mirror of
				https://github.com/zenorogue/hyperrogue.git
				synced 2025-10-31 05:52:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1530 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1530 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Hyperbolic Rogue -- cells
 | |
| // Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details
 | |
| 
 | |
| // cells the game is played on
 | |
| 
 | |
| #define DEBMEM(x) // { x fflush(stdout); }
 | |
|                     
 | |
| int fix6(int a) { return (a+96)% 6; }
 | |
| int fix7(int a) { return (a+420)%S7; }
 | |
| 
 | |
| int dirdiff(int dd, int t) {
 | |
|   dd %= t;
 | |
|   if(dd<0) dd += t;
 | |
|   if(t-dd < dd) dd = t-dd;
 | |
|   return dd;
 | |
|   }
 | |
| 
 | |
| struct cell : gcell {
 | |
|   char type; // 6 for hexagons, 7 for heptagons
 | |
| 
 | |
|   // wall parameter, used for remaining power of Bonfires and Thumpers
 | |
|   char wparam;
 | |
| 
 | |
|   // 'tmp' is used for:
 | |
|   // pathfinding algorithm used by monsters with atypical movement (which do not use pathdist)
 | |
|   // bugs' pathfinding algorithm
 | |
|   short aitmp;
 | |
| 
 | |
|   uint32_t spintable;
 | |
|   int spin(int d) { return tspin(spintable, d); }
 | |
|   int spn(int d) { return tspin(spintable, d); }
 | |
|   int mirror(int d) { return tmirror(spintable, d); }
 | |
| 
 | |
|   heptagon *master;
 | |
|   cell *mov[7]; // meaning very similar to heptagon::move
 | |
|   };
 | |
| 
 | |
| int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; }
 | |
| 
 | |
| int cellcount = 0;
 | |
| 
 | |
| void initcell(cell *c); // from game.cpp
 | |
| 
 | |
| cell *newCell(int type, heptagon *master) {
 | |
|   cell *c = new cell;
 | |
|   cellcount++;
 | |
|   c->type = type;
 | |
|   c->master = master;
 | |
|   for(int i=0; i<7; i++) c->mov[i] = NULL;
 | |
|   initcell(c);
 | |
|   return c;
 | |
|   }
 | |
| 
 | |
| void merge(cell *c, int d, cell *c2, int d2, bool mirrored = false) {
 | |
|   c->mov[d] = c2;
 | |
|   tsetspin(c->spintable, d, d2 + (mirrored?8:0));
 | |
|   c2->mov[d2] = c;
 | |
|   tsetspin(c2->spintable, d2, d + (mirrored?8:0));
 | |
|   }
 | |
| 
 | |
| typedef unsigned short eucoord;
 | |
| 
 | |
| struct cdata {
 | |
|   int val[4];
 | |
|   int bits;
 | |
|   };
 | |
| 
 | |
| // list all cells in distance at most maxdist, or until when maxcount cells are reached
 | |
| 
 | |
| struct celllister {
 | |
|   vector<cell*> lst;
 | |
|   vector<int> tmps;
 | |
|   vector<int> dists;
 | |
|   
 | |
|   void add(cell *c, int d) {
 | |
|     if(eq(c->aitmp, sval)) return;
 | |
|     c->aitmp = sval;
 | |
|     tmps.push_back(c->aitmp);
 | |
|     lst.push_back(c);
 | |
|     dists.push_back(d);
 | |
|     }
 | |
|   
 | |
|   ~celllister() {
 | |
|     for(int i=0; i<size(lst); i++) lst[i]->aitmp = tmps[i];
 | |
|     }
 | |
|   
 | |
|   celllister(cell *orig, int maxdist, int maxcount, cell *breakon) {
 | |
|     lst.clear();
 | |
|     tmps.clear();
 | |
|     dists.clear();
 | |
|     sval++;
 | |
|     add(orig, 0);
 | |
|     cell *last = orig;
 | |
|     for(int i=0; i<size(lst); i++) {
 | |
|       cell *c = lst[i];
 | |
|       if(maxdist) forCellCM(c2, c) {
 | |
|         add(c2, dists[i]+1);
 | |
|         if(c2 == breakon) return;
 | |
|         }
 | |
|       if(c == last) {
 | |
|         if(size(lst) >= maxcount || dists[i]+1 == maxdist) break;
 | |
|         last = lst[size(lst)-1];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   void prepare() {
 | |
|     for(int i=0; i<size(lst); i++) lst[i]->aitmp = i;
 | |
|     }
 | |
|   
 | |
|   int getdist(cell *c) { return dists[c->aitmp]; }
 | |
|   
 | |
|   bool listed(cell *c) {
 | |
|     return c->aitmp >= 0 && c->aitmp < size(lst) && lst[c->aitmp] == c;
 | |
|     }
 | |
|   
 | |
|   };
 | |
| 
 | |
| // -- hrmap ---
 | |
| 
 | |
| struct hrmap {
 | |
|   virtual heptagon *getOrigin() { return NULL; }
 | |
|   virtual cell *gamestart() { return getOrigin()->c7; }
 | |
|   virtual ~hrmap() { };
 | |
|   virtual vector<cell*>& allcells() { return dcal; }
 | |
|   virtual void verify() { }
 | |
|   };
 | |
| 
 | |
| hrmap *currentmap;
 | |
| vector<hrmap*> allmaps;
 | |
| 
 | |
| // --- auxiliary hyperbolic map for horocycles ---
 | |
| struct hrmap_alternate : hrmap {
 | |
|   heptagon *origin;
 | |
|   hrmap_alternate(heptagon *o) { origin = o; }
 | |
|   ~hrmap_alternate() { clearfrom(origin); }
 | |
|   };
 | |
| 
 | |
| // --- hyperbolic geometry ---
 | |
| 
 | |
| struct hrmap_hyperbolic : hrmap {
 | |
|   heptagon *origin;
 | |
|   bool ispurehepta;
 | |
|   hrmap_hyperbolic() {
 | |
|     // printf("Creating hyperbolic map: %p\n", this);
 | |
|     origin = new heptagon;
 | |
|     heptagon& h = *origin;
 | |
|     h.s = hsOrigin;
 | |
|     h.emeraldval = 98;
 | |
|     h.zebraval = 40;
 | |
|     h.fiftyval = 0;
 | |
|     h.fieldval = 0;
 | |
|     h.rval0 = h.rval1 = 0;
 | |
|     h.cdata = NULL;
 | |
|     for(int i=0; i<7; i++) h.move[i] = NULL;
 | |
|     h.spintable = 0;
 | |
|     h.alt = NULL;
 | |
|     h.distance = 0;
 | |
|     ispurehepta = purehepta;
 | |
|     h.c7 = newCell(7, origin);
 | |
|     }
 | |
|   heptagon *getOrigin() { return origin; }
 | |
|   ~hrmap_hyperbolic() {
 | |
|     DEBMEM ( verifycells(origin); )
 | |
|     // printf("Deleting hyperbolic map: %p\n", this);
 | |
|     dynamicval<bool> ph(purehepta, ispurehepta);
 | |
|     clearfrom(origin);
 | |
|     }
 | |
|   void verify() { verifycells(origin); }
 | |
|   };
 | |
| 
 | |
| // --- spherical geometry ---
 | |
| 
 | |
| int spherecells() {
 | |
|   if(S7 == 5) return (elliptic?6:12);
 | |
|   if(S7 == 4) return (elliptic?3:6);
 | |
|   if(S7 == 3) return 4;
 | |
|   if(S7 == 2) return (elliptic?1:2);
 | |
|   if(S7 == 1) return 1;
 | |
|   return 12;
 | |
|   }
 | |
|   
 | |
| struct hrmap_spherical : hrmap {
 | |
|   heptagon *dodecahedron[12];
 | |
|   bool ispurehepta;
 | |
| 
 | |
|   hrmap_spherical() {
 | |
|     ispurehepta = purehepta;
 | |
|     for(int i=0; i<spherecells(); i++) {
 | |
|       heptagon& h = *(dodecahedron[i] = new heptagon);
 | |
|       h.s = hsOrigin;
 | |
|       h.emeraldval = i;
 | |
|       h.zebraval = i;
 | |
|       h.fiftyval = i;
 | |
|       h.rval0 = h.rval1 = 0;
 | |
|       h.alt = NULL;
 | |
|       h.cdata = NULL;
 | |
|       h.spintable = 0;
 | |
|       for(int i=0; i<S7; i++) h.move[i] = NULL;
 | |
|       h.c7 = newCell(S7, &h);
 | |
|       }
 | |
|    for(int i=0; i<S7; i++) {
 | |
|       dodecahedron[0]->move[i] = dodecahedron[i+1];
 | |
|       dodecahedron[0]->setspin(i, 0);
 | |
|       dodecahedron[i+1]->move[0] = dodecahedron[0];
 | |
|       dodecahedron[i+1]->setspin(0, i);
 | |
|       
 | |
|       dodecahedron[i+1]->move[1] = dodecahedron[(i+S7-1)%S7+1];
 | |
|       dodecahedron[i+1]->setspin(1, S7-1);
 | |
|       dodecahedron[i+1]->move[S7-1] = dodecahedron[(i+1)%S7+1];
 | |
|       dodecahedron[i+1]->setspin(S7-1, 1);
 | |
|       
 | |
|       if(S7 == 5 && elliptic) {
 | |
|         dodecahedron[i+1]->move[2] = dodecahedron[(i+2)%S7+1];
 | |
|         dodecahedron[i+1]->setspin(2, 3 + 8);
 | |
|         dodecahedron[i+1]->move[3] = dodecahedron[(i+3)%S7+1];
 | |
|         dodecahedron[i+1]->setspin(3, 2 + 8);
 | |
|         }
 | |
| 
 | |
|       else if(S7 == 5) {
 | |
|         dodecahedron[6]->move[i] = dodecahedron[7+i];
 | |
|         dodecahedron[6]->setspin(i, 0);
 | |
|         dodecahedron[7+i]->move[0] = dodecahedron[6];
 | |
|         dodecahedron[7+i]->setspin(0, i);
 | |
|   
 | |
|         dodecahedron[i+7]->move[1] = dodecahedron[(i+4)%5+7];
 | |
|         dodecahedron[i+7]->setspin(1, 4);
 | |
|         dodecahedron[i+7]->move[4] = dodecahedron[(i+1)%5+7];
 | |
|         dodecahedron[i+7]->setspin(4, 1);
 | |
|         
 | |
|         dodecahedron[i+1]->move[2] = dodecahedron[7+(10-i)%5];
 | |
|         dodecahedron[i+1]->setspin(2, 2);
 | |
|         dodecahedron[7+(10-i)%5]->move[2] = dodecahedron[1+i];
 | |
|         dodecahedron[7+(10-i)%5]->setspin(2, 2);
 | |
|   
 | |
|         dodecahedron[i+1]->move[3] = dodecahedron[7+(9-i)%5];
 | |
|         dodecahedron[i+1]->setspin(3, 3);
 | |
|         dodecahedron[7+(9-i)%5]->move[3] = dodecahedron[i+1];
 | |
|         dodecahedron[7+(9-i)%5]->setspin(3, 3);
 | |
|         }
 | |
|       if(S7 == 4) {
 | |
|         dodecahedron[5]->move[3-i] = dodecahedron[i+1];
 | |
|         dodecahedron[5]->setspin(3-i, 2);
 | |
|         dodecahedron[i+1]->move[2] = dodecahedron[5];
 | |
|         dodecahedron[i+1]->setspin(2, 3-i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   heptagon *getOrigin() { return dodecahedron[0]; }
 | |
| 
 | |
|   ~hrmap_spherical() {
 | |
|     dynamicval<bool> ph(purehepta, ispurehepta);
 | |
|     for(int i=0; i<spherecells(); i++) clearHexes(dodecahedron[i]);
 | |
|     for(int i=0; i<spherecells(); i++) delete dodecahedron[i];
 | |
|     }    
 | |
| 
 | |
|   void verify() {
 | |
|     for(int i=0; i<spherecells(); i++) for(int k=0; k<S7; k++) {
 | |
|       heptspin hs;
 | |
|       hs.h = dodecahedron[i];
 | |
|       hs.spin = k;
 | |
|       hs = hsstep(hs, 0);
 | |
|       hs = hsspin(hs, S7-1);
 | |
|       hs = hsstep(hs, 0);
 | |
|       hs = hsspin(hs, S7-1);
 | |
|       hs = hsstep(hs, 0);
 | |
|       hs = hsspin(hs, S7-1);
 | |
|       if(hs.h != dodecahedron[i]) printf("error %d,%d\n", i, k);
 | |
|       }
 | |
|     for(int i=0; i<spherecells(); i++) verifycells(dodecahedron[i]);
 | |
|     }
 | |
|   };
 | |
| 
 | |
| heptagon *getDodecahedron(int i) {
 | |
|   hrmap_spherical *s = dynamic_cast<hrmap_spherical*> (currentmap);
 | |
|   if(!s) return NULL;
 | |
|   return s->dodecahedron[i];
 | |
|   }
 | |
| 
 | |
| // --- euclidean geometry ---
 | |
| 
 | |
| cell*& euclideanAtCreate(eucoord x, eucoord y);
 | |
| 
 | |
| namespace torusconfig {
 | |
|   // the configuration of the torus topology.
 | |
|   // torus cells are indexed [0..qty),
 | |
|   // where the cell to the right from i is indexed i+dx,
 | |
|   // and the cell to the down-rightis numbered i+dy
 | |
|   // changed with command line option: -tpar <qty>,<dx>,<dy>
 | |
|   int qty = 127*3, dx = -1, dy = 11*2;
 | |
|   }
 | |
| 
 | |
| int decodeId(heptagon* h);
 | |
| heptagon* encodeId(int id);
 | |
| 
 | |
| struct hrmap_torus : hrmap {
 | |
| 
 | |
|   vector<cell*> all;
 | |
|   vector<int> dists;
 | |
| 
 | |
|   virtual vector<cell*>& allcells() { return all; }
 | |
|   
 | |
|   cell *gamestart() {
 | |
|     return all[0];
 | |
|     }
 | |
| 
 | |
|   hrmap_torus() {
 | |
|     using namespace torusconfig;
 | |
|     all.resize(qty);
 | |
|     for(int i=0; i<qty; i++) {
 | |
|       all[i] = newCell(6, NULL);
 | |
|       all[i]->master = encodeId(i);
 | |
|       }
 | |
|     dx %= qty;
 | |
|     dy %= qty;
 | |
|     for(int i=0; i<qty; i++) {
 | |
|       all[i]->mov[0] = all[(i+dx+2*qty)%qty];
 | |
|       all[i]->mov[1] = all[(i+dy+2*qty)%qty];
 | |
|       all[i]->mov[2] = all[(i+dy-dx+2*qty)%qty];
 | |
|       all[i]->mov[3] = all[(i-dx+2*qty)%qty];
 | |
|       all[i]->mov[4] = all[(i-dy+2*qty)%qty];
 | |
|       all[i]->mov[5] = all[(i-dy+dx+2*qty)%qty];
 | |
|       for(int j=0; j<6; j++)
 | |
|         tsetspin(all[i]->spintable, j, (j+3) % 6);
 | |
|       }
 | |
|     celllister cl(gamestart(), 100, 100000000, NULL);
 | |
|     dists.resize(qty);
 | |
|     for(int i=0; i<size(cl.lst); i++)
 | |
|       dists[decodeId(cl.lst[i]->master)] = cl.dists[i];
 | |
|     }
 | |
|   
 | |
|   ~hrmap_torus() {
 | |
|     for(cell *c: all) delete c;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| int toridMod(int id) {
 | |
|   using namespace torusconfig;
 | |
|   id %= qty; if(id < 0) id += qty;
 | |
|   return id;
 | |
|   }
 | |
| 
 | |
| hrmap_torus *torusmap() {
 | |
|   return dynamic_cast<hrmap_torus*> (currentmap);
 | |
|   }
 | |
| 
 | |
| cell *getTorusId(int id) {
 | |
|   hrmap_torus *cur = torusmap();
 | |
|   if(!cur) return NULL;
 | |
|   return cur->all[toridMod(id)];
 | |
|   }
 | |
| 
 | |
| 
 | |
| struct hrmap_euclidean : hrmap {
 | |
| 
 | |
|   cell *gamestart() {
 | |
|     return euclideanAtCreate(0,0);
 | |
|     }
 | |
| 
 | |
|   struct euclideanSlab {
 | |
|     cell* a[256][256];
 | |
|     euclideanSlab() {
 | |
|       for(int y=0; y<256; y++) for(int x=0; x<256; x++)
 | |
|         a[y][x] = NULL;
 | |
|       }
 | |
|     ~euclideanSlab() {
 | |
|       for(int y=0; y<256; y++) for(int x=0; x<256; x++)
 | |
|         if(a[y][x]) delete a[y][x];
 | |
|       }
 | |
|     };
 | |
|   
 | |
|   euclideanSlab* euclidean[256][256];
 | |
|   
 | |
|   hrmap_euclidean() {
 | |
|     for(int y=0; y<256; y++) for(int x=0; x<256; x++)
 | |
|       euclidean[y][x] = NULL;
 | |
|     }
 | |
|   
 | |
|   cell*& at(eucoord x, eucoord y) {
 | |
|     euclideanSlab*& slab = euclidean[y>>8][x>>8];
 | |
|     if(!slab) slab = new hrmap_euclidean::euclideanSlab;
 | |
|     return slab->a[y&255][x&255];
 | |
|     }
 | |
|   
 | |
|   map<heptagon*, struct cdata> eucdata;
 | |
| 
 | |
|   ~hrmap_euclidean() {
 | |
|     for(int y=0; y<256; y++) for(int x=0; x<256; x++)
 | |
|       if(euclidean[y][x]) { 
 | |
|         delete euclidean[y][x];
 | |
|         euclidean[y][x] = NULL;
 | |
|         }
 | |
|     eucdata.clear();
 | |
|     }
 | |
|   };
 | |
| 
 | |
| union heptacoder {
 | |
|   heptagon *h;
 | |
|   struct { eucoord x; eucoord y; } c;
 | |
|   int id;
 | |
|   };
 | |
| 
 | |
| void decodeMaster(heptagon *h, eucoord& x, eucoord& y) {
 | |
|   if(torus) { printf("decodeMaster on torus\n"); exit(1); }
 | |
|   heptacoder u;
 | |
|   u.h = h; x = u.c.x; y = u.c.y;
 | |
|   }
 | |
| 
 | |
| int decodeId(heptagon* h) {
 | |
|   heptacoder u;
 | |
|   u.h = h; return u.id;
 | |
|   }
 | |
| 
 | |
| heptagon* encodeMaster(eucoord x, eucoord y) {
 | |
|   if(torus) { printf("encodeMaster on torus\n"); exit(1); }
 | |
|   heptacoder u;
 | |
|   u.c.x = x; u.c.y = y;
 | |
|   return u.h;
 | |
|   }
 | |
| 
 | |
| heptagon* encodeId(int id) {
 | |
|   heptacoder u;
 | |
|   u.id = id;
 | |
|   return u.h;
 | |
|   }
 | |
| 
 | |
| // --- quotient geometry ---
 | |
| 
 | |
| namespace quotientspace {
 | |
|   struct code {
 | |
|     int c[8];
 | |
|     };
 | |
|   
 | |
|   bool operator == (const code& c1, const code &c2) {
 | |
|     for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return false;
 | |
|     return true;
 | |
|     }
 | |
| 
 | |
|   bool operator < (const code& c1, const code &c2) {
 | |
|     for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i];
 | |
|     return false;
 | |
|     }  
 | |
| 
 | |
|   int cod(heptagon *h) {
 | |
|     return zebra40(h->c7);
 | |
|     }
 | |
|   
 | |
|   code get(heptspin hs) {
 | |
|     code res;
 | |
|     res.c[0] = cod(hs.h);
 | |
|     for(int i=1; i<8; i++) {
 | |
|       res.c[i] = cod(hsstep(hs, 0).h);
 | |
|       hs = hsspin(hs, 1);
 | |
|       }
 | |
|     return res;
 | |
|     }
 | |
|   
 | |
|   int rvadd = 0, rvdir = 1;
 | |
|   
 | |
|   int rv(int x) { return (rvadd+x*rvdir) % 7; }
 | |
|   
 | |
| struct hrmap_quotient : hrmap {
 | |
| 
 | |
|   hrmap_hyperbolic base;
 | |
|   
 | |
|   vector<cell*> celllist;
 | |
|   
 | |
|   cell *origin;
 | |
|   
 | |
|   map<quotientspace::code, int> reachable;
 | |
|   vector<heptspin> bfsq;
 | |
|   
 | |
|   vector<int> connections;
 | |
|   
 | |
|   void add(const heptspin& hs) {
 | |
|     code g = get(hs);
 | |
|     if(!reachable.count(g)) {
 | |
|       reachable[g] = bfsq.size();
 | |
|       bfsq.push_back(hs);
 | |
|       add(hsspin(hs, 1));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   vector<heptagon*> allh;
 | |
|   
 | |
|   hrmap_quotient() {
 | |
|   
 | |
|     if(quotient == 2) {
 | |
|       connections = fp43.connections;
 | |
|       }
 | |
|     else {
 | |
|       heptspin hs; hs.h = base.origin; hs.spin = 0;
 | |
|       reachable.clear();
 | |
|       bfsq.clear();
 | |
|       connections.clear();
 | |
|       add(hs);
 | |
| 
 | |
|       for(int i=0; i<(int)bfsq.size(); i++) {
 | |
|         hs = hsstep(bfsq[i], 0);
 | |
|         add(hs);
 | |
|         connections.push_back(reachable[get(hs)]);
 | |
|         }
 | |
| 
 | |
|       }
 | |
|     
 | |
|     int TOT = connections.size() / 7;
 | |
|     printf("heptagons = %d\n", TOT);
 | |
|     printf("all cells = %d\n", TOT*10/3);
 | |
|     if(!TOT) exit(1);
 | |
|     allh.resize(TOT);
 | |
|     for(int i=0; i<TOT; i++) allh[i] = new heptagon;
 | |
|     // heptagon *oldorigin = origin;
 | |
|     allh[0]->alt = base.origin;
 | |
|   
 | |
|     for(int i=0; i<TOT; i++) {
 | |
|       heptagon *h = allh[i];
 | |
|       if(i) {
 | |
|         h->alt = NULL;
 | |
|         }
 | |
|       if(true) {
 | |
|         h->s = hsOrigin;
 | |
|         h->emeraldval = 0;
 | |
|         h->zebraval = 0;
 | |
|         h->fiftyval = 0;
 | |
|         h->fieldval = 7*i;
 | |
|         h->rval0 = h->rval1 = 0; h->cdata = NULL;
 | |
|         h->distance = 0;
 | |
|         h->c7 = newCell(7, h);
 | |
|         }
 | |
|       for(int j=0; j<7; j++) {
 | |
|         h->move[rv(j)] = allh[connections[i*7+j]/7];
 | |
|         h->setspin(rv(j), rv(connections[i*7+j]%7));
 | |
|         }
 | |
|       }
 | |
|   
 | |
|     for(int i=0; i<TOT; i++) {
 | |
|       generateAlts(allh[i]);
 | |
|       allh[i]->emeraldval = allh[i]->alt->emeraldval;
 | |
|       allh[i]->zebraval = allh[i]->alt->zebraval;
 | |
|       allh[i]->fiftyval = allh[i]->alt->fiftyval;
 | |
|       allh[i]->distance = allh[i]->alt->distance;
 | |
|       /* for(int j=0; j<7; j++)
 | |
|         allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */
 | |
|       }    
 | |
|     
 | |
|     celllister cl(gamestart(), 100, 100000000, NULL);
 | |
|     celllist = cl.lst;
 | |
|     }
 | |
| 
 | |
|   heptagon *getOrigin() { return allh[0]; }
 | |
| 
 | |
|   ~hrmap_quotient() {
 | |
|     for(int i=0; i<size(allh); i++) {
 | |
|       clearHexes(allh[i]);
 | |
|       delete allh[i];
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   vector<cell*>& allcells() { return celllist; }
 | |
|   };
 | |
| 
 | |
|   };
 | |
| 
 | |
| // --- general ---
 | |
| 
 | |
| // very similar to createMove in heptagon.cpp
 | |
| cell *createMov(cell *c, int d) {
 | |
| 
 | |
|   if(euclid && !c->mov[d]) {
 | |
|     eucoord x, y;
 | |
|     decodeMaster(c->master, x, y);
 | |
|     for(int dx=-1; dx<=1; dx++)
 | |
|     for(int dy=-1; dy<=1; dy++)
 | |
|       euclideanAtCreate(x+dx, y+dy);
 | |
|     if(!c->mov[d]) { printf("fail!\n"); }
 | |
|     }
 | |
|   
 | |
|   if(c->mov[d]) return c->mov[d];
 | |
|   else if(purehepta) {
 | |
|     heptagon *h2 = createStep(c->master, d);
 | |
|     merge(c,d,h2->c7,c->master->spin(d),false);
 | |
|     }
 | |
|   else if(c->type != 6) {
 | |
|     cell *n = newCell(6, c->master);
 | |
| 
 | |
|     merge(c,d,n,0,false);
 | |
|     
 | |
|     heptspin hs; hs.h = c->master; hs.spin = d; hs.mirrored = false;
 | |
|     
 | |
|     int a3 = c->type/2;
 | |
|     int a4 = a3+1;
 | |
|     
 | |
|     heptspin hs2 = hsstep(hsspin(hs, a3), a3);    
 | |
|     merge(hs2.h->c7, hs2.spin, n, 2, hs2.mirrored);
 | |
|     
 | |
|     heptspin hs3 = hsstep(hsspin(hs, a4), a4);
 | |
|     merge(hs3.h->c7, hs3.spin, n, 4, hs3.mirrored);
 | |
|     
 | |
|     extern void verifycell(cell *c);
 | |
|     verifycell(n);
 | |
|     }
 | |
|   
 | |
|   else if(d == 5) {
 | |
|     int di = fixrot(c->spin(0)+1);
 | |
|     cell *c2 = createMov(c->mov[0], di);
 | |
|     bool mirr = c->mov[0]->mirror(di);
 | |
|     merge(c, 5, c2, fix6(c->mov[0]->spn(di) + (mirr?-1:1)), mirr);
 | |
|     
 | |
|     // c->mov[5] = c->mov[0]->mov[fixrot(c->spn[0]+1)]; 
 | |
|     // c->spn[5] = fix6(c->mov[0]->spn[fixrot(c->spn[0]+1)] + 1);
 | |
|     }
 | |
|   
 | |
|   else if(d == 1) {
 | |
|     int di = fixrot(c->spn(0)-1);
 | |
|     cell *c2 = createMov(c->mov[0], di);
 | |
|     bool mirr = c->mov[0]->mirror(di);
 | |
|     merge(c, 1, c2, fix6(c->mov[0]->spn(di) - (mirr?-1:1)), mirr);
 | |
|     
 | |
|     // c->mov[1] = c->mov[0]->mov[fixrot(c->spn[0]-1)]; 
 | |
|     // c->spn[1] = fix6(c->mov[0]->spn[fixrot(c->spn[0]-1)] - 1);
 | |
|     }
 | |
|   
 | |
|   else if(d == 3) {
 | |
|     bool mirr = c->mirror(2);
 | |
|     int di = fixrot(c->spn(2)-(mirr?-1:1));
 | |
|     cell *c2 = createMov(c->mov[2], di);
 | |
|     bool nmirr = mirr ^ c->mov[2]->mirror(di);
 | |
|     merge(c, 3, c2, fix6(c->mov[2]->spn(di) - (nmirr?-1:1)), nmirr);
 | |
|     // c->mov[3] = c->mov[2]->mov[fixrot(c->spn[2]-1)];
 | |
|     // c->spn[3] = fix6(c->mov[2]->spn[fixrot(c->spn[2]-1)] - 1);
 | |
|     }
 | |
|   return c->mov[d];
 | |
|   }
 | |
| 
 | |
| cell *createMovR(cell *c, int d) {
 | |
|   d %= 420; d += 420; d %= c->type;
 | |
|   return createMov(c, d);
 | |
|   }
 | |
| 
 | |
| cell *getMovR(cell *c, int d) {
 | |
|   d %= 420; d += 420; d %= c->type;
 | |
|   return c->mov[d];
 | |
|   }
 | |
| 
 | |
| // similar to heptspin from heptagon.cpp
 | |
| struct cellwalker {
 | |
|   cell *c;
 | |
|   int spin;
 | |
|   bool mirrored;
 | |
|   cellwalker(cell *c, int spin, bool m=false) : c(c), spin(spin), mirrored(m) { }
 | |
|   cellwalker() { mirrored = false; }
 | |
|   };
 | |
| 
 | |
| void cwspin(cellwalker& cw, int d) {
 | |
|   cw.spin = (cw.spin+(MIRR(cw)?-d:d) + 420) % cw.c->type;
 | |
|   }
 | |
| 
 | |
| bool cwstepcreates(cellwalker& cw) {
 | |
|   return cw.c->mov[cw.spin] == NULL;
 | |
|   }
 | |
| 
 | |
| cell *cwpeek(cellwalker cw, int dir) {
 | |
|   return createMov(cw.c, (cw.spin+420+dir) % cw.c->type);
 | |
|   }
 | |
| 
 | |
| void cwmirrorat(cellwalker& cw, int d) {
 | |
|   cw.spin = (d+d - cw.spin + 420) % cw.c->type;
 | |
|   cw.mirrored = !cw.mirrored;
 | |
|   }
 | |
| 
 | |
| void cwstep(cellwalker& cw) {
 | |
|   createMov(cw.c, cw.spin);
 | |
|   int nspin = cw.c->spn(cw.spin);
 | |
|   if(cw.c->mirror(cw.spin)) cw.mirrored = !cw.mirrored;
 | |
|   cw.c = cw.c->mov[cw.spin];
 | |
|   cw.spin = nspin;
 | |
|   }
 | |
| 
 | |
| void eumerge(cell* c1, cell *c2, int s1, int s2) {
 | |
|   if(!c2) return;
 | |
|   c1->mov[s1] = c2; tsetspin(c1->spintable, s1, s2);
 | |
|   c2->mov[s2] = c1; tsetspin(c2->spintable, s2, s1);
 | |
|   }       
 | |
| 
 | |
| //  map<pair<eucoord, eucoord>, cell*> euclidean;
 | |
| 
 | |
| cell*& euclideanAt(eucoord x, eucoord y) {
 | |
|   if(torus) { printf("euclideanAt called\n"); exit(1); }
 | |
|   hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
 | |
|   return euc->at(x, y);
 | |
|   }
 | |
| 
 | |
| cell*& euclideanAtCreate(eucoord x, eucoord y) {
 | |
|   cell*& c = euclideanAt(x,y);
 | |
|   if(!c) {
 | |
|     c = newCell(6, NULL);
 | |
|     c->master = encodeMaster(x,y);
 | |
|     euclideanAt(x,y) = c;
 | |
|     eumerge(c, euclideanAt(x+1,y), 0, 3);
 | |
|     eumerge(c, euclideanAt(x,y+1), 1, 4);
 | |
|     eumerge(c, euclideanAt(x-1,y+1), 2, 5);
 | |
|     eumerge(c, euclideanAt(x-1,y), 3, 0);
 | |
|     eumerge(c, euclideanAt(x,y-1), 4, 1);
 | |
|     eumerge(c, euclideanAt(x+1,y-1), 5, 2);
 | |
|     }
 | |
|   return c;
 | |
|   }
 | |
| 
 | |
| // initializer (also inits origin from heptagon.cpp)
 | |
| void initcells() {
 | |
|   DEBB(DF_INIT, (debugfile,"initcells\n"));
 | |
|   
 | |
|   if(torus) currentmap = new hrmap_torus;
 | |
|   else if(euclid) currentmap = new hrmap_euclidean;
 | |
|   else if(sphere) currentmap = new hrmap_spherical;
 | |
|   else if(quotient) currentmap = new quotientspace::hrmap_quotient;
 | |
|   else currentmap = new hrmap_hyperbolic;
 | |
|   
 | |
|   allmaps.push_back(currentmap);
 | |
|   
 | |
|   // origin->emeraldval = 
 | |
|   }
 | |
| 
 | |
| void clearcell(cell *c) {
 | |
|   if(!c) return;
 | |
|   DEBMEM ( printf("c%d %p\n", c->type, c); )
 | |
|   for(int t=0; t<c->type; t++) if(c->mov[t]) {
 | |
|     DEBMEM ( printf("mov %p [%p] S%d\n", c->mov[t], c->mov[t]->mov[c->spn(t)], c->spn(t)); )
 | |
|     if(c->mov[t]->mov[c->spn(t)] != NULL &&
 | |
|       c->mov[t]->mov[c->spn(t)] != c) {
 | |
|         printf("cell error\n");
 | |
|         exit(1);
 | |
|         }
 | |
|     c->mov[t]->mov[c->spn(t)] = NULL;
 | |
|     }
 | |
|   DEBMEM ( printf("DEL %p\n", c); )
 | |
|   delete c;
 | |
|   }
 | |
| 
 | |
| heptagon deletion_marker;
 | |
| 
 | |
| void clearHexes(heptagon *at) {
 | |
|   if(at->c7) {
 | |
|     if(!purehepta) for(int i=0; i<7; i++)
 | |
|       clearcell(at->c7->mov[i]);
 | |
|     clearcell(at->c7);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| void clearfrom(heptagon *at) {
 | |
|   queue<heptagon*> q;
 | |
|   q.push(at);
 | |
|   at->alt = &deletion_marker;
 | |
| //int maxq = 0;
 | |
|   while(!q.empty()) {
 | |
|     at = q.front(); 
 | |
| //  if(q.size() > maxq) maxq = q.size();
 | |
|     q.pop();
 | |
|     DEBMEM ( printf("from %p\n", at); )
 | |
|     for(int i=0; i<7; i++) if(at->move[i]) {
 | |
|       if(at->move[i]->alt != &deletion_marker)
 | |
|         q.push(at->move[i]);    
 | |
|       at->move[i]->alt = &deletion_marker;
 | |
|       DEBMEM ( printf("!mov %p [%p]\n", at->move[i], at->move[i]->move[at->spin(i)]); )
 | |
|       if(at->move[i]->move[at->spin(i)] != NULL &&
 | |
|         at->move[i]->move[at->spin(i)] != at) {
 | |
|           printf("hept error\n");
 | |
|           exit(1);
 | |
|           }
 | |
|       at->move[i]->move[at->spin(i)] = NULL;
 | |
|       at->move[i] = NULL;
 | |
|       }
 | |
|     clearHexes(at);
 | |
|     delete at;
 | |
|     }
 | |
| //printf("maxq = %d\n", maxq);
 | |
|   }
 | |
| 
 | |
| void verifycell(cell *c) {
 | |
|   int t = c->type;
 | |
|   for(int i=0; i<t; i++) {
 | |
|     cell *c2 = c->mov[i];
 | |
|     if(c2) {
 | |
|       if(t != 6 && !purehepta) verifycell(c2);
 | |
|       if(c2->mov[c->spn(i)] && c2->mov[c->spn(i)] != c) {
 | |
|         printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->spn(i), c2->type);
 | |
|         exit(1);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| void verifycells(heptagon *at) {
 | |
|   for(int i=0; i<S7; i++) if(at->move[i] && at->move[i]->move[at->spin(i)] && at->move[i]->move[at->spin(i)] != at) {
 | |
|     printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->spin(i), at->move[i], at->move[i]->move[at->spin(i)]);
 | |
|     }
 | |
|   if(!sphere && !quotient) 
 | |
|     for(int i=0; i<7; i++) if(at->move[i] && at->spin(i) == 0 && at->s != hsOrigin)
 | |
|       verifycells(at->move[i]);
 | |
|   verifycell(at->c7);
 | |
|   }
 | |
| 
 | |
| int eupattern(cell *c) {
 | |
|   if(torus) return decodeId(c->master) % 3;
 | |
|   eucoord x, y;
 | |
|   decodeMaster(c->master, x, y);
 | |
|   short z = (short(y+2*x))%3;
 | |
|   z %= 3;
 | |
|   if(z<0) z += 3;
 | |
|   return z;
 | |
|   }
 | |
| 
 | |
| 
 | |
| bool ishept(cell *c) {
 | |
|   // EUCLIDEAN
 | |
|   if(euclid) return eupattern(c) == 0;
 | |
|   else return c->type != 6;
 | |
|   }
 | |
| 
 | |
| bool ishex1(cell *c) {
 | |
|   // EUCLIDEAN
 | |
|   if(euclid) return eupattern(c) == 1;
 | |
|   else return c->type == 7;
 | |
|   }
 | |
| 
 | |
| int emeraldval(cell *c) {
 | |
|   if(euclid) return eupattern(c);
 | |
|   if(sphere) return 0;
 | |
|   if(c->type == 7)
 | |
|     return c->master->emeraldval >> 3;
 | |
|   else {
 | |
|     return emerald_hexagon(
 | |
|       emeraldval(createMov(c,0)),
 | |
|       emeraldval(createMov(c,2)),
 | |
|       emeraldval(createMov(c,4))
 | |
|       );
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int eudist(short sx, short sy) {
 | |
|   int z0 = abs(sx);
 | |
|   int z1 = abs(sy);
 | |
|   int z2 = abs(sx+sy);
 | |
|   return max(max(z0,z1), z2);
 | |
|   }
 | |
| 
 | |
| int compdist(int dx[3]) {
 | |
|   int mi = min(min(dx[0], dx[1]), dx[2]);
 | |
|   if(dx[0] > mi+2 || dx[1] > mi+2 || dx[2] > mi+2)
 | |
|     return -1; // { printf("cycle error!\n"); exit(1); }
 | |
|   if(dx[0] == mi+2 || dx[1] == mi+2 || dx[2] == mi+2)
 | |
|     return mi+1;
 | |
|   if((dx[0] == mi+1) + (dx[1] == mi+1) + (dx[2] == mi+1) >= 2)
 | |
|     return mi+1;
 | |
|   return mi;
 | |
|   }
 | |
| 
 | |
| int celldist(cell *c) {
 | |
|   if(euclid) {
 | |
|     if(torus) 
 | |
|       return torusmap()->dists[decodeId(c->master)];
 | |
|     eucoord x, y;
 | |
|     decodeMaster(c->master, x, y);
 | |
|     return eudist(x, y);
 | |
|     }
 | |
|   if(sphere) return celldistance(c, currentmap->gamestart());
 | |
|   if(c->type == 7) return c->master->distance;
 | |
|   int dx[3];
 | |
|   for(int u=0; u<3; u++)
 | |
|     dx[u] = createMov(c, u+u)->master->distance;
 | |
|   return compdist(dx);
 | |
|   }
 | |
| 
 | |
| #define ALTDIST_BOUNDARY 99999
 | |
| #define ALTDIST_UNKNOWN 99998
 | |
| 
 | |
| #define ALTDIST_ERROR 90000
 | |
| 
 | |
| // defined in 'game'
 | |
| int euclidAlt(short x, short y);
 | |
| 
 | |
| int celldistAlt(cell *c) {
 | |
|   if(euclid) {
 | |
|     if(torus) return celldist(c);
 | |
|     eucoord x, y;
 | |
|     decodeMaster(c->master, x, y);
 | |
|     return euclidAlt(x, y);
 | |
|     }
 | |
|   if(!c->master->alt) return 0;
 | |
|   if(c->type == 7) return c->master->alt->distance;
 | |
|   int dx[3];
 | |
|   for(int u=0; u<3; u++) if(createMov(c, u+u)->master->alt == NULL)
 | |
|     return ALTDIST_UNKNOWN;
 | |
|   for(int u=0; u<3; u++)
 | |
|     dx[u] = createMov(c, u+u)->master->alt->distance;
 | |
|   int mi = min(min(dx[0], dx[1]), dx[2]);
 | |
|   if(dx[0] > mi+2 || dx[1] > mi+2 || dx[2] > mi+2)
 | |
|     return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
 | |
|   if(dx[0] == mi+2 || dx[1] == mi+2 || dx[2] == mi+2)
 | |
|     return mi+1;
 | |
|   return mi;
 | |
|   }
 | |
| 
 | |
| #define GRAIL_FOUND 0x4000
 | |
| #define GRAIL_RADIUS_MASK 0x3FFF
 | |
| 
 | |
| int dirfromto(cell *cfrom, cell *cto) {
 | |
|   for(int i=0; i<cfrom->type; i++) if(cfrom->mov[i] == cto) return i;
 | |
|   return -1;
 | |
|   }
 | |
| 
 | |
| // === FIFTYVALS ===
 | |
| 
 | |
| unsigned bitmajority(unsigned a, unsigned b, unsigned c) {
 | |
|   return (a&b) | ((a^b)&c);
 | |
|   }
 | |
| 
 | |
| int eufifty(cell *c) {
 | |
|   eucoord x, y;
 | |
|   if(torus) {
 | |
|     if(c->land == laWildWest) return decodeId(c->master) % 37;
 | |
|     else return decodeId(c->master) % 27;
 | |
|     }
 | |
|   decodeMaster(c->master, x, y);
 | |
|   int ix = short(x) + 99999 + short(y);
 | |
|   int iy = short(y) + 99999;
 | |
|   if(c->land == laWildWest) 
 | |
|     return (ix + iy * 26 + 28) % 37;
 | |
|   else {
 | |
|     ix += (iy/3) * 3;
 | |
|     iy %= 3; ix %= 9;
 | |
|     return iy * 9 + ix;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int fiftyval(cell *c) {
 | |
|   if(euclid) return eufifty(c) * 32;
 | |
|   if(sphere) return 0;
 | |
|   if(c->type == 7)
 | |
|     return c->master->fiftyval;
 | |
|   else {
 | |
|     return bitmajority(
 | |
|       fiftyval(createMov(c,0)), 
 | |
|       fiftyval(createMov(c,2)), 
 | |
|       fiftyval(createMov(c,4))) + 512;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int cdist50(cell *c) {
 | |
|   if(sphere) return 0;
 | |
|   if(euclid) {
 | |
|     if(c->land == laWildWest) 
 | |
|       return "0123333332112332223322233211233333322"[eufifty(c)] - '0';
 | |
|     else return "012333321112322232222321123"[eufifty(c)] - '0';
 | |
|     }
 | |
|   if(c->type == 7) return cdist50(fiftyval(c));
 | |
|   int a0 = cdist50(createMov(c,0));
 | |
|   int a1 = cdist50(createMov(c,2));
 | |
|   int a2 = cdist50(createMov(c,4));
 | |
|   if(a0 == 0 || a1 == 0 || a2 == 0) return 1;
 | |
|   return a0+a1+a2-5;
 | |
|   }
 | |
| 
 | |
| int land50(cell *c) {
 | |
|   if(c->type == 7) return land50(fiftyval(c));
 | |
|   else if(sphere || euclid) return 0;
 | |
|   else {
 | |
|     if(cdist50(createMov(c,0)) < 3) return land50(createMov(c,0));
 | |
|     if(cdist50(createMov(c,2)) < 3) return land50(createMov(c,2));
 | |
|     if(cdist50(createMov(c,4)) < 3) return land50(createMov(c,4));
 | |
|     return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int polara50(cell *c) {
 | |
|   if(c->type == 7) return polara50(fiftyval(c));
 | |
|   else if(sphere || euclid) return 0;
 | |
|   else {
 | |
|     if(cdist50(createMov(c,0)) < 3) return polara50(createMov(c,0));
 | |
|     if(cdist50(createMov(c,2)) < 3) return polara50(createMov(c,2));
 | |
|     if(cdist50(createMov(c,4)) < 3) return polara50(createMov(c,4));
 | |
|     return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int polarb50(cell *c) {
 | |
|   if(euclid) return true;
 | |
|   if(c->type == 7) return polarb50(fiftyval(c));
 | |
|   else if(sphere || euclid) return true;
 | |
|   else {
 | |
|     if(cdist50(createMov(c,0)) < 3) return polarb50(createMov(c,0));
 | |
|     if(cdist50(createMov(c,2)) < 3) return polarb50(createMov(c,2));
 | |
|     if(cdist50(createMov(c,4)) < 3) return polarb50(createMov(c,4));
 | |
|     return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int elhextable[28][3] = {
 | |
|   {0,1,2}, {1,2,9}, {1,9,-1}, {1,8,-1}, {1,-1,-1}
 | |
|   };
 | |
| 
 | |
| int fiftyval049(cell *c) {
 | |
|   if(c->type == 7 || euclid) return fiftyval(c) / 32;
 | |
|   else if(sphere) return 0;
 | |
|   else {
 | |
|     int a[3], qa=0;
 | |
|     int pa = polara50(c), pb = polarb50(c);
 | |
|     for(int i=0; i<6; i+=2) {
 | |
|       cell *c2 = c->mov[i];
 | |
|       if(polara50(c2) == pa && polarb50(c2) == pb)
 | |
|         a[qa++] = fiftyval049(c2);
 | |
|       }
 | |
|     // 0-1-2
 | |
|     sort(a, a+qa);
 | |
|     if(qa == 1) return 43+a[0]-1;
 | |
|     if(qa == 2 && a[1] == a[0]+7) return 36+a[0]-1;
 | |
|     if(qa == 2 && a[1] != a[0]+7) return 29+a[0]-1;
 | |
|     if(a[1] == 1 && a[2] == 7)
 | |
|       return 15 + 6;
 | |
|     if(a[2] >= 1 && a[2] <= 7)
 | |
|       return 15 + a[1]-1;
 | |
|     if(a[0] == 1 && a[1] == 7 && a[2] == 8)
 | |
|       return 22;
 | |
|     if(a[1] <= 7 && a[2] >= 8)
 | |
|       return 22 + a[1]-1;
 | |
|     return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| /*
 | |
| {0,1,2} 15+0..15+6
 | |
| {1,2,9},22+0..22+6
 | |
| {1,9}   29+0..29+6
 | |
| {1,8}   36+0..36+6
 | |
| {1}     43+0..43+6
 | |
| */
 | |
| 
 | |
| // zebraval
 | |
| 
 | |
| int zebra40(cell *c) {
 | |
|   if(c->type == 7) return (c->master->zebraval/10);
 | |
|   else if(sphere) return 0;
 | |
|   else if(euclid) return eupattern(c);
 | |
|   else {
 | |
|     int ii[3], z;
 | |
|     ii[0] = (c->mov[0]->master->zebraval/10);
 | |
|     ii[1] = (c->mov[2]->master->zebraval/10);
 | |
|     ii[2] = (c->mov[4]->master->zebraval/10);
 | |
|     for(int r=0; r<2; r++) 
 | |
|       if(ii[1] < ii[0] || ii[2] < ii[0]) 
 | |
|         z = ii[0], ii[0] = ii[1], ii[1] = ii[2], ii[2] = z;
 | |
|     for(int i=0; i<28; i++)
 | |
|       if(zebratable6[i][0] == ii[0] && zebratable6[i][1] == ii[1] && 
 | |
|          zebratable6[i][2] == ii[2]) {
 | |
|            int ans = 16+i;
 | |
|            // if(ans >= 40) ans ^= 2;
 | |
|            // if(ans >= 4  && ans < 16) ans ^= 2;
 | |
|            return ans;
 | |
|            }
 | |
|     return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int zebra3(cell *c) {
 | |
|   if(c->type == 7) return (c->master->zebraval/10)/4;
 | |
|   else if(sphere) return 0;
 | |
|   else { 
 | |
|     int ii[3];
 | |
|     ii[0] = (c->mov[0]->master->zebraval/10)/4;
 | |
|     ii[1] = (c->mov[2]->master->zebraval/10)/4;
 | |
|     ii[2] = (c->mov[4]->master->zebraval/10)/4;
 | |
|     if(ii[0] == ii[1]) return ii[0];
 | |
|     if(ii[1] == ii[2]) return ii[1];
 | |
|     if(ii[2] == ii[0]) return ii[2];
 | |
|     return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #define RPV_MODULO 5
 | |
| 
 | |
| #define RPV_RAND 0
 | |
| #define RPV_ZEBRA 1
 | |
| #define RPV_EMERALD 2
 | |
| #define RPV_PALACE 3
 | |
| #define RPV_CYCLE 4
 | |
| 
 | |
| int getCdata(cell *c, int j);
 | |
| 
 | |
| // x mod 5 = pattern type
 | |
| // x mod (powers of 2) = pattern type specific
 | |
| // (x/5) mod 15 = picture for drawing floors
 | |
| // x mod 7 = chance of pattern-specific pic
 | |
| // whole = randomization
 | |
| 
 | |
| bool randpattern(cell *c, int rval) {
 | |
|   int i, sw=0;
 | |
|   switch(rval%5) {
 | |
|     case 0:
 | |
|       if(rval&1) {
 | |
|         return hrandpos() < rval;
 | |
|         }
 | |
|       else {
 | |
|         int cd = getCdata(c, 0);
 | |
|         return !((cd/(((rval/2)&15)+1))&1);
 | |
|         }
 | |
|     case 1:
 | |
|       i = zebra40(c);
 | |
|       if(i&1) { if(rval&4) sw^=1; i &= ~1; }
 | |
|       if(i&2) { if(rval&8) sw^=1; i &= ~2; }
 | |
|       i >>= 2;
 | |
|       i--; i /= 3;
 | |
|       if(rval & (16<<i)) sw^=1;
 | |
|       return sw;
 | |
|     case 2:
 | |
|       i = emeraldval(c);
 | |
|       if(i&1) { if(rval&4) sw^=1; i &= ~1; }
 | |
|       if(i&2) { if(rval&8) sw^=1; i &= ~2; }
 | |
|       i >>= 2; i--;
 | |
|       if(rval & (16<<i)) sw^=1;
 | |
|       return sw;
 | |
|     case 3:
 | |
|       if(polara50(c)) { if(rval&4) sw^=1; }
 | |
|       if(polarb50(c)) { if(rval&8) sw^=1; }
 | |
|       i = fiftyval049(c); i += 6; i /= 7;
 | |
|       if(rval & (16<<i)) sw^=1;
 | |
|       return sw;
 | |
|     case 4:
 | |
|       i = (rval&3);
 | |
|       if(i == 1 && (celldist(c)&1)) sw ^= 1;
 | |
|       if(i == 2 && (celldist(c)&2)) sw ^= 1;
 | |
|       if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
 | |
|       if(rval & (4<<towerval(c, celldist))) sw ^= 1;
 | |
|       return sw;
 | |
|     }
 | |
|   return 0;
 | |
|   }
 | |
| 
 | |
| extern int randompattern[landtypes];
 | |
| 
 | |
| string describeRPM(eLand l) {
 | |
|   int rval = randompattern[l];
 | |
|   switch(rval%5) {
 | |
|     case 0:
 | |
|       if(rval&1)
 | |
|         return "R:"+its(rval/(HRANDMAX/100))+"%";
 | |
|       else
 | |
|         return "Landscape/"+its(((rval/2)&15)+1);
 | |
|     case 1:
 | |
|       return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
 | |
|     case 2:
 | |
|       return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
 | |
|     case 3:
 | |
|       return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
 | |
|     case 4:
 | |
|       return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
 | |
|     }
 | |
|   return "?";
 | |
|   }
 | |
| 
 | |
| int randpatternCode(cell *c, int rval) {
 | |
|   switch(rval % RPV_MODULO) {
 | |
|     case 1:
 | |
|       return zebra40(c);
 | |
|     case 2:
 | |
|       return emeraldval(c);
 | |
|     case 3:
 | |
|       return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
 | |
|     case 4:
 | |
|       return towerval(c, celldist) * 6 + celldist(c) % 6;
 | |
|     }
 | |
|   return 0;  
 | |
|   }
 | |
| 
 | |
| #define RANDITER 31
 | |
| 
 | |
| char rpm_memoize[3][256][RANDITER+1];
 | |
| 
 | |
| void clearMemoRPM() {
 | |
|   for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
 | |
|     rpm_memoize[a][b][i] = 2;
 | |
|   }
 | |
| 
 | |
| bool randpatternMajority(cell *c, int ival, int iterations) {
 | |
|   int rval = 0;
 | |
|   if(ival == 0) rval = randompattern[laCaves];
 | |
|   if(ival == 1) rval = randompattern[laLivefjord];
 | |
|   if(ival == 2) rval = randompattern[laEmerald];
 | |
|   if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
 | |
|   int code = randpatternCode(c, rval);
 | |
|   char& memo(rpm_memoize[ival][code][iterations]);
 | |
|   if(memo < 2) return memo;
 | |
|   int z = 0;
 | |
|   if(iterations) for(int i=0; i<c->type; i++) {
 | |
|     if(randpatternMajority(createMov(c,i), ival, iterations-1))
 | |
|       z++;
 | |
|     else
 | |
|       z--;
 | |
|     }
 | |
|   if(z!=0) memo = (z>0);
 | |
|   else memo = randpattern(c, rval);
 | |
|   // printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
 | |
|   return memo;
 | |
|   }
 | |
| 
 | |
| map<heptagon*, int> spins;
 | |
| 
 | |
| #define RVAL_MASK 0x10000000
 | |
| #define DATA_MASK 0x20000000
 | |
| 
 | |
| cdata orig_cdata;
 | |
| 
 | |
| void affect(cdata& d, short rv, signed char signum) {
 | |
|   if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
 | |
|   if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
 | |
|   if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
 | |
|   if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
 | |
|   int id = (rv>>4) & 63;
 | |
|   if(id < 32) 
 | |
|     d.bits ^= (1 << id);
 | |
|   }
 | |
| 
 | |
| void setHeptagonRval(heptagon *h) {
 | |
|   if(!(h->rval0 || h->rval1)) {
 | |
|     h->rval0 = hrand(0x10000);
 | |
|     h->rval1 = hrand(0x10000);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| cdata *getHeptagonCdata(heptagon *h) {
 | |
|   if(h->cdata) return h->cdata;
 | |
| 
 | |
|   if(sphere || quotient) h = currentmap->gamestart()->master;
 | |
| 
 | |
|   if(h == currentmap->gamestart()->master) {
 | |
|     return h->cdata = new cdata(orig_cdata);
 | |
|     }
 | |
|   
 | |
|   cdata mydata = *getHeptagonCdata(h->move[0]);
 | |
| 
 | |
|   for(int di=3; di<5; di++) {
 | |
|     heptspin hs; hs.h = h; hs.spin = di;
 | |
|     int signum = +1;
 | |
|     while(true) {
 | |
|       heptspin hstab[15];
 | |
|       hstab[7] = hs;
 | |
|       
 | |
|       for(int i=8; i<12; i++) {
 | |
|         hstab[i] = hsspin(hstab[i-1], (i&1) ? 4 : 3);
 | |
|         hstab[i] = hsstep(hstab[i], 0);
 | |
|         hstab[i] = hsspin(hstab[i], (i&1) ? 3 : 4);
 | |
|         }
 | |
| 
 | |
|       for(int i=6; i>=3; i--) {
 | |
|         hstab[i] = hsspin(hstab[i+1], (i&1) ? 3 : 4);
 | |
|         hstab[i] = hsstep(hstab[i], 0);
 | |
|         hstab[i] = hsspin(hstab[i], (i&1) ? 4 : 3);
 | |
|         }
 | |
|       
 | |
|       if(hstab[3].h->distance < hstab[7].h->distance) {
 | |
|         hs = hstab[3]; continue;
 | |
|         }
 | |
| 
 | |
|       if(hstab[11].h->distance < hstab[7].h->distance) {
 | |
|         hs = hstab[11]; continue;
 | |
|         }
 | |
|       
 | |
|       int jj = 7;
 | |
|       for(int k=3; k<12; k++) if(hstab[k].h->distance < hstab[jj].h->distance) jj = k;
 | |
|       
 | |
|       int ties = 0, tiespos = 0;
 | |
|       for(int k=3; k<12; k++) if(hstab[k].h->distance == hstab[jj].h->distance) 
 | |
|         ties++, tiespos += (k-jj);
 | |
|         
 | |
|       // printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
 | |
|       if(ties == 2) jj += tiespos/2;
 | |
|       
 | |
|       if(jj&1) signum = -1;
 | |
|       hs = hstab[jj];
 | |
|       
 | |
|       break;
 | |
|       }
 | |
|     hs = hsstep(hsspin(hs, 3), 0);
 | |
|     setHeptagonRval(hs.h);
 | |
|     
 | |
|     affect(mydata, hs.spin ? hs.h->rval0 : hs.h->rval1, signum);
 | |
| 
 | |
|     /* if(!(spins[hs.h] & hs.spin)) {
 | |
|       spins[hs.h] |= (1<<hs.spin);
 | |
|       int t = 0;
 | |
|       for(int k=0; k<7; k++) if(spins[hs.h] & (1<<k)) t++;
 | |
|       static bool wast[256];
 | |
|       if(!wast[spins[hs.h]]) {
 | |
|         printf("%p %4x\n", hs.h, spins[hs.h]);
 | |
|         wast[spins[hs.h]] = true;
 | |
|         }
 | |
|       } */
 | |
|     }
 | |
| 
 | |
|   return h->cdata = new cdata(mydata);
 | |
|   }
 | |
| 
 | |
| cdata *getEuclidCdata(heptagon *h) {
 | |
| 
 | |
|   if(torus) {
 | |
|     static cdata xx;
 | |
|     return &xx;
 | |
|     }
 | |
|     
 | |
|   eucoord x, y;
 | |
|   hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
 | |
|   if(euc->eucdata.count(h)) return &(euc->eucdata[h]);
 | |
|   
 | |
|   decodeMaster(h, x, y);
 | |
| 
 | |
|   if(x == 0 && y == 0) {
 | |
|     cdata xx;
 | |
|     for(int i=0; i<4; i++) xx.val[i] = 0;
 | |
|     xx.bits = 0;
 | |
|     return &(euc->eucdata[h] = xx);
 | |
|     }
 | |
|   int ord = 1, bid = 0;
 | |
|   while(!((x|y)&ord)) ord <<= 1, bid++;
 | |
|   
 | |
|   for(int k=0; k<3; k++) {
 | |
|     eucoord x1 = x + (k<2 ? ord : 0);
 | |
|     eucoord y1 = y - (k>0 ? ord : 0);
 | |
|     if((x1&ord) || (y1&ord)) continue;
 | |
|     eucoord x2 = x - (k<2 ? ord : 0);
 | |
|     eucoord y2 = y + (k>0 ? ord : 0);
 | |
| 
 | |
|     cdata *d1 = getEuclidCdata(encodeMaster(x1,y1));
 | |
|     cdata *d2 = getEuclidCdata(encodeMaster(x2,y2));
 | |
|     cdata xx;
 | |
|     double disp = pow(2, bid/2.) * 6;
 | |
|     
 | |
|     for(int i=0; i<4; i++) {
 | |
|       double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
 | |
|       xx.val[i] = floor(dv);
 | |
|       if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
 | |
|       }
 | |
|     xx.bits = 0;
 | |
| 
 | |
|     for(int b=0; b<32; b++) {
 | |
|       bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
 | |
|       int flipchance = (1<<bid);
 | |
|       if(flipchance > 512) flipchance = 512;
 | |
|       if(hrand(1024) < flipchance) gbit = !gbit;
 | |
|       if(gbit) xx.bits |= (1<<b);
 | |
|       }
 | |
|     
 | |
|     return &(euc->eucdata[h] = xx);
 | |
|     }
 | |
|   
 | |
|   // impossible!
 | |
|   return NULL;
 | |
|   }
 | |
| 
 | |
| int getCdata(cell *c, int j) {
 | |
|   if(euclid) return getEuclidCdata(c->master)->val[j];
 | |
|   else if(c->type == 7) return getHeptagonCdata(c->master)->val[j]*3;
 | |
|   else {
 | |
|     int jj = 0;
 | |
|     for(int k=0; k<6; k++) if(c->mov[k] && c->mov[k]->type == 7)
 | |
|       jj += getHeptagonCdata(c->mov[k]->master)->val[j];
 | |
|     return jj;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| int getBits(cell *c) {
 | |
|   if(euclid) return getEuclidCdata(c->master)->bits;
 | |
|   else if(c->type == 7) return getHeptagonCdata(c->master)->bits;
 | |
|   else {
 | |
|     int b0 = getHeptagonCdata(createMov(c, 0)->master)->bits;
 | |
|     int b1 = getHeptagonCdata(createMov(c, 2)->master)->bits;
 | |
|     int b2 = getHeptagonCdata(createMov(c, 4)->master)->bits;
 | |
|     return (b0 & b1) | (b1 & b2) | (b2 & b0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| eLand getCLand(cell *c) {
 | |
|   int b = getBits(c);
 | |
|   b = (b&31) ^ (b>>5);
 | |
|   return land_scape[b & 31];
 | |
|   }
 | |
| 
 | |
| cell *heptatdir(cell *c, int d) {
 | |
|   if(d&1) {
 | |
|     cell *c2 = createMov(c, d);
 | |
|     int s = c->spin(d);
 | |
|     s += 3; s %= 6;
 | |
|     return createMov(c2, s);
 | |
|     }
 | |
|   else return createMov(c, d);
 | |
|   }
 | |
| 
 | |
| namespace fieldpattern {
 | |
| 
 | |
| pair<int, bool> fieldval(cell *c) {
 | |
|   if(c->type == 7) return make_pair(c->master->fieldval, false);
 | |
|   else return make_pair(btspin(c->master->fieldval, c->spin(0)), true);
 | |
|   }
 | |
| 
 | |
| int subpathid = fp43.matcode[fp43.strtomatrix("RRRPRRRRRPRRRP")];
 | |
| int subpathorder = fp43.order(fp43.matrices[subpathid]);
 | |
| 
 | |
| pair<int, int> subval(cell *c, int _subpathid = subpathid, int _subpathorder = subpathorder) {
 | |
|   if(c->type == 6)
 | |
|     return min(min(subval(createMov(c, 0)),subval(createMov(c, 2))), subval(createMov(c, 4)));
 | |
|   else {
 | |
|     pair<int, int> pbest, pcur;
 | |
|     pcur.first = c->master->fieldval;
 | |
|     pcur.second = 0;
 | |
|     pbest = pcur;
 | |
|     for(int i=0; i<_subpathorder; i++) {
 | |
|       pcur.first = fp43.gmul(pcur.first, _subpathid);
 | |
|       pcur.second++;
 | |
|       if(pcur < pbest) pbest = pcur;
 | |
|       }
 | |
|     return pbest;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| }
 | |
| int celldistance(cell *c1, cell *c2) {
 | |
|   int d = 0;
 | |
|   
 | |
|   if(euclid) {
 | |
|     if(torus) 
 | |
|       return torusmap()->dists[toridMod(decodeId(c1->master)-decodeId(c2->master))];
 | |
|     eucoord x1, y1, x2, y2;
 | |
|     decodeMaster(c1->master, x1, y1);
 | |
|     decodeMaster(c2->master, x2, y2);
 | |
|     return eudist(x1-x2, y1-y2);
 | |
|     }
 | |
|   
 | |
|   if(sphere || quotient == 1) {
 | |
|     celllister cl(c1, 64, 1000, c2);
 | |
|     for(int i=0; i<size(cl.lst); i++)
 | |
|       if(cl.lst[i] == c2) return cl.dists[i];
 | |
|     }
 | |
|   
 | |
|   if(quotient == 2)
 | |
|     return fp43.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2));
 | |
| 
 | |
|   int d1 = celldist(c1), d2 = celldist(c2);
 | |
| 
 | |
|   cell *cl1=c1, *cr1=c1, *cl2=c2, *cr2=c2;
 | |
|   while(true) {
 | |
|     /* if(cl1 == cl2) return d;
 | |
|     if(cl1 == cr2) return d;
 | |
|     if(cr1 == cl2) return d;
 | |
|     if(cr1 == cr2) return d; */
 | |
|         
 | |
|     //if(isNeighbor(cl1, cl2)) return d+1;
 | |
|     //if(isNeighbor(cl1, cr2)) return d+1;
 | |
|     //if(isNeighbor(cr1, cl2)) return d+1;
 | |
|     //if(isNeighbor(cr1, cr2)) return d+1;
 | |
|     
 | |
|     if(d1 == d2) for(int u=0; u<2; u++) {
 | |
|       cell *ac0 = u ? cr1 : cr2, *ac = ac0;
 | |
|       cell *tgt = u ? cl2 : cl1;
 | |
|       cell *xtgt = u ? cr2 : cr1;
 | |
|       if(ac == tgt) return d;
 | |
|       ac = chosenDown(ac, 1, 1, celldist);
 | |
|       if(ac == tgt) return d+1; 
 | |
|       if(ac == xtgt) return d;
 | |
|       ac = chosenDown(ac, 1, 1, celldist);
 | |
|       if(ac == tgt) return d+2;
 | |
|       if(!purehepta) {
 | |
|         ac = chosenDown(ac, 1, 1, celldist);
 | |
|         if(ac == tgt) {
 | |
|           if(chosenDown(ac0, 1, 0, celldist) ==
 | |
|             chosenDown(tgt, -1, 0, celldist))
 | |
|               return d+2; 
 | |
|           return d+3;
 | |
|           }
 | |
|         }
 | |
|       }  
 | |
|     
 | |
|     /* forCellEx(c, cl2) if(isNeighbor(c, cr1)) return d+2;
 | |
|     forCellEx(c, cl1) if(isNeighbor(c, cr2)) return d+2;
 | |
| 
 | |
|     forCellEx(ca, cl2) forCellEx(cb, cr1) if(isNeighbor(ca, cb)) return d+3;
 | |
|     forCellEx(ca, cl1) forCellEx(cb, cr2) if(isNeighbor(ca, cb)) return d+3; */
 | |
| 
 | |
|     if(d1 >= d2) {
 | |
|       cl1 = chosenDown(cl1, -1, 0, celldist);
 | |
| //    cl1->item = eItem(rand() % 10);
 | |
|       cr1 = chosenDown(cr1,  1, 0, celldist);
 | |
| //    cr1->item = eItem(rand() % 10);
 | |
|       d++; d1--;
 | |
|       }
 | |
|     if(d1 < d2) {
 | |
|       cl2 = chosenDown(cl2, -1, 0, celldist);
 | |
| //    cl2->item = eItem(rand() % 10);
 | |
|       cr2 = chosenDown(cr2,  1, 0, celldist);
 | |
| //    cr2->item = eItem(rand() % 10);
 | |
|       d++; d2--;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| void clearCellMemory() {
 | |
|   for(int i=0; i<size(allmaps); i++) delete allmaps[i];
 | |
|   allmaps.clear();
 | |
|   }
 | |
| 
 | |
| auto cellhooks = addHook(clearmemory, 500, clearCellMemory);
 | |
| 
 | |
| int getHemisphere(cell *c, int which) {
 | |
|   if(torus) return 0;
 | |
|   if(c->type != 6) {
 | |
|     int id = c->master->fiftyval;
 | |
|     int hemitable[3][12] = {
 | |
|       { 6, 3, 3, 3, 3, 3,-6,-3,-3,-3,-3,-3},
 | |
|       { 6, 3, 6, 3, 0, 0,-6,-3,-6,-3, 0, 0},
 | |
|       {-3, 0, 3, 0,-6,-6, 3, 0,-3, 0, 6, 6}
 | |
|       };
 | |
|     return hemitable[which][id];
 | |
|     }
 | |
|   else {
 | |
|     int score = 0;
 | |
|     for(int i=0; i<6; i+=2) 
 | |
|       score += getHemisphere(c->mov[i], which);
 | |
|     return score/3;
 | |
|     }
 | |
|   }
 | |
| 
 | 
