpoint tC0(const transmatrix &T) {
|
|
hyperpoint z;
|
|
z[0] = T[0][2]; z[1] = T[1][2]; z[2] = T[2][2];
|
|
return z;
|
|
}
|
|
|
|
inline transmatrix operator * (const transmatrix& T, const transmatrix& U) {
|
|
transmatrix R;
|
|
// for(int i=0; i<3; i++) for(int j=0; j<3; j++) R[i][j] = 0;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++) // for(int k=0; k<3; k++)
|
|
R[i][j] = T[i][0] * U[0][j] + T[i][1] * U[1][j] + T[i][2] * U[2][j];
|
|
return R;
|
|
}
|
|
|
|
// rotate by alpha degrees
|
|
transmatrix spin(ld alpha) {
|
|
transmatrix T = Id;
|
|
T[0][0] = +cos(alpha); T[0][1] = +sin(alpha);
|
|
T[1][0] = -sin(alpha); T[1][1] = +cos(alpha);
|
|
T[2][2] = 1;
|
|
return T;
|
|
}
|
|
|
|
transmatrix eupush(ld x, ld y) {
|
|
transmatrix T = Id;
|
|
T[0][2] = x;
|
|
T[1][2] = y;
|
|
return T;
|
|
}
|
|
|
|
// push alpha units to the right
|
|
transmatrix xpush(ld alpha) {
|
|
if(euclid) return eupush(alpha, 0);
|
|
transmatrix T = Id;
|
|
if(sphere) {
|
|
T[0][0] = +cos(alpha); T[0][2] = +sin(alpha);
|
|
T[2][0] = -sin(alpha); T[2][2] = +cos(alpha);
|
|
}
|
|
else {
|
|
T[0][0] = +cosh(alpha); T[0][2] = +sinh(alpha);
|
|
T[2][0] = +sinh(alpha); T[2][2] = +cosh(alpha);
|
|
}
|
|
return T;
|
|
}
|
|
|
|
inline hyperpoint xpush0(ld x) {
|
|
hyperpoint h;
|
|
if(euclid) return hpxy(x, 0);
|
|
else if(sphere) h[0] = sin(x), h[1] = 0, h[2] = cos(x);
|
|
else h[0] = sinh(x), h[1] = 0, h[2] = cosh(x);
|
|
return h;
|
|
}
|
|
|
|
inline hyperpoint xspinpush0(ld alpha, ld x) {
|
|
// return spin(alpha)*xpush0(x);
|
|
ld s;
|
|
hyperpoint h;
|
|
if(euclid) return hpxy(x*cos(alpha), -x*sin(alpha));
|
|
else if(sphere) s=sin(x), h[0] = s*cos(alpha), h[1] = -s*sin(alpha), h[2] = cos(x);
|
|
else s=sinh(x), h[0] = s*cos(alpha), h[1] = -s*sin(alpha), h[2] = cosh(x);
|
|
return h;
|
|
}
|
|
|
|
// push alpha units vertically
|
|
transmatrix ypush(ld alpha) {
|
|
if(euclid) return eupush(0, alpha);
|
|
transmatrix T = Id;
|
|
if(sphere) {
|
|
T[1][1] = +cos(alpha); T[1][2] = +sin(alpha);
|
|
T[2][1] = -sin(alpha); T[2][2] = +cos(alpha);
|
|
}
|
|
else {
|
|
T[1][1] = +cosh(alpha); T[1][2] = +sinh(alpha);
|
|
T[2][1] = +sinh(alpha); T[2][2] = +cosh(alpha);
|
|
}
|
|
return T;
|
|
}
|
|
|
|
// rotate the hyperplane around C0 such that H[1] == 0 and H[0] >= 0
|
|
transmatrix spintox(const hyperpoint& H) {
|
|
transmatrix T = Id;
|
|
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
|
|
if(R >= 1e-12) {
|
|
T[0][0] = +H[0]/R; T[0][1] = +H[1]/R;
|
|
T[1][0] = -H[1]/R; T[1][1] = +H[0]/R;
|
|
}
|
|
return T;
|
|
}
|
|
|
|
// reverse of spintox(H)
|
|
transmatrix rspintox(const hyperpoint& H) {
|
|
transmatrix T = Id;
|
|
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
|
|
if(R >= 1e-12) {
|
|
T[0][0] = +H[0]/R; T[0][1] = -H[1]/R;
|
|
T[1][0] = +H[1]/R; T[1][1] = +H[0]/R;
|
|
}
|
|
return T;
|
|
}
|
|
|
|
// for H such that H[1] == 0, this matrix pushes H to C0
|
|
transmatrix pushxto0(const hyperpoint& H) {
|
|
if(euclid) return eupush(-H[0], -H[1]);
|
|
transmatrix T = Id;
|
|
if(sphere) {
|
|
T[0][0] = +H[2]; T[0][2] = -H[0];
|
|
T[2][0] = +H[0]; T[2][2] = +H[2];
|
|
}
|
|
else {
|
|
T[0][0] = +H[2]; T[0][2] = -H[0];
|
|
T[2][0] = -H[0]; T[2][2] = +H[2];
|
|
}
|
|
return T;
|
|
}
|
|
|
|
// reverse of pushxto0(H)
|
|
transmatrix rpushxto0(const hyperpoint& H) {
|
|
if(euclid) return eupush(H[0], H[1]);
|
|
transmatrix T = Id;
|
|
if(sphere) {
|
|
T[0][0] = +H[2]; T[0][2] = +H[0];
|
|
T[2][0] = -H[0]; T[2][2] = +H[2];
|
|
}
|
|
else {
|
|
T[0][0] = +H[2]; T[0][2] = +H[0];
|
|
T[2][0] = +H[0]; T[2][2] = +H[2];
|
|
}
|
|
return T;
|
|
}
|
|
|
|
// generalization: H[1] can be non-zero
|
|
transmatrix gpushxto0(const hyperpoint& H) {
|
|
hyperpoint H2 = spintox(H) * H;
|
|
return rspintox(H) * pushxto0(H2) * spintox(H);
|
|
}
|
|
|
|
transmatrix rgpushxto0(const hyperpoint& H) {
|
|
hyperpoint H2 = spintox(H) * H;
|
|
return rspintox(H) * rpushxto0(H2) * spintox(H);
|
|
}
|
|
|
|
|
|
// fix the matrix T so that it is indeed an isometry
|
|
// (without using this, imprecision could accumulate)
|
|
|
|
void display(const transmatrix& T);
|
|
|
|
void fixmatrix(transmatrix& T) {
|
|
if(euclid) {
|
|
for(int x=0; x<2; x++) for(int y=0; y<=x; y++) {
|
|
ld dp = 0;
|
|
for(int z=0; z<2; z++) dp += T[z][x] * T[z][y];
|
|
|
|
if(y == x) dp = 1 - sqrt(1/dp);
|
|
|
|
for(int z=0; z<2; z++) T[z][x] -= dp * T[z][y];
|
|
}
|
|
for(int x=0; x<2; x++) T[2][x] = 0;
|
|
T[2][2] = 1;
|
|
}
|
|
else for(int x=0; x<3; x++) for(int y=0; y<=x; y++) {
|
|
ld dp = 0;
|
|
for(int z=0; z<3; z++) dp += T[z][x] * T[z][y] * sig(z);
|
|
|
|
if(y == x) dp = 1 - sqrt(sig(x)/dp);
|
|
|
|
for(int z=0; z<3; z++) T[z][x] -= dp * T[z][y];
|
|
}
|
|
}
|
|
|
|
// show the matrix on screen
|
|
|
|
void display(const transmatrix& T) {
|
|
for(int y=0; y<3; y++) {
|
|
for(int x=0; x<3; x++) printf("%10.7f", double(T[y][x]));
|
|
printf(" -> %10.7f\n", double(squar(T[y][0]) + squar(T[y][1]) + sig(2) * squar(T[y][2])));
|
|
// printf("\n");
|
|
}
|
|
|
|
for(int x=0; x<3; x++) printf("%10.7f", double(squar(T[0][x]) + squar(T[1][x]) + sig(2) * squar(T[2][x])));
|
|
printf("\n");
|
|
|
|
for(int x=0; x<3; x++) {
|
|
int y = (x+1) % 3;
|
|
printf("%10.7f", double(T[0][x]*T[0][y] + T[1][x]*T[1][y] + sig(2) * T[2][x]*T[2][y]));
|
|
}
|
|
printf("\n\n");
|
|
}
|
|
|
|
ld det(const transmatrix& T) {
|
|
ld det = 0;
|
|
for(int i=0; i<3; i++)
|
|
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
|
|
for(int i=0; i<3; i++)
|
|
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
|
|
return det;
|
|
}
|
|
|
|
transmatrix inverse(const transmatrix& T) {
|
|
profile_start(7);
|
|
|
|
ld d = det(T);
|
|
transmatrix T2;
|
|
if(d == 0) return T2;
|
|
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++)
|
|
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]) / d;
|
|
|
|
profile_stop(7);
|
|
return T2;
|
|
}
|
|
|
|
// distance between mh and 0
|
|
double hdist0(const hyperpoint& mh) {
|
|
if(sphere) {
|
|
ld res = mh[2] >= 1 ? 0 : mh[2] <= -1 ? M_PI : acos(mh[2]);
|
|
if(elliptic && res > M_PI/2) res = 2*M_PI-res;
|
|
return res;
|
|
}
|
|
if(!euclid && mh[2] > 1.5) return acosh(mh[2]);
|
|
ld d = sqrt(mh[0]*mh[0]+mh[1]*mh[1]);
|
|
if(euclid) return d;
|
|
return asinh(d);
|
|
}
|
|
|
|
// distance between two points
|
|
double hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
|
return hdist0(gpushxto0(h1) * h2);
|
|
}
|
|
|
|
namespace hyperpoint_vec {
|
|
|
|
hyperpoint operator * (double d, hyperpoint h) {
|
|
return hpxyz(h[0]*d, h[1]*d, h[2]*d);
|
|
}
|
|
|
|
hyperpoint operator * (hyperpoint h, double d) {
|
|
return hpxyz(h[0]*d, h[1]*d, h[2]*d);
|
|
}
|
|
|
|
hyperpoint operator / (hyperpoint h, double d) {
|
|
return hpxyz(h[0]/d, h[1]/d, h[2]/d);
|
|
}
|
|
|
|
hyperpoint operator + (hyperpoint h, hyperpoint h2) {
|
|
return hpxyz(h[0]+h2[0], h[1]+h2[1], h[2]+h2[2]);
|
|
}
|
|
|
|
hyperpoint operator - (hyperpoint h, hyperpoint h2) {
|
|
return hpxyz(h[0]-h2[0], h[1]-h2[1], h[2]-h2[2]);
|
|
}
|
|
|
|
}
|
|
|
|
hyperpoint mscale(const hyperpoint& t, double fac) {
|
|
hyperpoint res;
|
|
for(int i=0; i<3; i++)
|
|
res[i] = t[i] * fac;
|
|
return res;
|
|
}
|
|
|
|
transmatrix mscale(const transmatrix& t, double fac) {
|
|
transmatrix res;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
res[i][j] = t[i][j] * fac;
|
|
return res;
|
|
}
|
|
|
|
transmatrix xyscale(const transmatrix& t, double fac) {
|
|
transmatrix res;
|
|
for(int i=0; i<3; i++) for(int j=0; j<2; j++)
|
|
res[i][j] = t[i][j] * fac;
|
|
return res;
|
|
}
|
|
|
|
transmatrix xyzscale(const transmatrix& t, double fac, double facz) {
|
|
transmatrix res;
|
|
for(int i=0; i<3; i++) for(int j=0; j<2; j++)
|
|
res[i][j] = t[i][j] * fac;
|
|
for(int i=0; i<3; i++)
|
|
res[i][2] = t[i][2] * facz;
|
|
return res;
|
|
}
|
|
|
|
// double downspin_zivory;
|
|
|
|
transmatrix mzscale(const transmatrix& t, double fac) {
|
|
// take only the spin
|
|
transmatrix tcentered = gpushxto0(tC0(t)) * t;
|
|
// tcentered = tcentered * spin(downspin_zivory);
|
|
fac -= 1;
|
|
transmatrix res = t * inverse(tcentered) * ypush(-fac) * tcentered;
|
|
fac *= .2;
|
|
fac += 1;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
res[i][j] = res[i][j] * fac;
|
|
return res;
|
|
}
|
|
|
|
transmatrix pushone() { return euclid ? eupush(1, 0) : xpush(sphere?.5 : 1); }
|
|
|