mirror of
				https://github.com/zenorogue/hyperrogue.git
				synced 2025-10-31 14:02:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1234 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1234 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Hyperbolic Rogue -- Kite-and-dart tiling
 | |
| // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
 | |
| 
 | |
| /** \file aperiodic-hat.cpp
 | |
|  *  \brief Aperiodic Hat tiling, based on https://arxiv.org/pdf/2303.10798.pdf
 | |
|  */
 | |
| 
 | |
| #include "hyper.h"
 | |
| namespace hr {
 | |
| 
 | |
| EX namespace hat {
 | |
| 
 | |
| EX bool in() { return cgflags & qHAT; }
 | |
| 
 | |
| struct rule_base {
 | |
|   int id0, edge0, id1, edge1, master_connection;
 | |
|   };
 | |
| 
 | |
| struct rule_recursive {
 | |
|   int id0, id1, child, parent, rev_child;
 | |
|   };
 | |
| 
 | |
| vector<rule_base> rules_base = {
 | |
|   rule_base{0, 0, 4, 6, -1},
 | |
|   {0, 10, 2, 6, -1},
 | |
|   {0, 11, 2, 5, -1},
 | |
|   {0, 12, 4, 8, -1},
 | |
|   {0, 13, 4, 7, -1},
 | |
|   {0, 1, 4, 5, -1},
 | |
|   {0, 2, 5, 6, -1},
 | |
|   {0, 3, 5, 5, -1},
 | |
|   {0, 4, 1, 0, -1},
 | |
|   {0, 5, 1, 13, -1},
 | |
|   {0, 6, 1, 12, -1},
 | |
|   {0, 7, 1, 11, -1},
 | |
|   {0, 8, 2, 8, -1},
 | |
|   {0, 9, 2, 7, -1},
 | |
|   {1, 0, 0, 4, -1},
 | |
|   {1, 10, 2, 9, -1},
 | |
|   {1, 11, 0, 7, -1},
 | |
|   {1, 12, 0, 6, -1},
 | |
|   {1, 13, 0, 5, -1},
 | |
|   {1, 1, 6, 6, -1},
 | |
|   {1, 2, 6, 5, -1},
 | |
|   {1, 3, 6, 4, -1},
 | |
|   {1, 4, 2, 13, 24},
 | |
|   {1, 4, 3, 13, 33},
 | |
|   {1, 4, 4, 13, 8},
 | |
|   {1, 4, 5, 13, 13},
 | |
|   {1, 4, 6, 13, 18},
 | |
|   {1, 4, 7, 13, 10},
 | |
|   {1, 5, 2, 12, 24},
 | |
|   {1, 5, 3, 12, 33},
 | |
|   {1, 5, 4, 12, 8},
 | |
|   {1, 5, 5, 12, 13},
 | |
|   {1, 5, 6, 12, 18},
 | |
|   {1, 5, 7, 12, 10},
 | |
|   {1, 6, 2, 11, 24},
 | |
|   {1, 6, 3, 11, 33},
 | |
|   {1, 6, 4, 11, 8},
 | |
|   {1, 6, 5, 11, 13},
 | |
|   {1, 6, 6, 11, 18},
 | |
|   {1, 6, 7, 11, 10},
 | |
|   {1, 7, 3, 0, 28},
 | |
|   {1, 7, 3, 4, 8},
 | |
|   {1, 7, 6, 0, 17},
 | |
|   {1, 7, 7, 0, 32},
 | |
|   {1, 8, 3, 13, 28},
 | |
|   {1, 8, 3, 3, 8},
 | |
|   {1, 8, 6, 13, 17},
 | |
|   {1, 8, 7, 13, 32},
 | |
|   {1, 9, 3, 12, 28},
 | |
|   {1, 9, 3, 2, 8},
 | |
|   {1, 9, 6, 12, 17},
 | |
|   {1, 9, 7, 12, 32},
 | |
|   {2, 0, 2, 13, 21},
 | |
|   {2, 0, 3, 13, 23},
 | |
|   {2, 0, 5, 13, 31},
 | |
|   {2, 0, 6, 3, 22},
 | |
|   {2, 10, 3, 11, 28},
 | |
|   {2, 10, 3, 1, 8},
 | |
|   {2, 10, 6, 11, 17},
 | |
|   {2, 10, 7, 11, 32},
 | |
|   {2, 11, 1, 6, 22},
 | |
|   {2, 11, 3, 10, 28},
 | |
|   {2, 11, 6, 10, 17},
 | |
|   {2, 11, 7, 10, 32},
 | |
|   {2, 1, 2, 12, 21},
 | |
|   {2, 12, 1, 5, 22},
 | |
|   {2, 12, 2, 1, 28},
 | |
|   {2, 12, 3, 1, 32},
 | |
|   {2, 12, 5, 1, 17},
 | |
|   {2, 1, 3, 12, 23},
 | |
|   {2, 13, 1, 4, 22},
 | |
|   {2, 13, 2, 0, 28},
 | |
|   {2, 13, 3, 0, 32},
 | |
|   {2, 13, 5, 0, 17},
 | |
|   {2, 1, 5, 12, 31},
 | |
|   {2, 1, 6, 2, 22},
 | |
|   {2, 2, 3, 9, -1},
 | |
|   {2, 3, 3, 8, -1},
 | |
|   {2, 4, 3, 7, -1},
 | |
|   {2, 5, 0, 11, -1},
 | |
|   {2, 6, 0, 10, -1},
 | |
|   {2, 7, 0, 9, -1},
 | |
|   {2, 8, 0, 8, -1},
 | |
|   {2, 9, 1, 10, -1},
 | |
|   {3, 0, 1, 7, 21},
 | |
|   {3, 0, 2, 13, 15},
 | |
|   {3, 0, 5, 13, 27},
 | |
|   {3, 0, 6, 3, 16},
 | |
|   {3, 0, 7, 3, 31},
 | |
|   {3, 10, 2, 11, 21},
 | |
|   {3, 10, 3, 11, 23},
 | |
|   {3, 10, 5, 11, 31},
 | |
|   {3, 10, 6, 1, 22},
 | |
|   {3, 11, 1, 6, 16},
 | |
|   {3, 11, 2, 10, 21},
 | |
|   {3, 11, 3, 10, 23},
 | |
|   {3, 11, 5, 10, 31},
 | |
|   {3, 1, 2, 10, 11},
 | |
|   {3, 1, 2, 12, 15},
 | |
|   {3, 12, 1, 5, 16},
 | |
|   {3, 12, 1, 9, 21},
 | |
|   {3, 12, 2, 1, 23},
 | |
|   {3, 12, 4, 1, 31},
 | |
|   {3, 13, 1, 4, 16},
 | |
|   {3, 13, 1, 8, 21},
 | |
|   {3, 13, 2, 0, 23},
 | |
|   {3, 13, 4, 0, 31},
 | |
|   {3, 1, 5, 12, 27},
 | |
|   {3, 1, 6, 2, 16},
 | |
|   {3, 1, 7, 2, 31},
 | |
|   {3, 2, 1, 9, 11},
 | |
|   {3, 2, 7, 9, -1},
 | |
|   {3, 3, 1, 8, 11},
 | |
|   {3, 3, 7, 8, -1},
 | |
|   {3, 4, 1, 7, 11},
 | |
|   {3, 4, 7, 7, -1},
 | |
|   {3, 5, 4, 10, -1},
 | |
|   {3, 6, 4, 9, -1},
 | |
|   {3, 7, 2, 4, -1},
 | |
|   {3, 8, 2, 3, -1},
 | |
|   {3, 9, 2, 2, -1},
 | |
|   {4, 0, 3, 13, 14},
 | |
|   {4, 0, 6, 13, 26},
 | |
|   {4, 0, 6, 3, 11},
 | |
|   {4, 0, 7, 13, 20},
 | |
|   {4, 10, 3, 5, -1},
 | |
|   {4, 11, 1, 6, 11},
 | |
|   {4, 11, 7, 6, -1},
 | |
|   {4, 12, 1, 5, 11},
 | |
|   {4, 12, 7, 5, -1},
 | |
|   {4, 1, 3, 12, 14},
 | |
|   {4, 13, 1, 4, 11},
 | |
|   {4, 13, 7, 4, -1},
 | |
|   {4, 1, 6, 12, 26},
 | |
|   {4, 1, 6, 2, 11},
 | |
|   {4, 1, 7, 12, 20},
 | |
|   {4, 2, 5, 9, -1},
 | |
|   {4, 3, 5, 8, -1},
 | |
|   {4, 4, 5, 7, -1},
 | |
|   {4, 5, 0, 1, -1},
 | |
|   {4, 6, 0, 0, -1},
 | |
|   {4, 7, 0, 13, -1},
 | |
|   {4, 8, 0, 12, -1},
 | |
|   {4, 9, 3, 6, -1},
 | |
|   {5, 0, 2, 13, 29},
 | |
|   {5, 0, 5, 13, 19},
 | |
|   {5, 0, 6, 3, 30},
 | |
|   {5, 10, 3, 11, 14},
 | |
|   {5, 10, 6, 1, 11},
 | |
|   {5, 10, 6, 11, 26},
 | |
|   {5, 10, 7, 11, 20},
 | |
|   {5, 11, 1, 6, 30},
 | |
|   {5, 11, 3, 10, 14},
 | |
|   {5, 11, 6, 10, 26},
 | |
|   {5, 11, 7, 10, 20},
 | |
|   {5, 1, 2, 12, 29},
 | |
|   {5, 12, 1, 5, 30},
 | |
|   {5, 12, 2, 1, 14},
 | |
|   {5, 12, 3, 1, 20},
 | |
|   {5, 12, 5, 1, 26},
 | |
|   {5, 13, 1, 4, 30},
 | |
|   {5, 13, 2, 0, 14},
 | |
|   {5, 13, 3, 0, 20},
 | |
|   {5, 13, 5, 0, 26},
 | |
|   {5, 1, 5, 12, 19},
 | |
|   {5, 1, 6, 2, 30},
 | |
|   {5, 2, 6, 9, -1},
 | |
|   {5, 3, 6, 8, -1},
 | |
|   {5, 4, 6, 7, -1},
 | |
|   {5, 5, 0, 3, -1},
 | |
|   {5, 6, 0, 2, -1},
 | |
|   {5, 7, 4, 4, -1},
 | |
|   {5, 8, 4, 3, -1},
 | |
|   {5, 9, 4, 2, -1},
 | |
|   {6, 0, 1, 7, 29},
 | |
|   {6, 0, 6, 3, 25},
 | |
|   {6, 0, 7, 3, 19},
 | |
|   {6, 10, 2, 11, 29},
 | |
|   {6, 10, 5, 11, 19},
 | |
|   {6, 10, 6, 1, 30},
 | |
|   {6, 11, 1, 6, 25},
 | |
|   {6, 11, 2, 10, 29},
 | |
|   {6, 11, 5, 10, 19},
 | |
|   {6, 12, 1, 5, 25},
 | |
|   {6, 12, 1, 9, 29},
 | |
|   {6, 12, 4, 1, 19},
 | |
|   {6, 1, 3, 10, 24},
 | |
|   {6, 13, 1, 4, 25},
 | |
|   {6, 13, 1, 8, 29},
 | |
|   {6, 13, 4, 0, 19},
 | |
|   {6, 1, 5, 10, 8},
 | |
|   {6, 1, 6, 10, 13},
 | |
|   {6, 1, 6, 2, 25},
 | |
|   {6, 1, 7, 10, 33},
 | |
|   {6, 1, 7, 2, 19},
 | |
|   {6, 2, 2, 1, 24},
 | |
|   {6, 2, 3, 1, 33},
 | |
|   {6, 2, 4, 1, 8},
 | |
|   {6, 2, 5, 1, 13},
 | |
|   {6, 2, 6, 1, 18},
 | |
|   {6, 2, 7, 1, 10},
 | |
|   {6, 3, 2, 0, 24},
 | |
|   {6, 3, 3, 0, 33},
 | |
|   {6, 3, 4, 0, 8},
 | |
|   {6, 3, 5, 0, 13},
 | |
|   {6, 3, 6, 0, 18},
 | |
|   {6, 3, 7, 0, 10},
 | |
|   {6, 4, 1, 3, -1},
 | |
|   {6, 5, 1, 2, -1},
 | |
|   {6, 6, 1, 1, -1},
 | |
|   {6, 7, 5, 4, -1},
 | |
|   {6, 8, 5, 3, -1},
 | |
|   {6, 9, 5, 2, -1},
 | |
|   {7, 0, 1, 7, 15},
 | |
|   {7, 0, 6, 3, 12},
 | |
|   {7, 0, 7, 3, 27},
 | |
|   {7, 10, 2, 11, 15},
 | |
|   {7, 10, 5, 11, 27},
 | |
|   {7, 10, 6, 1, 16},
 | |
|   {7, 10, 7, 1, 31},
 | |
|   {7, 11, 1, 6, 12},
 | |
|   {7, 11, 2, 10, 15},
 | |
|   {7, 11, 5, 10, 27},
 | |
|   {7, 12, 1, 5, 12},
 | |
|   {7, 12, 1, 9, 15},
 | |
|   {7, 12, 4, 1, 27},
 | |
|   {7, 13, 1, 4, 12},
 | |
|   {7, 13, 1, 8, 15},
 | |
|   {7, 13, 4, 0, 27},
 | |
|   {7, 1, 6, 2, 12},
 | |
|   {7, 1, 7, 10, 14},
 | |
|   {7, 1, 7, 2, 27},
 | |
|   {7, 2, 3, 1, 14},
 | |
|   {7, 2, 6, 1, 26},
 | |
|   {7, 2, 7, 1, 20},
 | |
|   {7, 3, 3, 0, 14},
 | |
|   {7, 3, 6, 0, 26},
 | |
|   {7, 3, 7, 0, 20},
 | |
|   {7, 4, 4, 13, -1},
 | |
|   {7, 5, 4, 12, -1},
 | |
|   {7, 6, 4, 11, -1},
 | |
|   {7, 7, 3, 4, -1},
 | |
|   {7, 8, 3, 3, -1},
 | |
|   {7, 9, 3, 2, -1},
 | |
|   };
 | |
| 
 | |
| vector<rule_recursive> rules_recursive = {
 | |
|   rule_recursive{0, 0, -1, -1, -1},
 | |
|   {0, 1, 10, 18, 12},
 | |
|   {0, 1, 25, -1, 18},
 | |
|   {0, 1, 32, 17, 15},
 | |
|   {0, 2, 10, 13, 12},
 | |
|   {0, 2, 30, -1, 13},
 | |
|   {0, 3, 10, 8, 12},
 | |
|   {0, 3, 11, -1, 8},
 | |
|   {0, 4, 10, 24, 12},
 | |
|   {0, 4, 21, -1, 28},
 | |
|   {0, 5, 10, 33, 12},
 | |
|   {0, 5, 17, 8, 29},
 | |
|   {0, 5, 32, 28, 15},
 | |
|   {0, 6, 10, 10, 12},
 | |
|   {0, 6, 32, 32, 15},
 | |
|   {1, 0, 12, 25, 10},
 | |
|   {1, 0, 15, 29, 32},
 | |
|   {1, 0, 18, -1, 25},
 | |
|   {1, 1, -1, -1, -1},
 | |
|   {1, 1, 14, 13, 31},
 | |
|   {1, 1, 19, 18, 26},
 | |
|   {1, 1, 26, 25, 19},
 | |
|   {1, 1, 31, 30, 14},
 | |
|   {1, 2, 14, 8, 31},
 | |
|   {1, 2, 17, -1, 29},
 | |
|   {1, 2, 19, 13, 26},
 | |
|   {1, 2, 23, 19, 23},
 | |
|   {1, 3, 19, 8, 26},
 | |
|   {1, 3, 27, 19, 20},
 | |
|   {1, 4, 19, 24, 26},
 | |
|   {1, 4, 23, 29, 23},
 | |
|   {1, 5, 14, 24, 31},
 | |
|   {1, 5, 19, 33, 26},
 | |
|   {1, 6, 14, 33, 31},
 | |
|   {1, 6, 19, 10, 26},
 | |
|   {1, 6, 26, 19, 19},
 | |
|   {2, 0, 12, 30, 10},
 | |
|   {2, 0, 13, -1, 30},
 | |
|   {2, 1, 23, 26, 23},
 | |
|   {2, 1, 26, 30, 19},
 | |
|   {2, 1, 29, -1, 17},
 | |
|   {2, 1, 31, 11, 14},
 | |
|   {2, 2, -1, -1, -1},
 | |
|   {2, 2, 20, 19, 27},
 | |
|   {2, 2, 27, 26, 20},
 | |
|   {2, 3, 17, -1, 29},
 | |
|   {2, 4, 20, 29, 27},
 | |
|   {2, 4, 27, 14, 20},
 | |
|   {2, 5, 23, 14, 23},
 | |
|   {2, 5, 27, 20, 20},
 | |
|   {2, 6, 23, 20, 23},
 | |
|   {3, 0, 12, 11, 10},
 | |
|   {3, 0, 8, -1, 11},
 | |
|   {3, 1, 20, 26, 27},
 | |
|   {3, 1, 26, 11, 19},
 | |
|   {3, 2, 29, -1, 17},
 | |
|   {3, 3, -1, -1, -1},
 | |
|   {3, 4, 22, -1, 24},
 | |
|   {3, 5, 16, -1, 33},
 | |
|   {3, 5, 20, 14, 27},
 | |
|   {3, 6, 12, -1, 10},
 | |
|   {3, 6, 20, 20, 27},
 | |
|   {4, 0, 12, 22, 10},
 | |
|   {4, 0, 28, -1, 21},
 | |
|   {4, 1, 23, 17, 23},
 | |
|   {4, 1, 26, 22, 19},
 | |
|   {4, 2, 20, 31, 27},
 | |
|   {4, 2, 27, 17, 20},
 | |
|   {4, 3, 24, -1, 22},
 | |
|   {4, 4, -1, -1, -1},
 | |
|   {4, 4, 20, 21, 27},
 | |
|   {4, 4, 27, 28, 20},
 | |
|   {4, 5, 20, 23, 27},
 | |
|   {4, 5, 23, 28, 23},
 | |
|   {4, 5, 27, 32, 20},
 | |
|   {4, 5, 29, -1, 17},
 | |
|   {4, 5, 31, 8, 14},
 | |
|   {4, 6, 23, 32, 23},
 | |
|   {5, 0, 12, 16, 10},
 | |
|   {5, 0, 15, 21, 32},
 | |
|   {5, 0, 29, 11, 17},
 | |
|   {5, 1, 26, 16, 19},
 | |
|   {5, 1, 31, 22, 14},
 | |
|   {5, 2, 20, 27, 27},
 | |
|   {5, 2, 23, 31, 23},
 | |
|   {5, 3, 27, 31, 20},
 | |
|   {5, 3, 33, -1, 16},
 | |
|   {5, 4, 14, 11, 31},
 | |
|   {5, 4, 17, -1, 29},
 | |
|   {5, 4, 20, 15, 27},
 | |
|   {5, 4, 23, 21, 23},
 | |
|   {5, 4, 27, 23, 20},
 | |
|   {5, 5, -1, -1, -1},
 | |
|   {5, 5, 23, 23, 23},
 | |
|   {5, 6, 26, 31, 19},
 | |
|   {5, 6, 29, -1, 17},
 | |
|   {6, 0, 12, 12, 10},
 | |
|   {6, 0, 15, 15, 32},
 | |
|   {6, 1, 19, 26, 26},
 | |
|   {6, 1, 26, 12, 19},
 | |
|   {6, 1, 31, 16, 14},
 | |
|   {6, 2, 23, 27, 23},
 | |
|   {6, 3, 10, -1, 12},
 | |
|   {6, 3, 27, 27, 20},
 | |
|   {6, 4, 23, 15, 23},
 | |
|   {6, 5, 17, -1, 29},
 | |
|   {6, 5, 19, 14, 26},
 | |
|   {6, 6, -1, -1, -1},
 | |
|   {6, 6, 14, 14, 31},
 | |
|   {6, 6, 19, 20, 26},
 | |
|   {6, 6, 26, 27, 19},
 | |
|   {6, 6, 31, 31, 14},
 | |
|   };
 | |
| 
 | |
| vector<rule_base> spectre_rules_base = { rule_base
 | |
| {0, 0, 5, 5, -1},
 | |
| {0, 10, 7, 7, -1},
 | |
| {0, 11, 5, 8, -1},
 | |
| {0, 12, 5, 7, -1},
 | |
| {0, 13, 5, 6, -1},
 | |
| {0, 1, 3, 8, -1},
 | |
| {0, 2, 3, 7, -1},
 | |
| {0, 3, 3, 6, -1},
 | |
| {0, 4, 3, 5, -1},
 | |
| {0, 5, 1, 0, -1},
 | |
| {0, 6, 1, 13, -1},
 | |
| {0, 7, 1, 12, -1},
 | |
| {0, 8, 1, 11, -1},
 | |
| {0, 9, 7, 8, -1},
 | |
| {1, 0, 0, 5, -1},
 | |
| {1, 10, 7, 9, -1},
 | |
| {1, 11, 0, 8, -1},
 | |
| {1, 12, 0, 7, -1},
 | |
| {1, 1, 2, 6, -1},
 | |
| {1, 13, 0, 6, -1},
 | |
| {1, 2, 2, 5, -1},
 | |
| {1, 3, 2, 4, -1},
 | |
| {1, 4, 2, 13, 20},
 | |
| {1, 4, 3, 13, 14},
 | |
| {1, 4, 6, 13, 30},
 | |
| {1, 4, 7, 13, 26},
 | |
| {1, 4, 8, 13, 15},
 | |
| {1, 5, 2, 12, 20},
 | |
| {1, 5, 3, 12, 14},
 | |
| {1, 5, 6, 12, 30},
 | |
| {1, 5, 7, 12, 26},
 | |
| {1, 5, 8, 12, 15},
 | |
| {1, 6, 2, 11, 20},
 | |
| {1, 6, 3, 11, 14},
 | |
| {1, 6, 6, 11, 30},
 | |
| {1, 6, 7, 11, 26},
 | |
| {1, 6, 8, 11, 15},
 | |
| {1, 7, 2, 0, 13},
 | |
| {1, 7, 4, 0, 29},
 | |
| {1, 7, 4, 4, 14},
 | |
| {1, 7, 6, 0, 25},
 | |
| {1, 7, 8, 0, 9},
 | |
| {1, 8, 2, 13, 13},
 | |
| {1, 8, 4, 13, 29},
 | |
| {1, 8, 4, 3, 14},
 | |
| {1, 8, 6, 13, 25},
 | |
| {1, 8, 8, 13, 9},
 | |
| {1, 9, 2, 12, 13},
 | |
| {1, 9, 4, 12, 29},
 | |
| {1, 9, 4, 2, 14},
 | |
| {1, 9, 6, 12, 25},
 | |
| {1, 9, 8, 12, 9},
 | |
| {2, 0, 1, 7, 31},
 | |
| {2, 0, 2, 3, 27},
 | |
| {2, 0, 6, 3, 16},
 | |
| {2, 0, 8, 3, 22},
 | |
| {2, 10, 2, 11, 22},
 | |
| {2, 10, 2, 1, 32},
 | |
| {2, 10, 4, 11, 16},
 | |
| {2, 10, 7, 11, 31},
 | |
| {2, 11, 1, 6, 27},
 | |
| {2, 11, 2, 10, 22},
 | |
| {2, 11, 4, 10, 16},
 | |
| {2, 11, 7, 10, 31},
 | |
| {2, 1, 2, 10, 14},
 | |
| {2, 12, 1, 5, 27},
 | |
| {2, 12, 1, 9, 31},
 | |
| {2, 1, 2, 2, 27},
 | |
| {2, 12, 3, 1, 22},
 | |
| {2, 12, 5, 1, 16},
 | |
| {2, 13, 1, 4, 27},
 | |
| {2, 13, 1, 8, 31},
 | |
| {2, 13, 3, 0, 22},
 | |
| {2, 13, 5, 0, 16},
 | |
| {2, 1, 6, 10, 26},
 | |
| {2, 1, 6, 2, 16},
 | |
| {2, 1, 8, 2, 22},
 | |
| {2, 2, 2, 1, 20},
 | |
| {2, 2, 3, 1, 14},
 | |
| {2, 2, 6, 1, 30},
 | |
| {2, 2, 7, 1, 26},
 | |
| {2, 2, 8, 1, 15},
 | |
| {2, 3, 2, 0, 20},
 | |
| {2, 3, 3, 0, 14},
 | |
| {2, 3, 6, 0, 30},
 | |
| {2, 3, 7, 0, 26},
 | |
| {2, 3, 8, 0, 15},
 | |
| {2, 4, 1, 3, -1},
 | |
| {2, 5, 1, 2, -1},
 | |
| {2, 6, 1, 1, -1},
 | |
| {2, 7, 3, 4, -1},
 | |
| {2, 8, 3, 3, -1},
 | |
| {2, 9, 3, 2, -1},
 | |
| {3, 0, 2, 13, 22},
 | |
| {3, 0, 2, 3, 32},
 | |
| {3, 0, 4, 13, 16},
 | |
| {3, 0, 7, 13, 31},
 | |
| {3, 10, 4, 5, -1},
 | |
| {3, 11, 1, 6, 32},
 | |
| {3, 11, 8, 6, -1},
 | |
| {3, 1, 2, 12, 22},
 | |
| {3, 12, 1, 5, 32},
 | |
| {3, 1, 2, 2, 32},
 | |
| {3, 12, 8, 5, -1},
 | |
| {3, 13, 1, 4, 32},
 | |
| {3, 13, 8, 4, -1},
 | |
| {3, 1, 4, 12, 16},
 | |
| {3, 1, 7, 12, 31},
 | |
| {3, 2, 2, 9, -1},
 | |
| {3, 3, 2, 8, -1},
 | |
| {3, 4, 2, 7, -1},
 | |
| {3, 5, 0, 4, -1},
 | |
| {3, 6, 0, 3, -1},
 | |
| {3, 7, 0, 2, -1},
 | |
| {3, 8, 0, 1, -1},
 | |
| {3, 9, 4, 6, -1},
 | |
| {4, 0, 1, 7, 11},
 | |
| {4, 0, 4, 13, 21},
 | |
| {4, 0, 7, 13, 10},
 | |
| {4, 0, 8, 3, 28},
 | |
| {4, 10, 2, 11, 28},
 | |
| {4, 10, 6, 11, 19},
 | |
| {4, 10, 7, 11, 11},
 | |
| {4, 10, 8, 11, 23},
 | |
| {4, 11, 2, 10, 28},
 | |
| {4, 11, 6, 10, 19},
 | |
| {4, 11, 7, 10, 11},
 | |
| {4, 11, 8, 10, 23},
 | |
| {4, 12, 1, 9, 11},
 | |
| {4, 12, 3, 1, 28},
 | |
| {4, 12, 4, 1, 23},
 | |
| {4, 12, 7, 1, 19},
 | |
| {4, 13, 1, 8, 11},
 | |
| {4, 13, 3, 0, 28},
 | |
| {4, 13, 4, 0, 23},
 | |
| {4, 13, 7, 0, 19},
 | |
| {4, 1, 4, 12, 21},
 | |
| {4, 1, 7, 10, 32},
 | |
| {4, 1, 7, 12, 10},
 | |
| {4, 1, 8, 2, 28},
 | |
| {4, 2, 1, 9, 32},
 | |
| {4, 2, 8, 9, -1},
 | |
| {4, 3, 1, 8, 32},
 | |
| {4, 3, 8, 8, -1},
 | |
| {4, 4, 1, 7, 32},
 | |
| {4, 4, 8, 7, -1},
 | |
| {4, 5, 3, 10, -1},
 | |
| {4, 6, 3, 9, -1},
 | |
| {4, 7, 5, 4, -1},
 | |
| {4, 8, 5, 3, -1},
 | |
| {4, 9, 5, 2, -1},
 | |
| {5, 0, 2, 13, 28},
 | |
| {5, 0, 6, 13, 19},
 | |
| {5, 0, 7, 13, 11},
 | |
| {5, 0, 8, 13, 23},
 | |
| {5, 10, 7, 5, -1},
 | |
| {5, 11, 6, 6, -1},
 | |
| {5, 1, 2, 12, 28},
 | |
| {5, 12, 6, 5, -1},
 | |
| {5, 13, 6, 4, -1},
 | |
| {5, 1, 6, 12, 19},
 | |
| {5, 1, 7, 12, 11},
 | |
| {5, 1, 8, 12, 23},
 | |
| {5, 2, 4, 9, -1},
 | |
| {5, 3, 4, 8, -1},
 | |
| {5, 4, 4, 7, -1},
 | |
| {5, 5, 0, 0, -1},
 | |
| {5, 6, 0, 13, -1},
 | |
| {5, 7, 0, 12, -1},
 | |
| {5, 8, 0, 11, -1},
 | |
| {5, 9, 7, 6, -1},
 | |
| {6, 0, 1, 7, 17},
 | |
| {6, 0, 2, 3, 12},
 | |
| {6, 0, 6, 3, 24},
 | |
| {6, 10, 2, 1, 18},
 | |
| {6, 10, 4, 11, 24},
 | |
| {6, 10, 6, 1, 29},
 | |
| {6, 10, 7, 11, 17},
 | |
| {6, 10, 8, 1, 13},
 | |
| {6, 11, 1, 6, 12},
 | |
| {6, 11, 4, 10, 24},
 | |
| {6, 11, 7, 10, 17},
 | |
| {6, 12, 1, 5, 12},
 | |
| {6, 12, 1, 9, 17},
 | |
| {6, 1, 2, 2, 12},
 | |
| {6, 12, 5, 1, 24},
 | |
| {6, 13, 1, 4, 12},
 | |
| {6, 13, 1, 8, 17},
 | |
| {6, 13, 5, 0, 24},
 | |
| {6, 1, 6, 10, 11},
 | |
| {6, 1, 6, 2, 24},
 | |
| {6, 2, 2, 1, 28},
 | |
| {6, 2, 6, 1, 19},
 | |
| {6, 2, 7, 1, 11},
 | |
| {6, 2, 8, 1, 23},
 | |
| {6, 3, 2, 0, 28},
 | |
| {6, 3, 6, 0, 19},
 | |
| {6, 3, 7, 0, 11},
 | |
| {6, 3, 8, 0, 23},
 | |
| {6, 4, 5, 13, -1},
 | |
| {6, 5, 5, 12, -1},
 | |
| {6, 6, 5, 11, -1},
 | |
| {6, 7, 7, 4, -1},
 | |
| {6, 8, 7, 3, -1},
 | |
| {6, 9, 7, 2, -1},
 | |
| {7, 0, 2, 3, 18},
 | |
| {7, 0, 4, 13, 24},
 | |
| {7, 0, 6, 3, 29},
 | |
| {7, 0, 7, 13, 17},
 | |
| {7, 0, 8, 3, 13},
 | |
| {7, 10, 2, 11, 13},
 | |
| {7, 10, 4, 11, 29},
 | |
| {7, 10, 4, 1, 14},
 | |
| {7, 10, 6, 11, 25},
 | |
| {7, 10, 8, 11, 9},
 | |
| {7, 11, 1, 6, 18},
 | |
| {7, 11, 2, 10, 13},
 | |
| {7, 11, 4, 10, 29},
 | |
| {7, 11, 6, 10, 25},
 | |
| {7, 11, 8, 10, 9},
 | |
| {7, 12, 1, 5, 18},
 | |
| {7, 1, 2, 2, 18},
 | |
| {7, 12, 3, 1, 13},
 | |
| {7, 12, 4, 1, 9},
 | |
| {7, 12, 5, 1, 29},
 | |
| {7, 12, 7, 1, 25},
 | |
| {7, 13, 1, 4, 18},
 | |
| {7, 13, 3, 0, 13},
 | |
| {7, 13, 4, 0, 9},
 | |
| {7, 13, 5, 0, 29},
 | |
| {7, 13, 7, 0, 25},
 | |
| {7, 1, 4, 12, 24},
 | |
| {7, 1, 6, 2, 29},
 | |
| {7, 1, 7, 12, 17},
 | |
| {7, 1, 8, 2, 13},
 | |
| {7, 2, 6, 9, -1},
 | |
| {7, 3, 6, 8, -1},
 | |
| {7, 4, 6, 7, -1},
 | |
| {7, 5, 5, 10, -1},
 | |
| {7, 6, 5, 9, -1},
 | |
| {7, 7, 0, 10, -1},
 | |
| {7, 8, 0, 9, -1},
 | |
| {7, 9, 1, 10, -1},
 | |
| {8, 0, 1, 7, 10},
 | |
| {8, 0, 2, 3, 33},
 | |
| {8, 0, 6, 3, 21},
 | |
| {8, 10, 4, 11, 21},
 | |
| {8, 10, 7, 11, 10},
 | |
| {8, 10, 8, 1, 28},
 | |
| {8, 11, 1, 6, 33},
 | |
| {8, 11, 4, 10, 21},
 | |
| {8, 11, 7, 10, 10},
 | |
| {8, 12, 1, 5, 33},
 | |
| {8, 12, 1, 9, 10},
 | |
| {8, 1, 2, 2, 33},
 | |
| {8, 12, 5, 1, 21},
 | |
| {8, 13, 1, 4, 33},
 | |
| {8, 13, 1, 8, 10},
 | |
| {8, 13, 5, 0, 21},
 | |
| {8, 1, 6, 10, 31},
 | |
| {8, 1, 6, 2, 21},
 | |
| {8, 1, 8, 10, 16},
 | |
| {8, 2, 2, 1, 22},
 | |
| {8, 2, 4, 1, 16},
 | |
| {8, 2, 7, 1, 31},
 | |
| {8, 3, 2, 0, 22},
 | |
| {8, 3, 4, 0, 16},
 | |
| {8, 3, 7, 0, 31},
 | |
| {8, 4, 3, 13, -1},
 | |
| {8, 5, 3, 12, -1},
 | |
| {8, 6, 3, 11, -1},
 | |
| {8, 7, 4, 4, -1},
 | |
| {8, 8, 4, 3, -1},
 | |
| {8, 9, 4, 2, -1},
 | |
|   };
 | |
| 
 | |
| vector<rule_recursive> spectre_rules_recursive = { rule_recursive
 | |
| {0, 1, 27, -1, 20},
 | |
| {0, 1, 9, 18, 10},
 | |
| {0, 2, 32, -1, 14},
 | |
| {0, 3, 11, -1, 29},
 | |
| {0, 3, 9, 32, 10},
 | |
| {0, 4, 15, 31, 33},
 | |
| {0, 4, 17, -1, 25},
 | |
| {0, 4, 9, 27, 10},
 | |
| {0, 5, 15, 17, 33},
 | |
| {0, 5, 9, 12, 10},
 | |
| {0, 6, 15, 11, 33},
 | |
| {0, 6, 30, 32, 12},
 | |
| {0, 7, 15, 10, 33},
 | |
| {0, 7, 9, 33, 10},
 | |
| {1, 0, 10, 26, 9},
 | |
| {1, 0, 20, -1, 27},
 | |
| {1, 1, 21, 17, 23},
 | |
| {1, 1, 23, 25, 21},
 | |
| {1, 2, 13, -1, 31},
 | |
| {1, 2, 21, 11, 23},
 | |
| {1, 3, 21, 31, 23},
 | |
| {1, 4, 19, 26, 24},
 | |
| {1, 4, 22, 31, 22},
 | |
| {1, 5, 12, -1, 30},
 | |
| {1, 5, 19, 11, 24},
 | |
| {1, 5, 22, 17, 22},
 | |
| {1, 6, 16, 32, 28},
 | |
| {1, 6, 21, 10, 23},
 | |
| {1, 6, 22, 11, 22},
 | |
| {1, 6, 23, 19, 21},
 | |
| {1, 7, 19, 31, 24},
 | |
| {1, 7, 22, 10, 22},
 | |
| {2, 0, 14, -1, 32},
 | |
| {2, 1, 23, 29, 21},
 | |
| {2, 1, 31, -1, 13},
 | |
| {2, 3, 18, -1, 26},
 | |
| {2, 4, 23, 16, 21},
 | |
| {2, 5, 10, -1, 9},
 | |
| {2, 5, 23, 24, 21},
 | |
| {2, 6, 12, -1, 30},
 | |
| {2, 7, 23, 21, 21},
 | |
| {3, 0, 10, 14, 9},
 | |
| {3, 0, 29, -1, 11},
 | |
| {3, 1, 23, 13, 21},
 | |
| {3, 2, 26, -1, 18},
 | |
| {3, 4, 12, -1, 30},
 | |
| {3, 4, 19, 14, 24},
 | |
| {3, 4, 23, 22, 21},
 | |
| {3, 6, 23, 28, 21},
 | |
| {3, 6, 31, -1, 13},
 | |
| {3, 7, 10, -1, 9},
 | |
| {4, 0, 10, 20, 9},
 | |
| {4, 0, 25, -1, 17},
 | |
| {4, 0, 33, 13, 15},
 | |
| {4, 1, 22, 13, 22},
 | |
| {4, 1, 24, 18, 19},
 | |
| {4, 2, 21, 28, 23},
 | |
| {4, 3, 21, 22, 23},
 | |
| {4, 3, 24, 32, 19},
 | |
| {4, 3, 30, -1, 12},
 | |
| {4, 4, 16, 14, 28},
 | |
| {4, 4, 19, 20, 24},
 | |
| {4, 4, 22, 22, 22},
 | |
| {4, 4, 24, 27, 19},
 | |
| {4, 4, 28, 32, 16},
 | |
| {4, 5, 19, 28, 24},
 | |
| {4, 5, 24, 12, 19},
 | |
| {4, 5, 28, 18, 16},
 | |
| {4, 6, 22, 28, 22},
 | |
| {4, 7, 19, 22, 24},
 | |
| {4, 7, 24, 33, 19},
 | |
| {5, 0, 10, 30, 9},
 | |
| {5, 0, 33, 25, 15},
 | |
| {5, 1, 22, 25, 22},
 | |
| {5, 1, 24, 29, 19},
 | |
| {5, 1, 30, -1, 12},
 | |
| {5, 2, 21, 19, 23},
 | |
| {5, 2, 9, -1, 10},
 | |
| {5, 4, 16, 26, 28},
 | |
| {5, 4, 19, 30, 24},
 | |
| {5, 4, 24, 16, 19},
 | |
| {5, 5, 16, 11, 28},
 | |
| {5, 5, 19, 19, 24},
 | |
| {5, 5, 24, 24, 19},
 | |
| {5, 5, 28, 29, 16},
 | |
| {5, 6, 22, 19, 22},
 | |
| {5, 7, 16, 31, 28},
 | |
| {5, 7, 24, 21, 19},
 | |
| {6, 0, 12, 14, 30},
 | |
| {6, 0, 33, 29, 15},
 | |
| {6, 1, 21, 24, 23},
 | |
| {6, 1, 22, 29, 22},
 | |
| {6, 1, 23, 9, 21},
 | |
| {6, 1, 28, 14, 16},
 | |
| {6, 2, 30, -1, 12},
 | |
| {6, 3, 13, -1, 31},
 | |
| {6, 3, 21, 16, 23},
 | |
| {6, 4, 22, 16, 22},
 | |
| {6, 5, 22, 24, 22},
 | |
| {6, 6, 21, 21, 23},
 | |
| {6, 6, 23, 23, 21},
 | |
| {6, 7, 12, -1, 30},
 | |
| {6, 7, 19, 16, 24},
 | |
| {6, 7, 22, 21, 22},
 | |
| {7, 0, 10, 15, 9},
 | |
| {7, 0, 33, 9, 15},
 | |
| {7, 1, 22, 9, 22},
 | |
| {7, 1, 24, 13, 19},
 | |
| {7, 2, 21, 23, 23},
 | |
| {7, 3, 9, -1, 10},
 | |
| {7, 4, 19, 15, 24},
 | |
| {7, 4, 24, 22, 19},
 | |
| {7, 5, 19, 23, 24},
 | |
| {7, 5, 28, 13, 16},
 | |
| {7, 6, 22, 23, 22},
 | |
| {7, 6, 24, 28, 19},
 | |
| {7, 6, 30, -1, 12},
 | |
| {7, 7, 16, 16, 28},
 | |
| {7, 7, 28, 28, 16},
 | |
|   };
 | |
| 
 | |
| EX ld hat_param = 1;
 | |
| EX ld hat_param_imag = 0;
 | |
| 
 | |
| struct hrmap_hat : hrmap {
 | |
| 
 | |
|   // always generate the same way
 | |
|   std::mt19937 hatrng;
 | |
| 
 | |
|   bool is_spectre;
 | |
| 
 | |
|   int hatrand(int i) {    
 | |
|     return hatrng() % i;
 | |
|     }
 | |
| 
 | |
|   // cluster centers are of type 1, all the rest are of type 0 (they are mirror images)
 | |
|   int shvid(cell *c) override {
 | |
|     return c->master->c7 == c ? 1 : 0;
 | |
|     }
 | |
| 
 | |
|   // vertices of each type of hat
 | |
|   vector<hyperpoint> hatcorners[2];
 | |
| 
 | |
|   struct memo_matrix : transmatrix {
 | |
|     bool known;
 | |
|     transmatrix& get() { return (transmatrix&) (*this); }
 | |
|     void clear() { known = false; }
 | |
|     void set(const transmatrix& T) { known = true; get() = T; }
 | |
|     };
 | |
| 
 | |
|   memo_matrix adj_memo[2][2][14][14];
 | |
|   vector<vector<memo_matrix>> long_transformations;
 | |
| 
 | |
|   vector<rule_base> get_rules_base() { return is_spectre ? spectre_rules_base : rules_base; }
 | |
|   vector<rule_recursive> get_rules_recursive() { return is_spectre ? spectre_rules_recursive : rules_recursive; }
 | |
| 
 | |
|   void fill_transform_levels(int lev) {
 | |
|     int clev = isize(long_transformations);
 | |
|     while(clev <= lev) {
 | |
|       auto& lt = long_transformations;
 | |
|       lt.emplace_back();
 | |
|       auto& last = lt.back();
 | |
|       last.resize(relations+1);
 | |
|       for(auto& t: last) t.clear();
 | |
|       last[0].set(Id);
 | |
|       last[1].set(Id);
 | |
| 
 | |
|       while(true) {
 | |
|         int chg = 0;
 | |
|         int unknown = 0;
 | |
|         int errors = 0;
 | |
| 
 | |
|         auto products_equal = [&] (memo_matrix& A, memo_matrix& B, memo_matrix& C, memo_matrix& D) {
 | |
|           if(A.known && B.known && C.known && D.known) {
 | |
|             if(!eqmatrix(A*B, C*D)) errors++;
 | |
|             }
 | |
|           else if(B.known && C.known && D.known) chg++, A.set( C * D * inverse(B) );
 | |
|           else if(A.known && C.known && D.known) chg++, B.set( inverse(A) * C * D );
 | |
|           else if(A.known && B.known && D.known) chg++, C.set( A * B * inverse(D) );
 | |
|           else if(A.known && B.known && C.known) chg++, D.set( inverse(C) * A * B );
 | |
|           else unknown++;
 | |
|           };
 | |
| 
 | |
|         if(clev == 1) for(auto& b: get_rules_base()) {
 | |
|           products_equal(lt[0][b.id0+1], adj2(b.id0==0, fix(b.edge0), b.id1==0, fix(b.edge1)), lt[1][b.master_connection+1], lt[0][b.id1+1]);
 | |
|           }
 | |
| 
 | |
|         if(clev >= 2) for(auto& b: get_rules_recursive()) {
 | |
|           products_equal(lt[clev][b.id0+1], lt[clev-1][b.child+1], lt[clev][b.parent+1], lt[clev][b.id1+1]);
 | |
|           }
 | |
| 
 | |
|         if(!chg) break;
 | |
|         }
 | |
| 
 | |
|       clev++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   void clear_adj_memo() {
 | |
|     for(int a=0; a<2; a++)
 | |
|     for(int b=0; b<2; b++)
 | |
|     for(int c=0; c<14; c++)
 | |
|     for(int d=0; d<14; d++)
 | |
|       adj_memo[a][b][c][d].clear();
 | |
|     }
 | |
| 
 | |
|   void init() {
 | |
| 
 | |
|     relations = 34;
 | |
| 
 | |
|     transmatrix T = Id;
 | |
|     auto& hc = hatcorners[0];
 | |
|     hc.clear();
 | |
|     hatcorners[1].clear();
 | |
| 
 | |
|     bool f = geom3::flipped;
 | |
|     bool emb = embedded_plane;
 | |
|     if(emb) geom3::light_flip(true);
 | |
| 
 | |
|     ld q = 6;
 | |
|     ld eshort = 0.3;
 | |
|     ld elong = sqrt(3) * eshort;
 | |
|     if(fake::in()) q = fake::around;
 | |
| 
 | |
|     ld eshorti = 0, elongi = 0;
 | |
| 
 | |
|     if(q != 6) {
 | |
|       eshort = edge_of_triangle_with_angles(M_PI / q, 60._deg, 90._deg);
 | |
|       elong = edge_of_triangle_with_angles(60._deg, M_PI / q, 90._deg);
 | |
|       }
 | |
|     else {
 | |
|       eshorti = eshort * hat_param_imag;
 | |
|       elongi = elong * -hat_param_imag;
 | |
|       eshort *= hat_param;
 | |
|       elong *= 2 - hat_param;
 | |
|       // 0-length edges cause problems...
 | |
|       if(abs(eshort) < 1e-6) eshort = .0001;
 | |
|       if(abs(elong) < 1e-6) elong = .0001;
 | |
|       }
 | |
| 
 | |
|     auto hat = [&] (vector<hyperpoint>& hc) {
 | |
| 
 | |
|       auto move = [&] (ld angle, ld dist, ld disti) {
 | |
|         hc.push_back(T * C0);
 | |
|         T = T * cspin(0, 1, angle * degree);
 | |
|         T = T * xpush(dist);
 | |
|         T = T * ypush(disti);
 | |
|         };
 | |
| 
 | |
|       auto moves = [&] (ld angle) { move(angle, eshort, eshorti); };
 | |
|       auto movel = [&] (ld angle) { move(angle, elong, elongi); };
 | |
| 
 | |
|       ld i60 = (M_PI - TAU*2/q)/degree;
 | |
|       ld n60 = (M_PI - TAU*4/q)/degree;
 | |
| 
 | |
|       moves(-90); moves( 60); moves(  0);
 | |
|       moves( 60); movel( 90); movel(n60);
 | |
|       moves( 90); moves(-60); movel( 90);
 | |
|       movel(i60); moves(-90); moves( 60);
 | |
|       movel( 90); movel(i60);
 | |
|       };
 | |
| 
 | |
|     hat(hc);
 | |
| 
 | |
| #undef eshort
 | |
| #undef elong
 | |
| 
 | |
|     auto compute_area = [&] (vector<hyperpoint>& hc) {
 | |
|       ld area = 0;
 | |
|       for(int i=0; i<14; i++) area += (hc[(i+1)%isize(hc)] ^ hc[i]) [2];
 | |
|       return abs(area);
 | |
|       };
 | |
| 
 | |
|     auto recenter = [&] (vector<hyperpoint>& hc) {
 | |
|       hyperpoint ctr = Hypc;
 | |
|       for(auto h: hc) ctr += h;
 | |
|       ctr /= isize(hc);
 | |
|       ctr = normalize(ctr);
 | |
|       for(auto& h: hc) h = gpushxto0(ctr) * h;
 | |
|       };
 | |
| 
 | |
|     if(is_spectre) {
 | |
|       println(hlog, "eshort = ", eshort, " elong = ", elong);
 | |
|       swap(eshort, elong);
 | |
|       swap(eshorti, elongi);
 | |
|       hat(hatcorners[1]);
 | |
|       }
 | |
|     else if(hat_param_imag) {
 | |
|       eshorti *= -1;
 | |
|       elongi *= -1;
 | |
|       hat(hatcorners[1]);
 | |
|       }
 | |
|     else hatcorners[1] = hc;
 | |
|     if(!is_spectre) {
 | |
|       for(auto& h: hc) h = MirrorX * h;
 | |
|       reverse(hatcorners[1].begin(), hatcorners[1].end());
 | |
|       }
 | |
| 
 | |
|     if(q == 6) {
 | |
|       ld phi = (1 + sqrt(5)) / 2;
 | |
|       ld phi4 = pow(phi, 4);
 | |
|       ld area = (compute_area(hatcorners[0]) * phi4 + compute_area(hatcorners[1]) * 1) / (phi4 + 1);
 | |
|       area = abs(area);
 | |
|       ld scale = sqrt(2.5 / area);
 | |
|       for(auto &hc: hatcorners) for(auto& h: hc) h = h * scale + (C0) * (1-scale);
 | |
|       }
 | |
|     for(auto &hc: hatcorners) recenter(hc);
 | |
| 
 | |
|     clear_adj_memo();
 | |
|     if(q == 6) {
 | |
|       hyperpoint hfar = 
 | |
|         adj2(1,9,0,7) * adj2(0,11,0,10) * adj2(0,1,0,2) * adj2(0,8,0,5) * adj2(0,11,0,10) *
 | |
|         adj2(0,1,0,2) * adj2(0,8,0,5) * adj2(0,11,0,2) * adj2(0,8,0,5) * adj2(0,11,0,10) *
 | |
|         adj2(0,1,0,2) * adj2(0,8,0,5) * adj2(0,11,0,10) * adj2(0,1,0,2) * adj2(0,8,0,5) *
 | |
|         adj2(0,11,0,2) * adj2(0,8,0,5) * C0;
 | |
|       transmatrix T = spintox(hfar);
 | |
|       for(auto& h: hc) h = inverse(T) * h;
 | |
|       for(auto& h: hatcorners[1]) h = T * h;
 | |
|       }
 | |
| 
 | |
|     if(emb) {
 | |
|       geom3::light_flip(f);
 | |
|       for(auto i:{0, 1}) for(auto& p: hatcorners[i]) {
 | |
|         p = cgi.emb->base_to_actual(p);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     clear_adj_memo();
 | |
|     long_transformations.clear();
 | |
|     }
 | |
| 
 | |
|   int relations;
 | |
| 
 | |
|   // heptagons represent clusters
 | |
|   // heptagon->distance is 0 for clusters of hats, d+1 for supercluster of heptagon d
 | |
|   // heptagon->zebraval is 1 for central, 0 for non-central
 | |
|   // 0 is supercluster, 1..(7-zebraval) are child clusters, 8..(relations-1) are nearby clusters on the same level
 | |
| 
 | |
|   /** for 0-level, the list of hats*/
 | |
|   map<heptagon*, vector<cell*>> hats;
 | |
| 
 | |
|   heptagon *origin;
 | |
|   
 | |
|   heptagon *getOrigin() override { return origin; }
 | |
| 
 | |
|   hyperpoint get_corner(cell *c, int cid, ld cf) override {
 | |
|     cid = gmod(cid, isize(hatcorners[0]));
 | |
|     int t = c->master->c7 == c;
 | |
|     auto& h = hatcorners[t][cid];
 | |
| 
 | |
|     return C0 * (1-3./cf) + h * (3./cf);
 | |
|     }
 | |
| 
 | |
|   heptagon *create_step(heptagon *h, int dir) override {
 | |
|     auto h1 = get_step(h, dir);
 | |
|     if(!h1) throw hr_exception("create_step");
 | |
|     return h1;
 | |
|     }
 | |
| 
 | |
|   heptagon *get_step(heptagon *h, int dir) {
 | |
|     if(dir == -1) return h;
 | |
|     if(h->move(dir)) return h->move(dir);
 | |
|     if(dir == 0) {
 | |
|       // create parent
 | |
|       auto h1 = init_heptagon(relations); 
 | |
|       h1->distance = h->distance + 1;
 | |
|       if(h->distance >= 1000) throw hr_exception("too much recursion");
 | |
|       h1->zebraval = hatrand(2);
 | |
|       if(h->zebraval == 1) {
 | |
|         h->c.connect(dir, h1, 1, false);
 | |
|         }
 | |
|       else {
 | |
|         h->c.connect(dir, h1, 2 + hatrand(5-h->zebraval), false);
 | |
|         }
 | |
|       return h1;
 | |
|       }
 | |
|     if(dir <= (is_spectre ? 8 : 7) - h->zebraval) {
 | |
|       // create child
 | |
|       auto h1 = init_heptagon(relations); 
 | |
|       h1->distance = h->distance - 1;
 | |
|       h1->zebraval = dir == 1;
 | |
|       h->c.connect(dir, h1, 0, false);
 | |
|       if(h1->distance == 0) build_cells(h1);
 | |
|       return h1;
 | |
|       }
 | |
|     // create side connection
 | |
|     createStep(h, 0);
 | |
|     int id = h->c.spin(0)-1;
 | |
|     indenter ind(2);
 | |
|     for(auto& ru: get_rules_recursive()) {
 | |
|       int i0 = ru.id0, i1 = ru.id1;
 | |
|       if((h->distance & 1) && is_spectre) swap(i0, i1);
 | |
|       if(i0 == id && ru.child == dir) {
 | |
|         heptagon *h1 = get_step(h->move(0), ru.parent);
 | |
|         if(!h1) continue;
 | |
|         heptagon *h2 = get_step(h1, i1+1);
 | |
|         if(!h2) continue;
 | |
|         h->c.connect(dir, h2, ru.rev_child, false);
 | |
|         return h2;
 | |
|         }
 | |
|       }
 | |
|     return nullptr;
 | |
|     }
 | |
| 
 | |
|   int fix(int d) {
 | |
|     int n = isize(hatcorners[0]);
 | |
|     return gmod(n-2-d, n);
 | |
|     }
 | |
| 
 | |
|   int hat_id(cell *c) {
 | |
|     auto& gha = hats[c->master];
 | |
|     for(int i=0; i<isize(gha); i++) if(gha[i] == c) return i;
 | |
|     throw hr_exception("not in hats");
 | |
|     }
 | |
| 
 | |
|   void find_cell_connection(cell *c, int d) override {
 | |
|     int id = hat_id(c);
 | |
|     indenter ind(2);
 | |
|     for(auto& ru: get_rules_base()) {
 | |
|       if(ru.id0 == id && ru.edge0 == fix(d)) {
 | |
|         heptagon *h = get_step(c->master, ru.master_connection);
 | |
|         if(!h) continue;
 | |
|         build_cells(h);
 | |
|         auto& ha = hats[h];
 | |
|         if(ru.id1 >= isize(ha)) continue;
 | |
|         auto& c1 = ha[ru.id1];
 | |
|         c->c.connect(d, c1, fix(ru.edge1), false);
 | |
|         return;
 | |
|         }
 | |
|       }
 | |
|     throw hr_exception("cell connection not found");
 | |
|     }
 | |
| 
 | |
|   transmatrix adj(cell *c0, int d0) override {
 | |
|     cell *c1 = c0->cmove(d0);
 | |
|     int t0 = c0 == c0->master->c7;
 | |
|     int t1 = c1 == c1->master->c7;
 | |
|     int d1 = c0->c.spin(d0);
 | |
|     return adj2(t0, d0, t1, d1);
 | |
|     }
 | |
| 
 | |
|   memo_matrix& adj2(int t0, int d0, int t1, int d1) {
 | |
|     auto& mm = adj_memo[t0][t1][d0][d1];
 | |
|     if(mm.known) return mm;
 | |
| 
 | |
|     int n = isize(hatcorners[0]);
 | |
| 
 | |
|     hyperpoint vl = hatcorners[t0][d0];
 | |
|     hyperpoint vr = hatcorners[t0][(d0+1)%n];
 | |
| 
 | |
|     hyperpoint xvl = hatcorners[t1][d1];
 | |
|     hyperpoint xvr = hatcorners[t1][(d1+1)%n];
 | |
| 
 | |
|     bool emb = embedded_plane;
 | |
|     if(emb) {
 | |
|       vl = cgi.emb->actual_to_base(vl);
 | |
|       vr = cgi.emb->actual_to_base(vr);
 | |
|       xvl = cgi.emb->actual_to_base(xvl);
 | |
|       xvr = cgi.emb->actual_to_base(xvr);
 | |
|       geom3::light_flip(true);
 | |
|       }
 | |
| 
 | |
|     hyperpoint vm = mid(vl, vr);
 | |
|     transmatrix rm = gpushxto0(vm);
 | |
|     hyperpoint xvm = mid(xvl, xvr);
 | |
|     transmatrix xrm = gpushxto0(xvm);
 | |
| 
 | |
|     if(abs(hdist(vl, vr) - hdist(xvl, xvr)) > 1e-3)
 | |
|       throw hr_exception("wrong length connection");
 | |
| 
 | |
|     transmatrix T = rgpushxto0(vm) * rspintox(rm*vr) * spintox(xrm*xvl) * xrm;
 | |
| 
 | |
|     if(emb) {
 | |
|       T = cgi.emb->base_to_actual(T);
 | |
|       geom3::light_flip(false);
 | |
|       }
 | |
| 
 | |
|     mm.set(T);
 | |
|     return mm;
 | |
|     }
 | |
| 
 | |
|   void build_cells(heptagon *h) {
 | |
|     if(h->c7) return;
 | |
|     auto& ha = hats[h];
 | |
|     ha.resize((is_spectre ? 9 : 8) - h->zebraval);
 | |
|     for(auto& hac: ha) hac = newCell(isize(hatcorners[0]), h);
 | |
|     h->c7 = ha[0];
 | |
|     }
 | |
| 
 | |
|   hrmap_hat() {
 | |
|     is_spectre = geometry == gAperiodicSpectre;
 | |
|     hatrng.seed(37);
 | |
|     init();
 | |
|     origin = init_heptagon(relations);
 | |
|     origin->distance = 0;
 | |
|     origin->zebraval = 1;
 | |
|     build_cells(origin);
 | |
|     }
 | |
| 
 | |
|   void on_dim_change() override {
 | |
|     init();
 | |
|     }
 | |
| 
 | |
|   transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
 | |
|     if(h1 == h2) return Id;
 | |
|     int d = h2->distance + 2;
 | |
|     fill_transform_levels(d);
 | |
|     return iso_inverse(long_transformations[d][h1->c.spin(0)]) * relative_matrixh(h2->move(0), h1->move(0), hint) * long_transformations[d][h2->c.spin(0)];
 | |
|     }
 | |
| 
 | |
|   transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) override {
 | |
|     if(c1 == c2) return Id;
 | |
|     fill_transform_levels(1);
 | |
|     transmatrix T = iso_inverse(long_transformations[0][hat_id(c1)+1]) * relative_matrixh(c2->master, c1->master, hint) * long_transformations[0][hat_id(c2)+1];
 | |
|     return T;
 | |
|     }
 | |
| 
 | |
|   ~hrmap_hat() {
 | |
|     clearfrom(origin);
 | |
|     }
 | |
| 
 | |
|   };
 | |
| 
 | |
| EX hrmap *new_map() { return new hrmap_hat; }
 | |
| 
 | |
| hrmap_hat* hat_map() { return dynamic_cast<hrmap_hat*>(currentmap); }
 | |
| 
 | |
| EX bool pseudohept(cell *c) {
 | |
|   int id = get_hat_id(c);
 | |
|   return id == 0 || id == 6;
 | |
|   }
 | |
| 
 | |
| EX int get_hat_id(cell *c) {
 | |
|   return FPIU(hat_map())->hat_id(c);
 | |
|   }
 | |
| 
 | |
| EX void reshape() {
 | |
|   hrmap_hat *hatmap;
 | |
|   hatmap = FPIU( hat_map() );
 | |
|   if(!hatmap) return;
 | |
|   hatmap->init();
 | |
|   }
 | |
| 
 | |
| EX transmatrix get_long_transform(int level, int dir) {
 | |
|   hrmap_hat *hatmap;
 | |
|   hatmap = FPIU( hat_map() );
 | |
|   if(!hatmap) return Id;
 | |
|   hatmap->fill_transform_levels(max(level, 5));
 | |
|   return hatmap->long_transformations[level][dir];
 | |
|   }
 | |
| 
 | |
| EX color_t hatcolor(cell *c, int mode) {
 | |
|   vector<int> cols;
 | |
|   auto *m = (hrmap_hat*) (currentmap);
 | |
|   cols.push_back(m->hat_id(c));
 | |
|   heptagon *h = c->master;
 | |
|   for(int i=0; i<6; i++) { h->cmove(0); cols.push_back(h->c.spin(0)-1); h = h->cmove(0); }
 | |
|   color_t col = 0xFFFFFF;
 | |
|   if(cols[0] == 0) col |= 0x1000000;
 | |
|   vector<int> ads = {0, 0x1, 0x100, 0x101, 0x10000, 0x10001, 0x10100, 0x10101 };
 | |
|   for(int a=0; a<7; a++) {
 | |
|     col -= ads[cols[a]] << (mode - a) % 7;
 | |
|     }
 | |
|   return col;
 | |
|   }
 | |
| 
 | |
| auto hooksw = addHook(hooks_swapdim, 100, [] { auto h = hat_map(); if(h) h->init(); });
 | |
| 
 | |
| }}
 | |
| 
 | |
|    
 | 
