1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-10-31 19:36:16 +00:00
hyperrogue/rulegen.cpp
2021-08-17 17:04:17 +02:00

1850 lines
48 KiB
C++

// Hyperbolic Rogue -- rule generator
// Copyright (C) 2011-2021 Zeno Rogue, see 'hyper.cpp' for details
/** \file rulegen.cpp
* \brief An algorithm to create strict tree rules for arb tessellations
*/
#include "hyper.h"
namespace hr {
EX namespace rulegen {
/* limits */
EX int max_retries = 999;
EX int max_tcellcount = 1000000;
EX int max_adv_steps = 100;
EX int max_examine_branch = 5040;
EX int max_bdata = 1000;
/* other parameters */
EX int dlbonus = 0;
#if HDR
/** exception thrown by this algoritm in case of any problems */
struct rulegen_failure : hr_exception {
rulegen_failure(string _s) : hr_exception(_s) {}
};
/** this exception is thrown if we want to restart the computation -- this is normal, but if thrown more than max_retries times, just surrender */
struct rulegen_retry : rulegen_failure {
rulegen_retry(string _s) : rulegen_failure(_s) {}
};
/** this exception is thrown in case if we run into a special case that is not implemented yet */
struct rulegen_surrender : rulegen_failure {
rulegen_surrender(string _s) : rulegen_failure(_s) {}
};
const int MYSTERY = 31999;
const int MYSTERY_DIST = 31998;
#endif
EX bool parent_debug;
/* === tcell === */
/** number of tcells created */
EX int tcellcount = 0;
/** number of tcells united into other tcells */
EX int tunified = 0;
#if HDR
struct tcell* tmove(tcell *c, int d);
/** rulegen algorithm works on tcells which have their own map generation */
struct tcell {
/** tcells form a list */
tcell *next;
/** shape ID in arb::current */
int id;
/** degree */
int type;
/** distance from the root */
short dist;
/** cached code */
short code;
/** direction to the parent in the tree */
short parent_dir;
/** can we assume that dist is correct? if we assumed that the dist is correct but then find out it was wrong, throw an error */
bool is_solid;
bool distance_fixed;
/** sometimes we find out that multiple tcells represent the same actual cell -- in this case we unify them; unified_to is used for the union-find algorithm */
walker<tcell> unified_to;
int degree() { return type; }
connection_table<tcell> c;
tcell*& move(int d) { return c.move(d); }
tcell*& modmove(int d) { return c.modmove(d); }
tcell* cmove(int d) { return tmove(this, d); }
tcell* cmodmove(int d) { return tmove(this, c.fix(d)); }
tcell() { }
};
inline void print(hstream& hs, tcell* h) { print(hs, "P", index_pointer(h)); }
using twalker = walker<tcell>;
#endif
queue<reaction_t> fix_queue;
bool in_fixing = false;
void unify_distances(tcell *c1, tcell *c2);
void handle_distance_errors();
void process_fix_queue() {
if(in_fixing) return;
in_fixing = true;
while(!fix_queue.empty()) {
fix_queue.front()();
fix_queue.pop();
}
in_fixing = false;
}
void ufind(twalker& p) {
if(p.at->unified_to.at == p.at) return;
twalker p1 = p.at->unified_to;
ufind(p1);
p.at->unified_to = p1;
p = p1 + p.spin;
}
void ufindc(tcell*& c) {
twalker cw = c; ufind(cw); c = cw.at;
}
EX tcell *first_tcell = nullptr;
void connect_and_check(twalker p1, twalker p2);
void unify(twalker pw1, twalker pw2);
tcell *gen_tcell(int id) {
int d = isize(arb::current.shapes[id].connections);
auto c = tailored_alloc<tcell> (d);
c->id = id;
c->next = first_tcell;
c->unified_to = twalker(c, 0);
c->is_solid = false;
c->distance_fixed = false;
c->dist = MYSTERY;
c->code = MYSTERY;
c->parent_dir = MYSTERY;
first_tcell = c;
// println(hlog, c, " is a new tcell of id ", id);
tcellcount++;
return c;
}
tcell* tmove(tcell *c, int d) {
if(c->move(d)) return c->move(d);
auto& co = arb::current.shapes[c->id].connections[d];
auto cd = twalker(c, d);
ufind(cd);
tcell *c1 = gen_tcell(co.sid);
connect_and_check(cd, twalker(c1, co.eid));
return c1;
}
/** check whether we have completed the vertex to the right of edge d of c */
void check_loops(twalker pw) {
ufind(pw);
auto& shs = arb::current.shapes;
int id = pw.at->id;
int valence = shs[id].vertex_valence[pw.spin];
int steps = 0;
twalker pwf = pw;
twalker pwb = pw;
while(true) {
if(!pwb.peek()) break;
pwb = pwb + wstep - 1;
steps++;
if(pwb == pwf) {
if(steps == valence) return; /* that's great, we already know this loop */
else throw hr_exception("vertex valence too small");
}
if(steps == valence) {
fix_queue.push([=] { unify(pwf, pwb); });
return;
}
}
while(true) {
pwf++;
if(!pwf.peek()) break;
pwf += wstep;
steps++;
if(pwb == pwf) {
if(steps == valence) return; /* that's great, we already know this loop */
else throw hr_exception("vertex valence too small");
}
if(steps == valence) {
fix_queue.push([=] { unify(pwf, pwb); });
return;
}
}
if(steps == valence - 1) {
connect_and_check(pwb, pwf);
}
}
void connect_and_check(twalker p1, twalker p2) {
p1.at->c.connect(p1.spin, p2.at, p2.spin, false);
fix_queue.push([=] { check_loops(p1); });
fix_queue.push([=] { check_loops(p2); });
process_fix_queue();
}
void unify(twalker pw1, twalker pw2) {
ufind(pw1);
ufind(pw2);
if(pw1.at->unified_to.at != pw1.at)
throw hr_exception("not unified to itself");
if(pw2.at->unified_to.at != pw2.at)
throw hr_exception("not unified to itself");
if(pw1.at == pw2.at) {
if(pw1.spin != pw2.spin) throw hr_exception("called unify with self and wrong direction");
return;
}
if(pw1.at->id != pw2.at->id)
throw hr_exception("unifying two cells of different id's");
auto& shs = arb::current.shapes;
int id = pw1.at->id;
for(int i=0; i<shs[id].size(); i++) {
if(!pw2.peek()) {
/* no need to reconnect */
}
else if(!pw1.peek()) {
connect_and_check(pw1, pw2+wstep);
}
else {
fix_queue.push([=] { unify(pw1+wstep, pw2+wstep); });
auto ss = pw1+wstep;
connect_and_check(pw1, pw2+wstep);
connect_and_check(pw1, ss);
}
pw1++;
pw2++;
}
pw2.at->unified_to = pw1 - pw2.spin;
tunified++;
unify_distances(pw1.at, pw2.at);
}
EX vector<tcell*> t_origin;
void delete_tmap() {
while(first_tcell) {
auto second = first_tcell->next;
tailored_delete(first_tcell);
first_tcell = second;
}
tcellcount = 0;
tunified = 0;
t_origin.clear();
}
/* used in the debugger */
EX vector<twalker> debuglist;
/* === distances === */
bool no_errors = false;
struct hr_solid_error : rulegen_retry {
hr_solid_error() : rulegen_retry("solid error") {}
};
int solid_errors;
int get_parent_dir(tcell *c);
#if HDR
struct shortcut {
vector<int> pre;
vector<int> post;
tcell *sample;
int delta;
};
#endif
map<int, vector<unique_ptr<shortcut>> > shortcuts;
vector<int> root_path(twalker cw) {
cw += wstep;
vector<int> res;
while(true) {
int i = cw.at->dist == 0 ? 0 : get_parent_dir(cw.at);
int j = cw.to_spin(i);
res.push_back(j);
if(cw.at->dist == 0) return res;
cw += j;
cw += wstep;
}
}
void check_solid(tcell *c, int d) {
ufindc(c);
if(debugflags & DF_GEOM)
println(hlog, "solid ", c, " changes ", c->dist, " to ", d);
if(c->dist == MYSTERY_DIST) exit(2);
set<tcell*> seen;
vector<twalker> walkers;
vector<int> walkerdir = {-1};
seen.insert(c);
walkers.push_back(c);
for(int j=0; j<isize(walkers); j++) {
auto w = walkers[j];
for(int s=0; s<w.at->type; s++) {
twalker w1 = w + s;
if(w1.peek() && w1.peek()->dist == w.at->dist - 1 && !seen.count(w1.peek())) {
seen.insert(w1.peek());
walkers.push_back(w1 + wstep);
walkerdir.push_back(s);
}
}
}
c->dist = d;
set<tcell*> seen2;
vector<twalker> walkers2;
vector<int> walkerdir2 = {-1};
walkers2.push_back(c);
for(int j=0; j<isize(walkers2); j++) {
auto w = walkers2[j];
for(int s=0; s<w.at->type; s++) {
twalker w1 = w + s;
if(!w1.peek()) continue;
if(w1.peek()->dist == w.at->dist - 1 && !seen2.count(w1.peek())) {
seen2.insert(w1.peek());
walkers2.push_back(w1 + wstep);
walkerdir2.push_back(s);
if(seen.count(w1.peek())) goto found;
}
}
}
return;
found:
auto at0 = walkers2.back().at;
tcell* at = at0;
twalker at1;
for(int i=isize(walkers)-1; i>=1; i--) if(at == walkers[i].at) at1 = walkers[i];
vector<int> pre;
for(int i=isize(walkers)-1; i>=1; i--) if(at == walkers[i].at) {
pre.push_back(walkerdir[i]); at = walkers[i].peek();
}
if(at != c) return;
at = at0;
vector<int> post;
for(int i=isize(walkers2)-1; i>=1; i--) if(at == walkers2[i].at) {
post.push_back(walkerdir2[i]); at = walkers2[i].peek();
}
if(at != c) return;
reverse(pre.begin(), pre.end());
reverse(post.begin(), post.end());
int delta = at1.to_spin(walkers2.back().spin);
for(auto& s: shortcuts[c->id]) if(s->pre == pre && s->post == post) return;
if(debugflags & DF_GEOM)
println(hlog, "new shortcut found, pre = ", pre, " post = ", post, " pre reaches ", at1, " post reaches ", walkers2.back(), " of type ", at1.at->id, " sample = ", c);
shortcuts[c->id].emplace_back(unique_ptr<shortcut> (new shortcut));
auto& sh = shortcuts[c->id].back();
sh->pre = pre;
sh->post = post;
sh->sample = c;
sh->delta = delta;
auto& sh1 = *sh;
if(debugflags & DF_GEOM) println(hlog, "exhaustive search:");
indenter ind(2);
tcell* c1 = first_tcell;
while(c1) {
if(c1->id == c->id) look_for_shortcuts(c1, sh1);
c1 = c1->next;
}
}
EX void remove_parentdir(tcell *c) {
c->parent_dir = MYSTERY;
c->code = MYSTERY;
for(int i=0; i<c->type; i++) if(c->move(i)) {
c->move(i)->parent_dir = MYSTERY;
c->move(i)->code = MYSTERY;
}
}
void fix_distances(tcell *c) {
c->distance_fixed = true;
vector<tcell*> q = {c};
for(int qi=0; qi<isize(q); qi++) {
c = q[qi];
auto& d = c->dist;
restart:
for(int i=0; i<c->type; i++) {
tcell *c1 = c->cmove(i);
ufindc(c);
c1 = c->cmove(i);
if(c1->dist == MYSTERY) continue;
auto& d1 = c1->dist;
if(d > d1+1) { d = d1+1; remove_parentdir(c); goto restart; }
if(d1 > d+1) {
if(c1->is_solid) {
check_solid(c1, d+1);
solid_errors++;
}
d1 = d+1;
remove_parentdir(c1);
q.push_back(c1);
}
}
}
}
void calc_distances(tcell *c) {
if(c->dist != MYSTERY) return;
c->dist = MYSTERY_DIST;
fix_distances(c);
}
void unify_distances(tcell *c1, tcell *c2) {
int d1 = c1->dist;
int d2 = c2->dist;
int d = min(d1, d2);
c1->dist = d;
c2->dist = d;
if(c1->is_solid && d != d1) solid_errors++;
if(c2->is_solid && d != d2) solid_errors++;
c1->distance_fixed = c1->distance_fixed || c2->distance_fixed;
c1->is_solid = c1->is_solid || c2->is_solid;
remove_parentdir(c1);
if(c1->dist < MYSTERY)
fix_distances(c1);
}
void handle_distance_errors() {
bool b = solid_errors;
solid_errors = 0;
if(b && !no_errors) {
analyzers.clear();
throw hr_solid_error();
}
}
/** make sure that we know c->dist */
void be_solid(tcell *c) {
if(c->is_solid) return;
if(tcellcount >= max_tcellcount)
throw rulegen_surrender("max_tcellcount exceeded");
ufindc(c);
calc_distances(c);
ufindc(c);
look_for_shortcuts(c);
ufindc(c);
if(c->dist == MYSTERY_DIST) {
println(hlog, "set solid but no dist ", c);
exit(3);
}
c->is_solid = true;
}
EX void look_for_shortcuts(tcell *c, shortcut& sh) {
if(c->dist <= 0) return;
if(1) {
twalker tw0(c, 0);
twalker tw(c, 0);
ufind(tw);
ufind(tw0);
vector<tcell*> opath;
for(auto& v: sh.pre) {
opath.push_back(tw.at);
tw += v;
if(!tw.peek()) return;
if(tw.peek()->dist != tw.at->dist-1) return;
ufind(tw);
tw += wstep;
}
opath.push_back(tw.at);
ufind(tw0);
vector<tcell*> npath;
for(auto& v: sh.post) {
npath.push_back(tw0.at);
tw0 += v;
ufind(tw0);
tw0 += wstep;
calc_distances(tw0.at);
}
npath.push_back(tw0.at);
int d = sh.delta;
auto tw1 = tw + d;
fix_queue.push([=] { unify(tw1, tw0); });
process_fix_queue();
for(auto t: npath) {
ufindc(t);
fix_distances(t);
}
ufindc(c);
}
}
EX void look_for_shortcuts(tcell *c) {
if(c->dist > 0)
for(int i=0; i<isize(shortcuts[c->id]); i++)
look_for_shortcuts(c, *shortcuts[c->id][i]);
}
EX bool try_to_resolve_confusion = false;
void trace_root_path(vector<int>& rp, twalker cw) {
auto d = cw.peek()->dist;
cw += wstep;
next:
if(d > 0) {
for(int i=0; i<cw.at->type; i++) {
tcell *c1 = (cw+i).peek();
be_solid(c1);
if(c1->dist < d) {
rp.push_back(i);
cw += i;
cw += wstep;
d--;
goto next;
}
}
}
rp.push_back(cw.to_spin(0));
}
/** which neighbor will become the parent of c */
EX int get_parent_dir(tcell *c) {
if(c->parent_dir != MYSTERY) return c->parent_dir;
int bestd = -1;
vector<int> bestrootpath;
look_for_shortcuts(c);
be_solid(c);
if(c->dist > 0) {
auto& sh = arb::current.shapes[c->id];
int n = sh.size();
int k = sh.cycle_length;
vector<int> nearer;
auto beats = [&] (int i, int old) {
if(old == -1) return true;
if(i%k != old%k) return i%k < old%k;
if(old < i) old += n;
return old <= i+n/2;
};
int d = c->dist;
for(int i=0; i<n; i++) {
tcell *c1 = c->cmove(i);
be_solid(c1);
if(parent_debug) println(hlog, "direction = ", i, " distance = ", c1->dist);
if(c1->dist < d) nearer.push_back(i);
}
if(parent_debug) println(hlog, "nearer = ", nearer, " n=", n, " k=", k);
auto oc = c;
ufindc(c); if(d != c->dist || oc != c) {
return get_parent_dir(c);
}
// celebrity identification problem
for(auto ne: nearer)
if(beats(ne, bestd))
bestd = ne;
if(parent_debug) for(auto ne: nearer) println(hlog, "beats", tie(ne, bestd), " = ", beats(ne, bestd));
for(auto ne: nearer)
if(ne != bestd && beats(ne, bestd)) {
if(try_to_resolve_confusion) {
vector<int> best;
int bestfor = ne;
trace_root_path(best, twalker(c, ne));
for(auto ne1: nearer) {
vector<int> other;
trace_root_path(other, twalker(c, ne1));
if(other < best) best = other, bestfor = ne1;
}
bestd = bestfor;
break;
}
debuglist = { c };
throw rulegen_failure("still confused");
}
if(bestd == -1) {
throw rulegen_failure("should not happen");
}
}
c->parent_dir = bestd;
return bestd;
}
/** determine states for tcells */
#if HDR
using aid_t = pair<int, int>;
struct analyzer {
vector<twalker> spread;
vector<int> parent_id;
vector<int> spin;
void add_step(int pid, int s);
};
#endif
void analyzer::add_step(int pid, int s) {
twalker cw = spread[pid];
cw = cw + s;
cw.peek();
ufind(cw);
cw = cw + wstep;
spread.push_back(cw);
parent_id.push_back(pid);
spin.push_back(s);
}
EX map<aid_t, analyzer> analyzers;
EX aid_t get_aid(twalker cw) {
ufind(cw);
auto ide = cw.at->id;
return {ide, gmod(cw.to_spin(0), arb::current.shapes[ide].cycle_length)};
}
EX analyzer& get_analyzer(twalker cw) {
auto aid = get_aid(cw);
auto& a = analyzers[aid];
if(a.spread.empty()) {
a.spread.push_back(cw);
a.parent_id.push_back(-1);
a.spin.push_back(-1);
for(int i=0; i<cw.at->type; i++)
a.add_step(0, i);
}
return a;
}
EX vector<twalker> spread(analyzer& a, twalker cw) {
vector<twalker> res;
int N = isize(a.spread);
res.reserve(N);
res.push_back(cw);
for(int i=1; i<N; i++) {
auto& r = res[a.parent_id[i]];
ufind(r);
auto r1 = r + a.spin[i];
r1.peek(); ufind(r1);
res.push_back(r1 + wstep);
}
return res;
}
void extend_analyzer(twalker cw_target, int dir, int id, int mism, twalker rg) {
ufind(cw_target); ufind(rg);
if(debugflags & DF_GEOM)
println(hlog, "extend called, cw_target = ", cw_target);
twalker cw_conflict = cw_target + dir + wstep;
auto &a_target = get_analyzer(cw_target);
auto &a_conflict = get_analyzer(cw_conflict);
// twalker model = a_target.spread[0] + dir + wstep;
// auto res = spread(a_conflict, model);
vector<int> ids_to_add;
int k = id;
while(k) {
ids_to_add.emplace_back(a_conflict.spin[k]);
k = a_conflict.parent_id[k];
}
int gid = 1 + dir;
bool added = false;
while(!ids_to_add.empty()) {
int spin = ids_to_add.back();
ids_to_add.pop_back();
int next_gid = -1;
for(int i=0; i<isize(a_target.parent_id); i++)
if(a_target.parent_id[i] == gid && a_target.spin[i] == spin) {
next_gid = i;
}
if(next_gid == -1) {
next_gid = isize(a_target.parent_id);
a_target.add_step(gid, spin);
added = true;
}
gid = next_gid;
}
if(mism == 0 && !added)
/* in rare cases this happens due to unification or something */
throw rulegen_retry("no extension");
}
#if HDR
using code_t = pair<aid_t, vector<int> >;
struct treestate {
int id;
bool known;
vector<int> rules;
vector<int> sub_status; // 1 if DIR_LEFT or DIR_RIGHT and connected to a child
twalker giver;
int sid;
int parent_dir;
tcell* where_seen;
code_t code;
bool is_live;
bool is_possible_parent;
bool is_root;
vector<pair<int, int>> possible_parents;
};
static const int C_IGNORE = 0;
static const int C_CHILD = 1;
static const int C_UNCLE = 2;
static const int C_EQUAL = 4;
static const int C_NEPHEW = 6;
static const int C_PARENT = 8;
#endif
EX vector<treestate> treestates;
EX set<tcell*> single_live_branch_close_to_root;
/** is what on the left side, or the right side, of to_what? */
void treewalk(twalker& cw, int delta) {
int d = get_parent_dir(cw.at);
if(cw.spin == d || get_parent_dir(cw.cpeek()) == (cw+wstep).spin)
cw += wstep;
cw+=delta;
}
int get_side(twalker what) {
twalker w = what;
twalker tw = what + wstep;
auto adv = [] (twalker& cw) {
int d = get_parent_dir(cw.at);
ufind(cw);
if(cw.at->move(d)->dist >= cw.at->dist) {
println(hlog, "/CSV/ get_parent_dir error at ", cw, " and ", cw.at->move(d), ": ", cw.at->dist, "::", cw.at->move(d)->dist);
exit(1);
}
cw.spin = d;
cw += wstep;
};
int steps = 0;
while(w.at != tw.at) {
steps++; if(steps > 1000000) {
debuglist = {what, w, tw};
throw rulegen_failure("get_side freeze");
}
ufind(w); ufind(tw);
if(w.at->dist > tw.at->dist)
adv(w);
else if(w.at->dist < tw.at->dist)
adv(tw);
else {
adv(w); adv(tw);
}
}
if(w.spin == -1 || tw.spin == -1) return 0;
int d = get_parent_dir(w.at);
if(d >= 0 && !single_live_branch_close_to_root.count(w.at)) {
twalker last(w.at, d);
return last.to_spin(w.spin) - last.to_spin(tw.spin);
}
// failed to solve this in the simple way (ended at the root) -- go around the tree
twalker wl = what;
twalker wr = wl;
auto to_what = what + wstep;
auto ws = what; treewalk(ws, 0); if(ws == to_what) return 0;
while(true) {
steps++; if(steps > 1000000) {
debuglist = {what, to_what, w, tw};
throw rulegen_failure("get_side freeze II");
}
treewalk(wl, -1);
treewalk(wr, +1);
if(wl == to_what) return +1;
if(wr == to_what) return -1;
}
}
code_t id_at_spin(twalker cw) {
code_t res;
ufind(cw);
res.first = get_aid(cw);
auto& a = get_analyzer(cw);
vector<twalker> sprawl = spread(a, cw);
int id = 0;
for(auto cs: sprawl) {
be_solid(cs.at);
be_solid(cw.at);
ufind(cw);
ufind(cs);
int x;
int pid = a.parent_id[id];
if(pid > -1 && (res.second[pid] != C_CHILD)) {
x = C_IGNORE;
}
else if(id == 0) x = C_CHILD;
else {
int p = get_parent_dir(cs.at);
if(p >= 0 && get_parent_dir(cs.at) == cs.spin)
x = C_CHILD;
else {
auto cs2 = cs + wstep;
ufind(cs); ufind(cs2); be_solid(cs2.at);
fix_distances(cs.at);
int y = cs.at->dist - cs.peek()->dist;
if(y == 1) x = C_NEPHEW;
else if(y == 0) x = C_EQUAL;
else if(y == -1) x = C_UNCLE;
else throw rulegen_failure("distance problem y=" + its(y) + lalign(0, " cs=", cs, " cs2=", cs2, " peek=", cs.peek(), " dist=", cs.at->dist, " dist2=", cs2.at->dist));
auto gs = get_side(cs);
if(gs == 0 && x == C_UNCLE) x = C_PARENT;
if(gs > 0) x++;
}
}
res.second.push_back(x);
id++;
}
return res;
}
map<code_t, int> code_to_id;
EX pair<int, int> get_code(tcell *c) {
if(c->code != MYSTERY) {
int bestd = c->parent_dir;
if(bestd == -1) bestd = 0;
return {bestd, c->code};
}
be_solid(c);
int bestd = get_parent_dir(c);
if(bestd == -1) bestd = 0;
indenter ind(2);
code_t v = id_at_spin(twalker(c, bestd));
if(code_to_id.count(v)) {
c->code = code_to_id[v];
return {bestd, code_to_id[v]};
}
int id = isize(treestates);
code_to_id[v] = id;
if(c->code != MYSTERY && (c->code != id || c->parent_dir != bestd)) exit(1);
c->code = id;
treestates.emplace_back();
auto& nts = treestates.back();
nts.id = id;
nts.code = v;
nts.where_seen = c;
nts.known = false;
nts.is_live = true;
return {bestd, id};
}
/* == rule generation == */
struct mismatch_error : rulegen_retry {
mismatch_error() : rulegen_retry("mismatch error") {}
};
EX int rule_root;
vector<int> gen_rule(twalker cwmain);
EX int try_count;
vector<tcell*> important;
vector<tcell*> cq;
#if HDR
/* special codes */
static const int DIR_UNKNOWN = -1;
static const int DIR_LEFT = -4;
static const int DIR_RIGHT = -5;
static const int DIR_PARENT = -6;
#endif
vector<int> gen_rule(twalker cwmain) {
vector<int> cids;
for(int a=0; a<cwmain.at->type; a++) {
auto front = cwmain+a;
tcell *c1 = front.cpeek();
be_solid(c1);
if(a == 0 && cwmain.at->dist) { cids.push_back(DIR_PARENT); continue; }
if(c1->dist <= cwmain.at->dist) { cids.push_back(DIR_UNKNOWN); continue; }
auto co = get_code(c1);
auto& d1 = co.first;
auto& id1 = co.second;
if(c1->cmove(d1) != cwmain.at || c1->c.spin(d1) != front.spin) {
cids.push_back(DIR_UNKNOWN); continue;
}
cids.push_back(id1);
}
return cids;
}
void rules_iteration_for(tcell *c) {
indenter ri(2);
auto co = get_code(c);
auto& d = co.first;
auto& id = co.second;
twalker cwmain(c,d);
ufind(cwmain);
vector<int> cids = gen_rule(cwmain);
auto& ts = treestates[id];
if(!ts.known) {
ts.known = true;
ts.rules = cids;
ts.giver = cwmain;
ts.sid = cwmain.at->id;
ts.parent_dir = cwmain.spin;
ts.is_root = c->dist == 0;
for(int d=0; d<c->type; d++)
cq.push_back(c->cmove(d));
}
else if(ts.rules != cids) {
handle_distance_errors();
auto& r = ts.rules;
if(debugflags & DF_GEOM) {
println(hlog, "merging ", ts.rules, " vs ", cids);
println(hlog, "C ", treestates[id].code, " [", id, "]");
}
int mismatches = 0;
for(int z=0; z<isize(cids); z++) {
if(r[z] == cids[z]) continue;
if(r[z] < 0 || cids[z] < 0)
throw rulegen_failure("neg rule mismatch");
auto& c1 = treestates[r[z]].code.second;
auto& c2 = treestates[cids[z]].code.second;
if(debugflags & DF_GEOM) {
println(hlog, "direction ", z, ":");
println(hlog, "A ", treestates[r[z]].code, " [", r[z], "]");
println(hlog, "B ", treestates[cids[z]].code, " [", cids[z], "]");
}
if(isize(c1) != isize(c2)) {
throw rulegen_failure("length mismatch");
}
for(int k=0; k<isize(c1); k++) {
if(c1[k] == C_IGNORE || c2[k] == C_IGNORE) continue;
if(c1[k] != c2[k]) {
if(debugflags & DF_GEOM) {
println(hlog, "code mismatch (", c1[k], " vs ", c2[k], " at position ", k, " out of ", isize(c1), ")");
println(hlog, "rulegiver = ", treestates[id].giver, " c = ", cwmain);
println(hlog, "gshvid = ", c->id);
println(hlog, "cellcount = ", tcellcount, "-", tunified, " codes discovered = ", isize(treestates));
}
extend_analyzer(cwmain, z, k, mismatches, treestates[id].giver);
mismatches++;
}
}
}
debuglist = { cwmain, ts.giver };
if(mismatches)
throw mismatch_error();
throw rulegen_failure("no mismatches?!");
}
}
void minimize_rules() {
if(debugflags & DF_GEOM)
println(hlog, "minimizing rules...");
int next_id = isize(treestates);
vector<int> new_id(next_id);
map<aid_t, int> new_id_of;
int new_ids = 0;
for(int id=0; id<next_id; id++) {
auto aid = get_aid(treestates[id].giver);
if(!new_id_of.count(aid)) new_id_of[aid] = new_ids++;
new_id[id] = new_id_of[aid];
}
int last_new_ids = 0;
while(new_ids > last_new_ids && new_ids < next_id) {
last_new_ids = new_ids;
map<vector<int>, int> hashes;
new_ids = 0;
auto last_new_id = new_id;
for(int id=0; id<next_id; id++) {
vector<int> hash;
hash.push_back(last_new_id[id]);
auto& ts = treestates[id];
for(auto& r: ts.rules)
if(r >= 0) hash.push_back(last_new_id[r]);
else hash.push_back(r);
if(!hashes.count(hash))
hashes[hash] = new_ids++;
new_id[id] = hashes[hash];
}
}
if(debugflags & DF_GEOM)
println(hlog, "final new_ids = ", new_ids, " / ", next_id);
if(1) {
vector<int> old_id(new_ids, -1);
for(int i=0; i<next_id; i++) if(old_id[new_id[i]] == -1) old_id[new_id[i]] = i;
for(int i=0; i<new_ids; i++) treestates[i] = treestates[old_id[i]];
for(int i=0; i<new_ids; i++) treestates[i].id = i;
treestates.resize(new_ids);
for(auto& ts: treestates) {
for(auto& r: ts.rules)
if(r >= 0) r = new_id[r];
}
for(auto& p: code_to_id) p.second = new_id[p.second];
}
}
void find_possible_parents() {
for(auto& ts: treestates) {
ts.is_possible_parent = false;
for(int r: ts.rules)
if(r == DIR_PARENT)
ts.is_possible_parent = true;
}
while(true) {
int changes = 0;
for(auto& ts: treestates) ts.possible_parents.clear();
for(auto& ts: treestates)
if(ts.is_possible_parent) {
int rid = 0;
for(int r: ts.rules) {
if(r >= 0) treestates[r].possible_parents.emplace_back(ts.id, rid);
rid++;
}
}
for(auto& ts: treestates)
if(ts.is_possible_parent && ts.possible_parents.empty()) {
ts.is_possible_parent = false;
changes++;
}
if(!changes) break;
}
int pp = 0;
for(auto& ts: treestates) if(ts.is_possible_parent) pp++;
if(debugflags & DF_GEOM)
println(hlog, pp, " of ", isize(treestates), " states are possible_parents");
}
/* == branch testing == */
void verified_treewalk(twalker& cw, int delta) {
if((cw+wstep).spin == get_parent_dir(cw.peek())) {
}
}
using tsinfo = pair<int, int>;
tsinfo get_tsinfo(twalker tw) {
auto co = get_code(tw.at);
int spin;
if(co.first == -1) spin = tw.spin;
else spin = gmod(tw.spin - co.first, tw.at->type);
return {co.second, spin};
}
int get_rule(tsinfo s) {
return treestates[s.first].rules[s.second];
}
set<vector<tsinfo> > verified_branches;
void push_deadstack(vector<tsinfo>& hash, twalker w, tsinfo tsi, int dir) {
hash.push_back(tsi);
while(true) {
tsi.second += dir; w += dir;
auto& ts = treestates[tsi.first];
if(tsi.second == 0 || tsi.second == isize(ts.rules)) {
w += wstep;
tsi = get_tsinfo(w);
hash.push_back(tsi);
}
else {
int r = ts.rules[tsi.second];
if(r > 0 && treestates[r].is_live) return;
}
}
}
void verified_treewalk(twalker& tw, int id, int dir) {
if(id >= 0) {
auto co = get_code(tw.cpeek());
if(co.second != id || co.first != (tw+wstep).spin) {
important.push_back(tw.at);
important.push_back(tw.cpeek());
if(debugflags & DF_GEOM)
println(hlog, "expected ", make_pair((tw+wstep).spin,id), " found ", co);
debuglist = {tw, tw+wstep};
throw rulegen_retry("verify_advance failed");
}
}
treewalk(tw, dir);
}
void examine_branch(int id, int left, int right) {
auto rg = treestates[id].giver;
if(debugflags & DF_GEOM)
println(hlog, "need to examine branches ", tie(left, right), " of ", id, " starting from ", rg);
indenter ind(2);
auto wl = rg+left;
auto wr = rg+left+1;
vector<twalker> lstack, rstack;
int steps = 0;
while(true) {
steps++;
if(steps > max_examine_branch) {
debuglist = { rg+left, wl, wr };
throw rulegen_failure("max_examine_branch exceeded");
}
auto tsl = get_tsinfo(wl);
auto tsr = get_tsinfo(wr);
auto rl = get_rule(tsl);
auto rr = get_rule(tsr);
// println(hlog, "wl = ", wl, " -> ", wl+wstep, " R", rl, " wr = ", wr, " -> ", wr+wstep, " R", rr, " lstack = ", lstack, " rstack = ", rstack);
if(rl == DIR_RIGHT && rr == DIR_LEFT && lstack.empty() && rstack.empty()) {
vector<tsinfo> hash;
push_deadstack(hash, wl, tsl, -1);
hash.emplace_back(-1, -1);
push_deadstack(hash, wr, tsr, +1);
// println(hlog, "hash = ", hash);
if(verified_branches.count(hash)) return;
verified_branches.insert(hash);
verified_treewalk(wl, rl, -1);
verified_treewalk(wr, rr, +1);
}
else if(rl == DIR_RIGHT && !lstack.empty() && lstack.back() == wl+wstep) {
lstack.pop_back();
verified_treewalk(wl, rl, -1);
}
else if(rr == DIR_LEFT && !rstack.empty() && rstack.back() == wr+wstep) {
rstack.pop_back();
verified_treewalk(wr, rr, +1);
}
else if(rl == DIR_LEFT) {
lstack.push_back(wl);
verified_treewalk(wl, rl, -1);
}
else if(rr == DIR_RIGHT) {
rstack.push_back(wr);
verified_treewalk(wr, rr, +1);
}
else if(rl != DIR_RIGHT)
verified_treewalk(wl, rl, -1);
else if(rr != DIR_RIGHT)
verified_treewalk(wr, rr, +1);
else throw rulegen_failure("cannot advance while examining");
}
}
/* == main algorithm == */
void clear_codes() {
treestates.clear();
code_to_id.clear();
auto c = first_tcell;
while(c) {
c->code = MYSTERY;
c = c->next;
}
}
void find_single_live_branch(twalker at) {
handle_distance_errors();
int id = get_code(at.at).second;
int t = at.at->type;
auto& r = treestates[id].rules;
int q = 0;
for(int i=0; i<t; i++) if(r[i] >= 0) {
if(treestates[r[i]].is_live) q++;
}
for(int i=0; i<t; i++) if(r[i] >= 0) {
single_live_branch_close_to_root.insert(at.at);
if(!treestates[r[i]].is_live || q == 1)
find_single_live_branch(at + i + wstep);
}
}
void find_sub_status() {
for(int id=0; id<isize(treestates); id++)
treestates[id].sub_status.resize(isize(treestates[id].rules), 0);
for(int id=0; id<isize(treestates); id++) {
auto& ts = treestates[id];
for(int im=0; im<isize(ts.rules); im++)
if(ts.rules[im] >= 0 || ts.rules[im] == DIR_PARENT)
for(int i=0; i<isize(ts.rules); i++) if(i != im) {
if((ts.giver+im).peek() == (ts.giver+i).peek()) {
println(hlog, "found multi connection at ", id, ":", i, " equals ", im, ts.rules[im] == DIR_PARENT ? " [parent]" : " [child]");
ts.sub_status[i] = 1;
}
}
}
}
void rules_iteration() {
clear_codes();
cq = important;
if(debugflags & DF_GEOM)
println(hlog, "important = ", cq);
for(int i=0; i<isize(cq); i++) {
rules_iteration_for(cq[i]);
}
handle_distance_errors();
if(debugflags & DF_GEOM)
println(hlog, "number of treestates = ", isize(treestates));
rule_root = get_code(t_origin[0]).second;
if(debugflags & DF_GEOM)
println(hlog, "rule_root = ", rule_root);
int N = isize(important);
for(int id=0; id<isize(treestates); id++) {
if(!treestates[id].known) {
important.push_back(treestates[id].where_seen);
if(debugflags & DF_GEOM)
println(hlog, "no rule found for ", id);
continue;
}
}
if(isize(important) != N)
throw mismatch_error();
int new_deadends = -1;
while(new_deadends) {
new_deadends = 0;
for(int id=0; id<isize(treestates); id++) {
auto& ts = treestates[id];
if(!ts.known) continue;
if(!ts.is_live) continue;
int children = 0;
for(int i: ts.rules) if(i >= 0 && treestates[i].is_live) children++;
if(!children)
treestates[id].is_live = false, new_deadends++;
}
if(debugflags & DF_GEOM)
println(hlog, "deadend states found: ", new_deadends);
}
for(int id=0; id<isize(treestates); id++) {
auto& r = treestates[id].rules;
for(int i=0; i<isize(r); i++) if(r[i] == DIR_UNKNOWN) {
int val = treestates[id].code.second[i+1];
if(val < 2 || val >= 8) {
debuglist = { treestates[id].giver };
println(hlog, "id = ", id, " i = ", i, " val = ", val, " code = ", treestates[id].code);
throw rulegen_failure("wrong code in gen_rule");
}
r[i] = ((val & 1) ? DIR_RIGHT : DIR_LEFT);
}
}
// print_rules();
handle_distance_errors();
verified_branches.clear();
int q = isize(single_live_branch_close_to_root);
find_sub_status();
for(int id=0; id<isize(treestates); id++) if(treestates[id].is_live) {
auto& r = treestates[id].rules;
int last_live_branch = -1;
int first_live_branch = -1;
for(int i=0; i<isize(r); i++)
if(r[i] >= 0 && treestates[r[i]].is_live) {
if(first_live_branch == -1) first_live_branch = i;
if(last_live_branch >= 0)
examine_branch(id, last_live_branch, i);
last_live_branch = i;
}
if(first_live_branch == last_live_branch && treestates[id].is_root) {
println(hlog, "for id ", id, " we have a single live branch");
indenter ind(2);
find_single_live_branch(treestates[id].giver);
}
if(isize(single_live_branch_close_to_root) != q) {
vector<tcell*> v;
for(auto c: single_live_branch_close_to_root) v.push_back(c);
println(hlog, "changed single_live_branch_close_to_root from ", q, " to ", v);
debuglist = { treestates[id].giver };
throw rulegen_retry("single live branch");
}
if(treestates[id].is_root) examine_branch(id, last_live_branch, first_live_branch);
}
handle_distance_errors();
if(isize(important) != N)
throw mismatch_error();
minimize_rules();
find_possible_parents();
if(isize(important) != N)
throw mismatch_error();
handle_distance_errors();
}
void clear_tcell_data() {
auto c = first_tcell;
while(c) {
c->is_solid = false;
// c->dist = MYSTERY;
c->parent_dir = MYSTERY;
c->code = MYSTERY;
c->distance_fixed = false;
c = c->next;
}
for(auto& c: t_origin) c->dist = 0;
in_fixing = false; fix_queue = {};
}
void cleanup() {
clear_tcell_data();
analyzers.clear();
code_to_id.clear();
important.clear();
shortcuts.clear();
}
void clear_all() {
treestates.clear();
cleanup();
}
EX void generate_rules() {
delete_tmap();
if(!arb::in()) try {
arb::convert::convert();
}
catch(hr_exception& e) {
throw rulegen_surrender("conversion failure");
}
clear_all();
analyzers.clear();
t_origin.clear();
for(auto& ts: arb::current.shapes) {
tcell *c = gen_tcell(ts.id);
c->dist = 0;
t_origin.push_back(c);
}
try_count = 0;
important = t_origin;
retry:
try {
rules_iteration();
}
catch(rulegen_retry& e) {
try_count++;
if(try_count >= max_retries)
throw;
if(debugflags & DF_GEOM) println(hlog, "attempt: ", try_count);
auto c = first_tcell;
while(c) {
c->is_solid = false;
c->parent_dir = MYSTERY;
c->code = MYSTERY;
c = c->next;
}
goto retry;
}
}
int reclevel;
void build_test();
/* == hrmap_rulegen == */
struct hrmap_rulegen : hrmap {
hrmap *base;
heptagon *origin;
heptagon* gen(int s, int d, bool c7) {
int t = arb::current.shapes[treestates[s].sid].size();
heptagon *h = init_heptagon(t);
if(c7) h->c7 = newCell(t, h);
h->distance = d;
h->fieldval = s;
h->zebraval = treestates[s].sid;
h->s = hsA;
return h;
}
~hrmap_rulegen() {
clearfrom(origin);
}
hrmap_rulegen() {
origin = gen(rule_root, 0, true);
origin->s = hsOrigin;
}
hrmap_rulegen(heptagon *h) {
origin = h;
}
heptagon *getOrigin() override {
return origin;
}
int get_rule(heptspin hs) {
int s = hs.at->fieldval;
return treestates[s].rules[hs.spin];
}
static void hsconnect(heptspin a, heptspin b) {
a.at->c.connect(a.spin, b.at, b.spin, false);
}
heptagon *create_step(heptagon *h, int d) override {
heptspin hs(h, d);
int r = get_rule(hs);
indenter ind(2);
if(hlog.indentation >= 6000)
throw rulegen_failure("failed to create_step");
if(r >= 0) {
auto h1 = gen(r, h->distance + 1, h->c7);
auto hs1 = heptspin(h1, 0);
// verify_connection(hs, hs1);
hsconnect(hs, hs1);
return h1;
}
else if(r == DIR_PARENT) {
auto& hts = treestates[h->fieldval];
auto& choices = hts.possible_parents;
if(choices.empty()) throw rulegen_failure("no possible parents");
auto selected = hrand_elt(choices);
auto h1 = gen(selected.first, h->distance - 1, h->c7);
auto hs1 = heptspin(h1, selected.second);
hsconnect(hs, hs1);
return h1;
}
else if(r == DIR_LEFT || r == DIR_RIGHT) {
heptspin hs1 = hs;
int delta = r == DIR_LEFT ? -1 : 1;
int rev = (DIR_LEFT ^ DIR_RIGHT ^ r);
hs1 += delta;
while(true) {
int r1 = get_rule(hs1);
if(r1 == rev) {
hsconnect(hs, hs1);
return hs1.at;
}
else if(r1 == r || r1 == DIR_PARENT || r1 >= 0) {
hs1 += wstep;
hs1 += delta;
}
else throw rulegen_failure("bad R1");
}
}
else throw rulegen_failure("bad R");
throw rulegen_failure("impossible");
}
int get_arb_dir(int s, int dir) {
int sid = treestates[s].sid;
int N = arb::current.shapes[sid].size();
return gmod(dir + treestates[s].parent_dir, N);
}
transmatrix adj(heptagon *h, int dir) override {
if(h->fieldval == -1)
return arb::get_adj(arb::current_or_slided(), h->zebraval, dir, -1, -1);
int s = h->fieldval;
int dir0 = get_arb_dir(s, dir);
int dir1 = -1;
int sid1 = -1;
if(h->c.move(dir)) {
auto s1 = h->c.move(dir)->fieldval;
dir1 = get_arb_dir(s1, h->c.spin(dir));
sid1 = treestates[s1].sid;
}
return arb::get_adj(arb::current_or_slided(), treestates[s].sid, dir0, sid1, dir1);
}
int shvid(cell *c) override {
return c->master->zebraval;
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
hyperpoint get_corner(cell *c, int cid, ld cf) override {
if(c->master->fieldval == -1) {
auto& sh = arb::current_or_slided().shapes[c->master->zebraval];
cid = gmod(cid, sh.size());
return normalize(C0 + (sh.vertices[cid] - C0) * 3 / cf);
}
int s = c->master->fieldval;
auto& sh = arb::current_or_slided().shapes[c->master->zebraval];
auto dir = get_arb_dir(s, cid);
return normalize(C0 + (sh.vertices[dir] - C0) * 3 / cf);
}
void find_cell_connection(cell *c, int d) override {
if(c->master->cmove(d) == &oob) {
c->c.connect(d, &out_of_bounds, 0, false);
}
else hrmap::find_cell_connection(c, d);
}
bool strict_tree_rules() override { return true; }
virtual bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override {
auto& hts = treestates[h->fieldval];
int psid = hts.sid;
if(firststate == hsOrigin) {
alt->s = hsOrigin;
for(auto& ts: treestates) if(ts.sid == psid && ts.is_root) {
alt->fieldval = ts.id;
// ts.parent_dir should be 0, but anyway
altmap::relspin(alt) = gmod(ts.parent_dir-hts.parent_dir, isize(hts.rules));
return true;
}
return false;
}
int odir = hts.parent_dir + dir;
int cl = arb::current.shapes[psid].cycle_length;
vector<int> choices;
for(auto& ts: treestates)
if(ts.is_possible_parent && ts.sid == psid)
if(gmod(ts.parent_dir - odir, cl) == 0)
choices.push_back(ts.id);
alt->fieldval = hrand_elt(choices, -1);
alt->s = hsA;
if(alt->fieldval == -1) return false;
altmap::relspin(alt) = dir;
return true;
}
};
EX int get_arb_dir(cell *c, int dir) {
return ((hrmap_rulegen*)currentmap)->get_arb_dir(c->master->fieldval, dir);
}
EX hrmap *new_hrmap_rulegen_alt(heptagon *h) {
return new hrmap_rulegen(h);
}
EX hrmap *new_hrmap_rulegen() { return new hrmap_rulegen(); }
EX int get_state(cell *c) {
return c->master->fieldval;
}
string rules_known_for = "unknown";
string rule_status;
EX bool known() {
return arb::current.have_tree || rules_known_for == arb::current.name;
}
EX bool prepare_rules() {
if(known()) return true;
try {
generate_rules();
rules_known_for = arb::current.name;
rule_status = XLAT("rules generated successfully: %1 states using %2-%3 cells",
its(isize(treestates)), its(tcellcount), its(tunified));
if(debugflags & DF_GEOM) println(hlog, rule_status);
return true;
}
catch(rulegen_retry& e) {
rule_status = XLAT("too difficult: %1", e.what());
}
catch(rulegen_surrender& e) {
rule_status = XLAT("too difficult: %1", e.what());
}
catch(rulegen_failure& e) {
rule_status = XLAT("bug: %1", e.what());
}
if(debugflags & DF_GEOM) println(hlog, rule_status);
return false;
}
#if CAP_COMMANDLINE
int args() {
using namespace arg;
if(0) ;
else if(argis("-rulegen")) {
PHASEFROM(3);
prepare_rules();
}
else if(argis("-rulegen-cleanup"))
cleanup();
else if(argis("-rulegen-play")) {
PHASEFROM(3);
if(prepare_rules()) {
stop_game();
arb::convert::activate();
start_game();
}
}
else if(argis("-d:rulegen")) {
launch_dialog(show);
}
else return 1;
return 0;
}
auto hooks_arg =
addHook(hooks_args, 100, args);
#endif
auto hooks = addHook(hooks_configfile, 100, [] {
param_i(max_retries, "max_retries");
param_i(max_tcellcount, "max_tcellcount")
->editable(0, 16000000, 100000, "maximum cellcount", "controls the max memory usage of conversion algorithm -- the algorithm fails if exceeded", 'c');
param_i(max_adv_steps, "max_adv_steps");
param_i(max_examine_branch, "max_examine_branch");
param_i(max_bdata, "max_bdata");
param_i(dlbonus, "dlbonus");
});
EX void parse_treestate(arb::arbi_tiling& c, exp_parser& ep) {
if(!c.have_tree) {
c.have_tree = true;
treestates.clear();
rule_root = 0;
}
treestates.emplace_back();
auto& ts = treestates.back();
ts.id = isize(treestates) - 1;
ts.sid = ep.iparse();
ts.parent_dir = 0;
if(!arb::correct_index(ts.sid, isize(c.shapes)))
throw hr_parse_exception("incorrect treestate index at " + ep.where());
int N = c.shapes[ts.sid].size();
int qparent = 0, sumparent = 0;
for(int i=0; i<N; i++) {
ep.force_eat(","); ep.skip_white();
if(ep.eat("PARENT")) ts.rules.push_back(DIR_PARENT);
else if(ep.eat("LEFT")) ts.rules.push_back(DIR_LEFT);
else if(ep.eat("RIGHT")) ts.rules.push_back(DIR_RIGHT);
else { int i = ep.iparse(); ts.rules.push_back(i); }
}
for(int i=0; i<N; i++) {
if(ts.rules[i] == DIR_PARENT) qparent++, sumparent += i;
}
ts.is_root = qparent == 0;
if(qparent > 1) throw hr_parse_exception("multiple parent at " + ep.where());
if(qparent == 1) {
ts.parent_dir = sumparent;
println(hlog, "before: ", ts.rules);
std::rotate(ts.rules.begin(), ts.rules.begin() + sumparent, ts.rules.end());
println(hlog, "after : ", ts.rules);
}
ep.force_eat(")");
}
EX void verify_parsed_treestates() {
if(rule_root < 0 || rule_root >= isize(treestates))
throw hr_parse_exception("undefined treestate as root");
for(auto& ts: treestates) for(auto& r: ts.rules) {
if(r < 0 && !among(r, DIR_PARENT, DIR_LEFT, DIR_RIGHT))
throw hr_parse_exception("negative number in treestates");
if(r > isize(treestates))
throw hr_parse_exception("undefined treestate");
}
for(auto& sh: arb::current.shapes) sh.cycle_length = sh.size();
find_possible_parents();
}
EX void show() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen(1);
dialog::init(XLAT("strict tree maps"));
dialog::addHelp(XLAT(
"Strict tree maps are generated using a more powerful algorithm.\n\nThis algorithms supports horocycles and knows the expansion rates of various "
"tessellations (contrary to the basic implementation of Archimedean, tes, and unrectified/warped/untruncated tessellations).\n\nYou can convert mostly any "
"non-spherical periodic 2D tessellation to strict tree based.\n\nSwitching the map format erases your map."));
if(kite::in()) {
dialog::addInfo("not available in aperiodic tessellations");
dialog::addBack();
dialog::display();
}
else if(WDIM == 3) {
dialog::addInfo("not available in 3D tessellations");
dialog::addBack();
dialog::display();
}
dialog::addBoolItem(XLAT("in tes internal format"), arb::in(), 't');
dialog::add_action([] {
if(!arb::in()) {
arb::convert::convert();
arb::convert::activate();
start_game();
rule_status = XLAT("converted successfully -- %1 cell types", its(isize(arb::current.shapes)));
rules_known_for = "unknown";
}
else if(arb::convert::in()) {
stop_game();
geometry = arb::convert::base_geometry;
variation = arb::convert::base_variation;
start_game();
}
else {
addMessage(XLAT("cannot be disabled for this tiling"));
}
});
dialog::addBoolItem(XLAT("strict tree based"), currentmap->strict_tree_rules(), 's');
dialog::add_action([] {
if(!currentmap->strict_tree_rules()) {
if(prepare_rules()) {
println(hlog, "prepare_rules returned true");
stop_game();
arb::convert::activate();
start_game();
delete_tmap();
}
}
else if(arb::current.have_tree) {
addMessage(XLAT("cannot be disabled for this tiling"));
}
else {
rules_known_for = "unknown";
rule_status = "manually disabled";
stop_game();
start_game();
}
});
add_edit(max_tcellcount);
dialog::addBreak(100);
dialog::addHelp(rule_status);
dialog::items.back().color = known() ? 0x00FF00 : rules_known_for == "unknown" ? 0xFFFF00 : 0xFF0000;
dialog::addBreak(100);
dialog::addBack();
dialog::display();
}
EX }
}