1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-18 19:24:48 +00:00
hyperrogue/raycaster.cpp
2023-03-23 01:37:52 +01:00

3060 lines
102 KiB
C++

// Hyperbolic Rogue -- raycaster
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file raycaster.cpp
* \brief A raycaster to draw walls.
*/
#include "hyper.h"
namespace hr {
/** \brief raycaster */
EX namespace ray {
#if CAP_RAY
/** texture IDs */
GLuint txConnections = 0, txWallcolor = 0, txTextureMap = 0, txVolumetric = 0, txM = 0, txWall = 0, txPortalConnections = 0;
EX bool in_use;
EX bool comparison_mode;
/** 0 - never use, 2 - always use, 1 = smart selection */
EX int want_use = 1;
/** generate the map for raycasting just once */
EX bool fixed_map = false;
EX ld exp_start = 1;
EX ld exp_decay_exp = 4;
EX ld exp_decay_poly = 10;
#ifdef GLES_ONLY
const int gms_limit = 16; /* enough for Bringris -- need to do better */
#else
const int gms_limit = 110;
#endif
EX int gms_array_size = 16;
EX ld maxstep_sol = .05;
EX ld maxstep_nil = .1;
EX ld maxstep_pro = .5;
EX ld maxstep_intra = .05;
EX ld minstep = .001;
EX ld reflect_val = 0;
static const int NO_LIMIT = 999999;
EX ld hard_limit = NO_LIMIT;
EX int max_iter_intra = 600;
EX int max_iter_sol = 600;
EX int max_iter_iso = 60;
EX int max_iter_eyes = 200;
EX int max_cells = 2048;
EX bool rays_generate = true;
EX ld& exp_decay_current() {
if(intra::in) return exp_decay_exp;
if(fake::in()) return *FPIU(&exp_decay_current());
return (sn::in() || hyperbolic || sl2) ? exp_decay_exp : exp_decay_poly;
}
EX int& max_iter_current() {
if(intra::in) return max_iter_intra;
if(nonisotropic || stretch::in()) return max_iter_sol;
else if(is_eyes()) return max_iter_eyes;
else return max_iter_iso;
}
EX bool is_eyes() {
#if CAP_VR
return vrhr::active() && vrhr::eyes == vrhr::eEyes::equidistant;
#else
return false;
#endif
}
EX bool is_stepbased() {
return nonisotropic || stretch::in() || is_eyes();
}
EX bool horos() {
return (hyperbolic || in_h2xe()) && bt::in();
}
ld& maxstep_current() {
if(intra::in) return maxstep_intra;
if(sn::in() || stretch::in()) return maxstep_sol;
#if CAP_VR
if(vrhr::active() && vrhr::eyes == vrhr::eEyes::equidistant)
return maxstep_pro;
#endif
return maxstep_nil;
}
#define IN_ODS 0
eGeometry last_geometry;
vector<pair<int, cell*>> used_sample_list() {
if(intra::in) return intra::full_sample_list;
return hybrid::gen_sample_list();
}
bool need_many_cell_types() {
return isize(used_sample_list()) > 2;
}
/** is the raycaster available? */
EX bool available() {
#if CAP_VR
/* would need a completely different implementation */
if(vrhr::active() && vrhr::eyes == vrhr::eEyes::equidistant) {
if(reflect_val) return false;
if(sol || stretch::in() || sl2) return false;
}
#endif
if(noGUI) return false;
if(!vid.usingGL) return false;
if(GDIM == 2) return false;
if(WDIM == 2 && (aperiodic || bt::in())) return false;
#ifdef GLES_ONLY
if(need_many_cell_types()) return false;
if(!euclid && !gproduct && !nil) return false;
#endif
if(hyperbolic && pmodel == mdPerspective && !kite::in())
return true;
if(sphere && pmodel == mdPerspective && !rotspace)
return true;
if(nil && S7 == 8)
return false;
if((sn::in() || nil || sl2) && pmodel == mdGeodesic)
return true;
if(euclid && pmodel == mdPerspective && !bt::in())
return true;
if(gproduct)
return true;
if(pmodel == mdPerspective && stretch::in())
return true;
return false;
}
/** do we want to use the raycaster? */
EX bool requested() {
if(cgflags & qRAYONLY) return true;
if(!want_use) return false;
if(intra::in) return true;
if(stretch::in() && sphere) return true;
#if CAP_TEXTURE
if(texture::config.tstate == texture::tsActive) return false;
#endif
if(!available()) return false;
if(want_use == 2) return true;
if(rotspace) return false; // not very good
if(WDIM == 2) return false; // not very good
return racing::on || quotient || fake::in();
}
#if HDR
struct raycaster : glhr::GLprogram {
GLint uStart, uStartid, uM, uLength, uIPD;
GLint uWallstart, uWallX, uWallY;
GLint tConnections, tWallcolor, tTextureMap, tVolumetric;
GLint uBinaryWidth, uPLevel, uLP, uStraighten, uReflectX, uReflectY;
GLint uLinearSightRange, uExpStart, uExpDecay;
GLint uBLevel;
GLint uWallOffset, uSides;
GLint uITOA, uATOI;
GLint uToOrig, uFromOrig;
GLint uProjection;
GLint uEyeShift, uAbsUnit;
GLint uMirrorShift;
GLint tM, uInvLengthM;
GLint tWall, uInvLengthWall;
GLint tPortalConnections;
raycaster(string vsh, string fsh);
};
#endif
#ifdef GLES_ONLY
bool m_via_texture = false;
bool wall_via_texture = false;
static const bool can_via_texture = false; /* textures are not precise enough ): */
#else
bool m_via_texture = true;
bool wall_via_texture = true;
static const bool can_via_texture = true;
#endif
raycaster::raycaster(string vsh, string fsh) : GLprogram(vsh, fsh) {
/* need to set shader_flags to 0 so that attributes are not enabled */
shader_flags = 0;
uStart = glGetUniformLocation(_program, "uStart");
uStartid = glGetUniformLocation(_program, "uStartid");
uM = glGetUniformLocation(_program, "uM");
uLength = glGetUniformLocation(_program, "uLength");
uProjection = glGetUniformLocation(_program, "uProjection");
uIPD = glGetUniformLocation(_program, "uIPD");
uWallstart = glGetUniformLocation(_program, "uWallstart");
uWallX = glGetUniformLocation(_program, "uWallX");
uWallY = glGetUniformLocation(_program, "uWallY");
uBinaryWidth = glGetUniformLocation(_program, "uBinaryWidth");
uStraighten = glGetUniformLocation(_program, "uStraighten");
uPLevel = glGetUniformLocation(_program, "uPLevel");
uLP = glGetUniformLocation(_program, "uLP");
uReflectX = glGetUniformLocation(_program, "uReflectX");
uReflectY = glGetUniformLocation(_program, "uReflectY");
uMirrorShift = glGetUniformLocation(_program, "uMirrorShift");
uLinearSightRange = glGetUniformLocation(_program, "uLinearSightRange");
uExpDecay = glGetUniformLocation(_program, "uExpDecay");
uExpStart = glGetUniformLocation(_program, "uExpStart");
uBLevel = glGetUniformLocation(_program, "uBLevel");
tConnections = glGetUniformLocation(_program, "tConnections");
tWallcolor = glGetUniformLocation(_program, "tWallcolor");
tTextureMap = glGetUniformLocation(_program, "tTextureMap");
tVolumetric = glGetUniformLocation(_program, "tVolumetric");
tPortalConnections = glGetUniformLocation(_program, "tPortalConnections");
tM = glGetUniformLocation(_program, "tM");
uInvLengthM = glGetUniformLocation(_program, "uInvLengthM");
tWall = glGetUniformLocation(_program, "tWall");
uInvLengthWall = glGetUniformLocation(_program, "uInvLengthWall");
uWallOffset = glGetUniformLocation(_program, "uWallOffset");
uSides = glGetUniformLocation(_program, "uSides");
uITOA = glGetUniformLocation(_program, "uITOA");
uATOI = glGetUniformLocation(_program, "uATOI");
uToOrig = glGetUniformLocation(_program, "uToOrig");
uFromOrig = glGetUniformLocation(_program, "uFromOrig");
uEyeShift = glGetUniformLocation(_program, "uEyeShift");
uAbsUnit = glGetUniformLocation(_program, "uAbsUnit");
}
shared_ptr<raycaster> our_raycaster;
#ifdef GLES_ONLY
void add(string& tgt, string type, string name, int min_index, int max_index) {
if(min_index >= max_index) ;
else
if(min_index + 1 == max_index)
tgt += "{ return " + name + "[" + its(min_index) + "]; }";
else {
int mid = (min_index + max_index) / 2;
tgt += "{ if(i<" + its(mid) + ") ";
add(tgt, type, name, min_index, mid);
tgt += " else ";
add(tgt, type, name, mid, max_index);
tgt += " }";
}
}
string build_getter(string type, string name, int index) {
string s = type + " get_" + name + "(int i) \n";
add(s, type, name, 0, index);
return s + "\n";
}
#define GET(array, index) "get_" array "(" index ")"
#else
#define GET(array, index) array "[" index "]"
#endif
EX hookset<void(string&, string&)> hooks_rayshader;
EX hookset<bool(shared_ptr<raycaster>)> hooks_rayset;
tuple<
#if CAP_VR
int, vrhr::eEyes,
#endif
string
> raycaster_state() {
return make_tuple(
#if CAP_VR
vrhr::state,
vrhr::eyes,
#endif
intra::in ? "INTRA" : cgi_string()
);
}
decltype(raycaster_state()) saved_state;
ld ray_scale = 8;
int max_wall_offset = 512;
int max_celltype = 64;
struct raygen {
string fsh, vsh, fmain;
void add_if(const string& seek, const string& function);
int deg, irays;
bool asonov;
bool use_reflect;
bool many_cell_types;
bool eyes;
string getM(string s) {
if(m_via_texture)
return "getM(" + s + ")";
else
return "uM[" + s + "]";
};
string getWall(string s, int coord) {
if(wall_via_texture)
return "getWall(" + s + "," + its(coord) + ")";
else
return "uWall" + string(coord?"Y" : "X") + "[" + s + "]";
};
string getWallstart(string s) {
if(wall_via_texture)
return "getWallstart(" + s + ")";
else
return "uWallstart[" + s + "]";
};
void compute_which_and_dist(int flat1, int flat2);
void apply_reflect(int flat1, int flat2);
void move_forward();
void emit_intra_portal(int gid1, int gid2);
void emit_iterate(int gid1);
void emit_raystarter();
void create();
string f_xpush() { return hyperbolic ? "xpush_h3" : "xpush_s3"; }
string f_len() { return hyperbolic ? "len_h3" : (sphere && rotspace) ? "len_sr" : sl2 ? "len_sl2" : sphere ? "len_s3" : "len_x"; }
string f_len_prod() { return in_h2xe() ? "len_h2" : in_s2xe() ? "len_s2" : "len_e2"; }
void add_functions();
};
raygen our_raygen;
void raygen::add_if(const string& seek, const string& function) {
if(fsh.find(seek) != string::npos || fmain.find(seek) != string::npos)
fsh = function + fsh;
}
void raygen::compute_which_and_dist(int flat1, int flat2) {
using glhr::to_glsl;
if(!is_stepbased()) {
fmain +=
" if(which == -1) {\n";
if(in_h2xe() && hybrid::underlying == gBinary4)
fmain += "for(int i=2; i<=4; i+=2) {";
else if(in_h2xe() && hybrid::underlying == gTernary)
fmain += "for(int i=3; i<=5; i+=2) {";
else if(in_h2xe() && hybrid::underlying == gBinaryTiling)
fmain += "for(int i=0; i<=4; i++) if(i == 0 || i == 4) {";
else
fmain += "for(int i="+its(flat1)+"; i<"+(gproduct ? "sides-2" : ((WDIM == 2 || is_subcube_based(variation) || intra::in) && !bt::in()) ? "sides" : its(flat2))+"; i++) {\n";
fmain += " mediump mat4 m = " + getM("walloffset+i") + ";\n";
if(in_h2xe()) fmain +=
" mediump float v = ((position - m * position)[2] / (m * tangent - tangent)[2]);\n"
" if(v > 1. || v < -1.) continue;\n"
" mediump float d = atanh(v);\n"
" mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if(next_tangent[2] < (m * next_tangent)[2]) continue;\n"
" d /= xspeed;\n";
else if(in_s2xe()) fmain +=
" mediump float v = ((position - m * position)[2] / (m * tangent - tangent)[2]);\n"
" mediump float d = atan(v);\n"
" mediump vec4 next_tangent = tangent * cos(d) - position * sin(d);\n"
" if(next_tangent[2] > (m * next_tangent)[2]) continue;\n"
" d /= xspeed;\n";
else if(in_e2xe()) fmain +=
" mediump float deno = dot(position, tangent) - dot(m*position, m*tangent);\n"
" if(deno < 1e-6 && deno > -1e-6) continue;\n"
" mediump float d = (dot(m*position, m*position) - dot(position, position)) / 2. / deno;\n"
" if(d < 0.) continue;\n"
" mediump vec4 next_position = position + d * tangent;\n"
" if(dot(next_position, tangent) < dot(m*next_position, m*tangent)) continue;\n"
" d /= xspeed;\n";
else if(cgi.emb->is_sph_in_low() && hyperbolic) fmain +=
" mediump float v = ((zpush_h3(-1.) * (position - m * position))[3] / (zpush_h3(-1.) * (m * tangent - tangent))[3]);\n"
" if(v > 1. || v < -1.) continue;\n"
" mediump float d = atanh(v);\n"
" mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if((zpush_h3(-1.) * next_tangent)[3] < (zpush_h3(-1.) * (m * next_tangent))[3]) continue;\n";
else if(hyperbolic) fmain +=
" mediump float v = ((position - m * position)[3] / (m * tangent - tangent)[3]);\n"
" if(v > 1. || v < -1.) continue;\n"
" mediump float d = atanh(v);\n"
" mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if(next_tangent[3] < (m * next_tangent)[3]) continue;\n";
else if(sphere) fmain +=
" mediump float v = ((position - m * position)[3] / (m * tangent - tangent)[3]);\n"
" mediump float d = atan(v);\n"
" mediump vec4 next_tangent = -position * sin(d) + tangent * cos(d);\n"
" if(next_tangent[3] > (m * next_tangent)[3]) continue;\n";
else if(cgi.emb->is_sph_in_low() && euclid) fmain +=
" vec4 tctr = vec4(0, 0, 1, 0);\n"
" mediump float deno = dot(position-tctr, tangent) - dot(m*position-tctr, m*tangent);\n"
" if(deno < 1e-6 && deno > -1e-6) continue;\n"
" mediump float d = (dot(m*position-tctr, m*position-tctr) - dot(position-tctr, position-tctr)) / 2. / deno;\n"
" if(d < 0.) continue;\n"
" mediump vec4 next_position = position + d * tangent;\n"
" if(dot(next_position - tctr, tangent) < dot(m*next_position - tctr, m*tangent)) continue;\n";
else fmain +=
" mediump float deno = dot(position, tangent) - dot(m*position, m*tangent);\n"
" if(deno < 1e-6 && deno > -1e-6) continue;\n"
" mediump float d = (dot(m*position, m*position) - dot(position, position)) / 2. / deno;\n"
" if(d < 0.) continue;\n"
" mediump vec4 next_position = position + d * tangent;\n"
" if(dot(next_position, tangent) < dot(m*next_position, m*tangent)) continue;\n";
fmain +=
" if(d < dist) { dist = d; which = i; }\n"
"}\n";
if(hyperbolic && reg3::ultra_mirror_in()) {
fmain += "for(int i="+its(S7*2)+"; i<"+its(S7*2+isize(cgi.heptshape->vertices_only))+"; i++) {\n";
fmain += "mat4 uMi = " + getM("i") + ";";
fmain +=
" mediump float v = ((position - uMi * position)[3] / (uMi * tangent - tangent)[3]);\n"
" if(v > 1. || v < -1.) continue;\n"
" mediump float d = atanh(v);\n"
" mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if(next_tangent[3] < (uMi * next_tangent)[3]) continue;\n"
" if(d < dist) { dist = d; which = i; }\n"
"}\n";
}
// 20: get to horosphere +uBLevel (take smaller root)
// 21: get to horosphere -uBLevel (take larger root)
if(horos()) {
string push = hyperbolic ? "xpush_h3" : "xpush_h2";
string w = hyperbolic ? "w" : "z";
fmain +=
"for(int i=20; i<22; i++) {\n"
"mediump float sgn = i == 20 ? -1. : 1.;\n"
"mediump vec4 zpos = "+push+"(uBLevel*sgn) * position;\n"
"mediump vec4 ztan = "+push+"(uBLevel*sgn) * tangent;\n"
"mediump float Mp = zpos."+w+" - zpos.x;\n"
"mediump float Mt = ztan."+w+" - ztan.x;\n"
"mediump float a = (Mp*Mp-Mt*Mt);\n"
"mediump float b = Mp/a;\n"
"mediump float c = (1.+Mt*Mt) / a;\n"
"if(b*b < c) continue;\n"
"if(sgn < 0. && Mt > 0.) continue;\n"
"mediump float zsgn = (Mt > 0. ? -sgn : sgn);\n"
"mediump float u = sqrt(b*b-c)*zsgn + b;\n"
"mediump float v = -(Mp*u-1.) / Mt;\n"
"if(a < 1e-5) v = (1.-Mp*Mp) / (2. * Mt);\n"
"mediump float d = asinh(v);\n";
if(gproduct) fmain += "d /= xspeed;\n";
fmain +=
"if(d < 0. && abs(log(position."+w+"*position."+w+"-position.x*position.x)) < uBLevel) continue;\n"
"if(d < dist) { dist = d; which = i; }\n"
"}\n";
}
if(gproduct) fmain +=
"if(zspeed > 0.) { mediump float d = (uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = sides-1; }}\n"
"if(zspeed < 0.) { mediump float d = (-uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = sides-2; }}\n";
fmain += "}\n";
fmain +=
" if(dist < 0.) { dist = 0.; }\n";
fmain +=
" if(which == -1 && dist == 0.) return;\n";
}
}
void raygen::move_forward() {
using glhr::to_glsl;
if(in_h2xe() && !is_stepbased()) fmain +=
" mediump float ch = cosh(dist*xspeed); mediump float sh = sinh(dist*xspeed);\n"
" mediump vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch + position * sh;\n"
" position = v;\n"
" zpos += dist * zspeed;\n";
else if(in_s2xe() && !is_stepbased()) fmain +=
" mediump float ch = cos(dist*xspeed); mediump float sh = sin(dist*xspeed);\n"
" mediump vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch - position * sh;\n"
" position = v;\n"
" zpos += dist * zspeed;\n";
else if(in_e2xe() && !is_stepbased()) fmain +=
" position = position + tangent * dist * xspeed;\n"
" zpos += dist * zspeed;\n";
else if(hyperbolic && !is_stepbased()) fmain +=
" mediump float ch = cosh(dist); mediump float sh = sinh(dist);\n"
" mediump vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch + position * sh;\n"
" position = v;\n";
else if(sphere && !is_stepbased()) fmain +=
" mediump float ch = cos(dist); mediump float sh = sin(dist);\n"
" mediump vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch - position * sh;\n"
" position = v;\n";
else if(is_stepbased()) {
bool use_christoffel = true;
if(sol && nih) fsh +=
"mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n"
" return vec4(-(vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), vel.x*tra.x * exp(2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n"
" }\n";
else if(nih) fsh +=
"mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n"
" return vec4((vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), -vel.x*tra.x * exp(-2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n"
" }\n";
else if(sol) fsh +=
"mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n"
" return vec4(-vel.z*tra.x - vel.x*tra.z, vel.z*tra.y + vel.y * tra.z, vel.x*tra.x * exp(2.*pos.z) - vel.y * tra.y * exp(-2.*pos.z), 0.);\n"
" }\n";
else if(nil) {
fsh +=
"mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n"
" mediump float x = pos.x;\n"
" const float mu = " + to_glsl((1-nilv::model_used)/2) + ";\n"
" pos[2] += pos[0] * pos[1] * mu;\n"
" vel[2] += (pos[0] * vel[1] + pos[1] * vel[0]) * mu;\n"
" tra[2] += (pos[0] * tra[1] + pos[1] * tra[0]) * mu;\n"
" vec4 res = vec4(x*vel.y*tra.y - 0.5*dot(vel.yz,tra.zy), -.5*x*dot(vel.yx,tra.xy) + .5 * dot(vel.zx,tra.xz), -.5*(x*x-1.)*dot(vel.yx,tra.xy)+.5*x*dot(vel.zx,tra.xz), 0.);\n"
" res[2] -= (pos[0] * res[1] + vel[0] * vel[1] + pos[2] * res[0]) * mu;\n"
" return res;\n"
" }\n";
use_christoffel = false;
}
else if(sl2 || stretch::in()) {
if(sl2) {
fsh += "mediump mat4 s_translate(vec4 h) {\n"
"return mat4(h.w,h.z,h.y,h.x,-h.z,h.w,-h.x,h.y,h.y,-h.x,h.w,-h.z,h.x,h.y,h.z,h.w);\n"
"}\n";
}
else {
fsh += "mediump mat4 s_translate(vec4 h) {\n"
"return mat4(h.w,h.z,-h.y,-h.x,-h.z,h.w,h.x,-h.y,h.y,-h.x,h.w,-h.z,h.x,h.y,h.z,h.w);\n"
"}\n";
}
fsh += "mediump mat4 s_itranslate(vec4 h) {\n"
"h.xyz = -h.xyz; return s_translate(h);\n"
"}\n";
if(stretch::mstretch) {
fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n"
"vel = s_itranslate(toOrig * pos) * toOrig * vel;\n"
"tra = s_itranslate(toOrig * pos) * toOrig * tra;\n"
"return fromOrig * s_translate(toOrig * pos) * vec4(\n";
for(int i=0; i<3; i++) {
auto &c = stretch::ms_christoffel;
fsh += " 0.";
for(int j=0; j<3; j++)
for(int k=0; k<3; k++)
if(c[i][j][k])
fsh += " + vel["+its(j)+"]*tra["+its(k)+"]*" + to_glsl(c[i][j][k]);
fsh += " ,\n";
}
fsh += " 0);\n"
"}\n";
}
else
use_christoffel = false;
}
else use_christoffel = false;
if(use_christoffel) fsh += "mediump vec4 get_acc(mediump vec4 pos, mediump vec4 vel) {\n"
" return christoffel(pos, vel, vel);\n"
" }\n";
if(sn::in() && !asonov) fsh += "uniform mediump float uBinaryWidth;\n";
fmain +=
" dist = next < minstep ? 2.*next : next;\n";
if(nil && !use_christoffel) fsh +=
"mediump vec4 translate(mediump vec4 a, mediump vec4 b) {\n"
"return vec4(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1], b[3]);\n"
"}\n"
"mediump vec4 translatev(mediump vec4 a, mediump vec4 t) {\n"
"return vec4(t[0], t[1], t[2] + a[0] * t[1], 0.);\n"
"}\n"
"mediump vec4 itranslate(mediump vec4 a, mediump vec4 b) {\n"
"return vec4(-a[0] + b[0], -a[1] + b[1], -a[2] + b[2] - a[0] * (b[1]-a[1]), b[3]);\n"
"}\n"
"mediump vec4 itranslatev(mediump vec4 a, mediump vec4 t) {\n"
"return vec4(t[0], t[1], t[2] - a[0] * t[1], 0.);\n"
"}\n";
// if(nil) fmain += "tangent = translate(position, itranslate(position, tangent));\n";
if(use_christoffel) fmain +=
"mediump vec4 vel = tangent * dist;\n"
"mediump vec4 acc1 = get_acc(position, vel);\n"
"mediump vec4 acc2 = get_acc(position + vel / 2., vel + acc1/2.);\n"
"mediump vec4 acc3 = get_acc(position + vel / 2. + acc1/4., vel + acc2/2.);\n"
"mediump vec4 acc4 = get_acc(position + vel + acc2/2., vel + acc3/2.);\n"
"mediump vec4 nposition = position + vel + (acc1+acc2+acc3)/6.;\n";
if((sl2 || stretch::in()) && use_christoffel) {
if(sl2) fmain +=
"nposition = nposition / sqrt(dot(position.zw, position.zw) - dot(nposition.xy, nposition.xy));\n";
else if(stretch::in()) fmain +=
"nposition = nposition / sqrt(dot(nposition, nposition));\n";
}
if((sl2 || stretch::in()) && !use_christoffel) {
ld SV = stretch::not_squared();
ld mul = (sphere?1:-1)-1/SV/SV;
fmain +=
"vec4 vel = s_itranslate(position) * tangent * dist;\n"
"vec4 vel1 = vel; vel1.z *= " + to_glsl(stretch::not_squared()) + ";\n"
"mediump float vlen = length(vel1.xyz);\n"
"if(vel.z<0.) vlen=-vlen;\n"
"float z_part = vel1.z/vlen;\n"
"float x_part = sqrt(1.-z_part*z_part);\n"
"const float SV = " + to_glsl(SV) + ";\n"
"float rparam = x_part / z_part / SV;\n"
"float beta = atan2(vel.y,vel.x);\n"
"if(vlen<0.) beta += PI;\n"
"mediump vec4 nposition, ntangent;\n";
if(sl2) fmain +=
"if(rparam > 1.) {\n"
"float cr = 1./sqrt(rparam*rparam-1.);\n"
"float sr = rparam*cr;\n"
"float z = cr * " + to_glsl(mul) + ";\n"
"float a = vlen / length(vec2(sr, cr/SV));\n"
"float k = -a;\n"
"float u = z*a;\n"
"float xy = sr * sinh(k);\n"
"float zw = cr * sinh(k);\n"
"nposition = vec4("
"-xy*cos(u+beta),"
"-xy*sin(u+beta),"
"zw*cos(u)-cosh(k)*sin(u),"
"zw*sin(u)+cosh(k)*cos(u)"
");\n"
"ntangent = vec4("
"-sr*cosh(k)*k*cos(u+beta) + u*xy*sin(u+beta),"
"-sr*cosh(k)*k*sin(u+beta) - u*xy*cos(u+beta),"
"k*cr*cosh(k)*cos(u)-zw*sin(u)*u-k*sinh(k)*sin(u)-u*cosh(k)*cos(u),"
"k*cr*cosh(k)*sin(u)+u*zw*cos(u)+k*sinh(k)*cos(u)-u*cosh(k)*sin(u)"
");\n"
"}\n"
"else {\n"
"float r = atanh(rparam);\n"
"float cr = cosh(r);\n"
"float sr = sinh(r);\n"
"float z = cr * "+to_glsl(mul)+";\n"
"float a = vlen / length(vec2(sr, cr/SV));\n"
"float k = -a;\n"
"float u = z*a;\n"
"float xy = sr * sin(k);\n"
"float zw = cr * sin(k);\n"
"ntangent = vec4("
"-sr*cos(k)*k*cos(u+beta) + u*xy*sin(u+beta),"
"-sr*cos(k)*k*sin(u+beta) - u*xy*cos(u+beta),"
"k*cr*cos(k)*cos(u)-zw*sin(u)*u+k*sin(k)*sin(u)-u*cos(k)*cos(u),"
"k*cr*cos(k)*sin(u)+zw*cos(u)*u-k*sin(k)*cos(u)-u*cos(k)*sin(u)"
");\n"
"nposition = vec4("
"-xy * cos(u+beta),"
"-xy * sin(u+beta),"
"zw * cos(u) - cos(k) * sin(u),"
"zw * sin(u) + cos(k)*cos(u)"
");\n"
"}\n";
else fmain +=
"if(true) {\n"
"float r = atan(rparam);\n"
"float cr = cos(r);\n"
"float sr = sin(r);\n"
"float z = cr * "+to_glsl(mul)+";\n"
"float a = vlen / length(vec2(sr, cr/SV));\n"
"float k = a;\n"
"float u = z*a;\n"
"float xy = sr * sin(k);\n"
"float zw = cr * sin(k);\n"
"ntangent = vec4("
"sr*cos(k)*k*cos(u+beta) - u*xy*sin(u+beta),"
"sr*cos(k)*k*sin(u+beta) + u*xy*cos(u+beta),"
"k*cr*cos(k)*cos(u)-zw*sin(u)*u+k*sin(k)*sin(u)-u*cos(k)*cos(u),"
"k*cr*cos(k)*sin(u)+zw*cos(u)*u-k*sin(k)*cos(u)-u*cos(k)*sin(u)"
");\n"
"nposition = vec4("
"xy * cos(u+beta),"
"xy * sin(u+beta),"
"zw * cos(u) - cos(k) * sin(u),"
"zw * sin(u) + cos(k)*cos(u)"
");\n"
"}\n";
fmain +=
"ntangent = ntangent / dist;\n"
"ntangent = s_translate(position) * ntangent;\n"
"nposition = s_translate(position) * nposition;\n";
}
if(nil && !use_christoffel && !eyes) {
fmain +=
"mediump vec4 xp, xt;\n"
"mediump vec4 back = itranslatev(position, tangent);\n"
"if(back.x == 0. && back.y == 0.) {\n"
" xp = vec4(0., 0., back.z*dist, 1.);\n"
" xt = back;\n"
" }\n"
"else if(abs(back.z) == 0.) {\n"
" xp = vec4(back.x*dist, back.y*dist, back.x*back.y*dist*dist/2., 1.);\n"
" xt = vec4(back.x, back.y, dist*back.x*back.y, 0.);\n"
" }\n"
"else if(abs(back.z) < 1e-1) {\n"
// we use the midpoint method here, because the formulas below cause glitches due to mediump float precision
" mediump vec4 acc = christoffel(vec4(0,0,0,1), back, back);\n"
" mediump vec4 pos2 = back * dist / 2.;\n"
" mediump vec4 tan2 = back + acc * dist / 2.;\n"
" mediump vec4 acc2 = christoffel(pos2, tan2, tan2);\n"
" xp = vec4(0,0,0,1) + back * dist + acc2 / 2. * dist * dist;\n"
" xt = back + acc * dist;\n"
" }\n"
"else {\n"
" mediump float alpha = atan2(back.y, back.x);\n"
" mediump float w = back.z * dist;\n"
" mediump float c = length(back.xy) / back.z;\n"
" xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n"
" xt = back.z * vec4("
"c*cos(alpha+w),"
"c*sin(alpha+w),"
"1. + c*c*2.*sin(w/2.)*sin(alpha+w)*cos(alpha+w/2.),"
"0.);\n"
" }\n"
"mediump vec4 nposition = translate(position, xp);\n";
}
if(asonov) {
fsh += "uniform mediump mat4 uStraighten;\n";
fmain += "mediump vec4 sp = uStraighten * nposition;\n";
}
if(eyes) {
fmain +=
" mediump float t = go + dist;\n";
fmain += gproduct ?
" mediump vec4 v = at1 * t;\n" :
" mediump vec4 v = at0 * t;\n";
fmain +=
" v[3] = 1.;\n"
" mediump vec4 azeq = uEyeShift * v;\n";
if(nil) fmain +=
" mediump float alpha = atan2(azeq.y, azeq.x);\n"
" mediump float w = azeq.z;\n"
" mediump float c = length(azeq.xy) / azeq.z;\n"
" mediump vec4 xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n"
" mediump vec4 orig_position = vw * vec4(0., 0., 0., 1.);\n"
" mediump vec4 nposition = translate(orig_position, xp);\n";
else if(gproduct) {
fmain +=
" mediump float alen_xy = length(azeq.xy);\n";
fmain += " mediump float nzpos = zpos + azeq.z;\n";
if(in_h2xe()) {
fmain += " azeq.xy *= sinh(alen_xy) / alen_xy;\n";
fmain += " azeq.z = cosh(alen_xy);\n";
}
else if(in_s2xe()) {
fmain += " azeq.xy *= sin (alen_xy) / alen_xy;\n";
fmain += " azeq.z = cos(alen_xy);\n";
}
else {
/* euclid */
fmain += " azeq.z = 1.;\n";
}
fmain += "azeq.w = 0.;\n";
fmain +=
" mediump vec4 nposition = vw * azeq;\n";
}
else {
fmain +=
" mediump float alen = length(azeq.xyz);\n";
if(hyperbolic) fmain +=
" azeq *= sinh(alen) / alen;\n"
" azeq[3] = cosh(alen);\n";
else if(sphere) fmain +=
" azeq *= sin(alen) / alen;\n"
" azeq[3] = cos(alen);\n";
else /* euclid */ fmain +=
" azeq[3] = 1;\n";
fmain +=
" mediump vec4 nposition = vw * azeq;\n";
}
}
else if(hyperbolic) {
fmain +=
" mediump float ch = cosh(dist); mediump float sh = sinh(dist);\n"
" mediump vec4 v = position * ch + tangent * sh;\n"
" mediump vec4 ntangent = tangent * ch + position * sh;\n"
" mediump vec4 nposition = v;\n";
}
else if(sphere && !stretch::in()) {
fmain +=
" mediump float ch = cos(dist); mediump float sh = sin(dist);\n"
" mediump vec4 v = position * ch + tangent * sh;\n"
" mediump vec4 ntangent = tangent * ch - position * sh;\n"
" mediump vec4 nposition = v;\n";
}
bool reg = hyperbolic || sphere || euclid || sl2 || gproduct;
if(reg) {
string s = (rotspace || gproduct) ? "-2" : "";
fmain +=
" mediump float best = "+f_len()+"(nposition);\n"
" for(int i=0; i<sides"+s+"; i++) {\n"
" mediump float cand = "+f_len()+"(" + getM("walloffset+i") + " * nposition);\n"
" if(cand < best) { best = cand; which = i; }\n"
" }\n";
if(rotspace) fmain +=
" if(which == -1) {\n"
" best = len_rotspace(nposition);\n"
" mediump float cand1 = len_rotspace(" + getM("walloffset+sides-2") + "*nposition);\n"
" if(cand1 < best) { best = cand1; which = sides-2; }\n"
" mediump float cand2 = len_rotspace(" + getM("walloffset+sides-1") + "*nposition);\n"
" if(cand2 < best) { best = cand2; which = sides-1; }\n"
" }\n";
if(gproduct) {
fmain +=
"if(nzpos > uPLevel) which = sides-1;\n"
"if(nzpos <-uPLevel) which = sides-2;\n";
}
}
if(nil) fmain +=
"mediump float rz = (abs(nposition.x) > abs(nposition.y) ? -nposition.x*nposition.y : 0.) + nposition.z;\n";
fmain +=
"if(next >= minstep) {\n";
string hnilw = to_glsl(nilv::nilwidth / 2);
string hnilw2 = to_glsl(nilv::nilwidth * nilv::nilwidth / 2);
if(reg) fmain += "if(which != -1) {\n";
else if(asonov) fmain +=
"if(abs(sp.x) > 1. || abs(sp.y) > 1. || abs(sp.z) > 1.) {\n";
else if(nih) fmain +=
"if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > .5) {\n";
else if(sol) fmain +=
"if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > log(2.)/2.) {\n";
else fmain +=
"if(abs(nposition.x) > "+hnilw+" || abs(nposition.y) > "+hnilw+" || abs(rz) > "+hnilw2+") {\n";
fmain +=
"next = dist / 2.; continue;\n"
"}\n"
"if(next < maxstep) next = next / 2.;\n"
"}\n"
"else {\n";
if(sn::in()) {
if(asonov) fmain +=
"if(sp.x > 1.) which = 4;\n"
"if(sp.y > 1.) which = 5;\n"
"if(sp.x <-1.) which = 10;\n"
"if(sp.y <-1.) which = 11;\n"
"if(sp.z > 1.) {\n"
"mediump float best = 999.;\n"
"for(int i=0; i<4; i++) {\n"
"mediump float cand = "+f_len()+"(uStraighten * " + getM("i") + " * position);\n"
"if(cand < best) { best = cand; which = i;}\n"
"}\n"
"}\n"
"if(sp.z < -1.) {\n"
"mediump float best = 999.;\n"
"for(int i=6; i<10; i++) {\n"
"mediump float cand = "+f_len()+"(uStraighten * " + getM("i") + " * position);\n"
"if(cand < best) { best = cand; which = i;}\n"
"}\n"
"}\n";
else if(sol && !nih) fmain +=
"if(nposition.x > uBinaryWidth) which = 0;\n"
"if(nposition.x <-uBinaryWidth) which = 4;\n"
"if(nposition.y > uBinaryWidth) which = 1;\n"
"if(nposition.y <-uBinaryWidth) which = 5;\n";
if(nih) fmain +=
"if(nposition.x > uBinaryWidth) which = 0;\n"
"if(nposition.x <-uBinaryWidth) which = 2;\n"
"if(nposition.y > uBinaryWidth) which = 1;\n"
"if(nposition.y <-uBinaryWidth) which = 3;\n";
if(sol && nih) fmain +=
"if(nposition.z > .5) which = nposition.x > 0. ? 5 : 4;\n"
"if(nposition.z <-.5) which = nposition.y > uBinaryWidth/3. ? 8 : nposition.y < -uBinaryWidth/3. ? 6 : 7;\n";
if(nih && !sol) fmain +=
"if(nposition.z > .5) which = 4;\n"
"if(nposition.z < -.5) which = (nposition.y > uBinaryWidth/3. ? 9 : nposition.y < -uBinaryWidth/3. ? 5 : 7) + (nposition.x>0.?1:0);\n";
if(sol && !nih && !asonov) fmain +=
"if(nposition.z > log(2.)/2.) which = nposition.x > 0. ? 3 : 2;\n"
"if(nposition.z <-log(2.)/2.) which = nposition.y > 0. ? 7 : 6;\n";
}
else if(nil) fmain +=
"if(nposition.x > "+hnilw+") which = 3;\n"
"if(nposition.x <-"+hnilw+") which = 0;\n"
"if(nposition.y > "+hnilw+") which = 4;\n"
"if(nposition.y <-"+hnilw+") which = 1;\n"
"if(rz > "+hnilw2+") which = 5;\n"
"if(rz <-"+hnilw2+") which = 2;\n";
fmain +=
"next = maxstep;\n"
"}\n";
if(use_christoffel) fmain +=
"tangent = tangent + (acc1+2.*acc2+2.*acc3+acc4)/(6.*dist);\n";
else if(nil && !eyes) fmain +=
"tangent = translatev(position, xt);\n";
else if(!eyes)
fmain +=
"tangent = ntangent;\n";
if(!eyes) fmain +=
"position = nposition;\n";
else fmain += "vec4 position = nposition;\n";
if((stretch::in() || sl2) && use_christoffel) {
fmain +=
"tangent = s_itranslate(toOrig * position) * toOrig * tangent;\n"
"tangent[3] = 0.;\n";
if(stretch::mstretch)
fmain +=
"float nvelsquared = dot(tangent.xyz, (uATOI * tangent).xyz);\n";
else
fmain +=
"float nvelsquared = tangent.x * tangent.x + tangent.y * tangent.y + "
+ to_glsl(stretch::squared()) + " * tangent.z * tangent.z;\n";
fmain +=
"tangent /= sqrt(nvelsquared);\n"
"tangent = fromOrig * s_translate(toOrig * position) * tangent;\n";
}
}
else fmain +=
"position = position + tangent * dist;\n";
}
void raygen::apply_reflect(int flat1, int flat2) {
if(gproduct) fmain += "if(reflect && which >= sides-2) { zspeed = -zspeed; continue; }\n";
if(horos()) {
fmain +=
"if(reflect && (which < "+its(flat1)+" || which >= "+its(flat2)+")) {\n";
if(hyperbolic) fmain +=
" mediump float x = -log(position.w - position.x);\n"
" mediump vec4 xtan = xpush_h3(-x) * tangent;\n"
" mediump float diag = (position.y*position.y+position.z*position.z)/2.;\n"
" mediump vec4 normal = vec4(1.-diag, -position.y, -position.z, -diag);\n"
" mediump float mdot = dot(xtan.xyz, normal.xyz) - xtan.w * normal.w;\n";
else fmain +=
" mediump float x = -log(position.z - position.x);\n"
" mediump vec4 xtan = xpush_h2(-x) * tangent;\n"
" mediump float diag = position.y*position.y/2.;\n"
" mediump vec4 normal = vec4(1.-diag, -position.y, -diag, 0.);\n"
" mediump float mdot = dot(xtan.xy, normal.xy) - xtan.w * normal.w;\n";
fmain +=
" xtan = xtan - normal * mdot * 2.;\n"
" tangent = xpush_h(x) * xtan;\n"
" continue;\n"
" }\n";
}
if(asonov) {
fmain +=
" if(reflect) {\n"
" if(which == 4 || which == 10) tangent = refl(tangent, position.z, uReflectX);\n"
" else if(which == 5 || which == 11) tangent = refl(tangent, position.z, uReflectY);\n"
" else tangent.z = -tangent.z;\n"
" }\n";
fsh +=
"uniform mediump vec4 uReflectX, uReflectY;\n"
"mediump vec4 refl(mediump vec4 t, float z, mediump vec4 r) {\n"
"t.x *= exp(z); t.y /= exp(z);\n"
"t -= dot(t, r) * r;\n"
"t.x /= exp(z); t.y *= exp(z);\n"
"return t;\n"
"}\n";
}
else if(sol && !nih && !asonov) fmain +=
" if(reflect) {\n"
" if(which == 0 || which == 4) tangent.x = -tangent.x;\n"
" else if(which == 1 || which == 5) tangent.y = -tangent.y;\n"
" else tangent.z = -tangent.z;\n"
" continue;\n"
" }\n";
else if(nih) fmain +=
" if(reflect) {\n"
" if(which == 0 || which == 2) tangent.x = -tangent.x;\n"
" else if(which == 1 || which == 3) tangent.y = -tangent.y;\n"
" else tangent.z = -tangent.z;\n"
" continue;\n"
" }\n";
else {
fmain +=
" if(reflect) {\n"
" tangent = " + getM("uMirrorShift+walloffset+which") + " * tangent;\n"
" continue;\n"
" }\n";
if(fsh.find("uMirrorShift") == string::npos)
fsh += "uniform int uMirrorShift;\n";
}
}
void raygen::emit_intra_portal(int gid1, int gid2) {
if(1) {
intra::resetter ir;
intra::switch_to(gid2);
}
if(gproduct) {
fmain += "mediump vec4 nposition;\n";
fmain += "if(pconnection.x != .5) {\n"; // kind != 0
if(1) {
string fn = bt::in() ? "to_poco_h2xr_b" : in_h2xe() ? "to_poco_h2xr_h" : "to_poco_s2xr_s";
string tmul = "";
if(!bt::in()) {
fmain +=
" mediump mat4 tkt = " + getM("mid+1") + ";\n";
tmul = "tkt*";
}
fmain +=
" nposition = position + tangent * xspeed * 1e-3;\n"
" position = "+fn+"("+tmul+"position);\n"
" position.z = 0.;\n" // zpos - uPLevel;\n"
" nposition = "+fn+"("+tmul+"nposition);\n"
" nposition.z = zspeed * 1e-3;\n"
" if(pconnection.y < .5) { nposition.z = -nposition.z; nposition.x = -nposition.x; position.x = -position.x; }\n";
}
fmain += " } else {\n";
if(1) {
string fn = in_h2xe() ? "to_poco_h2xr_e" : "to_poco_s2xr_e";
fmain +=
" nposition = position + tangent * xspeed * 1e-3;\n"
" mediump mat4 tkt = " + getM("mid+1") + ";\n"
" position = "+fn+"(tkt * position);\n"
" position.y = zpos;\n"
" nposition = "+fn+"(tkt * nposition);\n"
" nposition.y = zpos + zspeed * 1e-3;\n";
}
fmain += " }\n";
}
else if(hyperbolic && bt::in()) {
fmain +=
" mediump vec4 nposition = position + tangent * 1e-3;\n"
" mediump mat4 tkt = " + getM("mid+1") + ";\n"
" position = deparabolici13(position);\n"
" nposition = deparabolici13(nposition);\n"
" position = tkt * position;\n"
" nposition = tkt * nposition;\n"
" position.z *= exp(position.y);\n"
" nposition.z *= exp(nposition.y);\n";
}
else if(sol) {
fmain +=
" mediump vec4 nposition = position + tangent * 1e-3;\n"
" mediump mat4 tkt = " + getM("mid+1") + ";\n"
" position = tkt * position;\n"
" nposition = tkt * nposition;\n"
" position.z *= exp(-position.y);\n"
" nposition.z *= exp(-nposition.y);\n";
}
else {
fmain +=
" mediump vec4 nposition = position + tangent * 1e-3;\n"
" mediump mat4 tkt = " + getM("mid+1") + ";\n";
if(hyperbolic) fmain +=
" position = to_poco_h3(tkt * position);\n"
" nposition = to_poco_h3(tkt * nposition);\n";
else if(sphere) fmain +=
" position = to_poco_s3(tkt * position);\n"
" nposition = to_poco_s3(tkt * nposition);\n";
else fmain +=
" position = tkt * position;\n"
" nposition = tkt * nposition;\n";
}
fmain +=
" mediump mat4 m = " + getM("mid") + ";\n"
" position = m * position;\n"
" nposition = m * nposition;\n";
intra::resetter ir;
intra::switch_to(gid2);
if(gproduct) {
fmain += "if(pconnection.z != .5) {\n"; // kind != 0
if(1) {
string sgn = in_h2xe() ? "-" : "+";
string fn = bt::in() ? "from_poco_h2xr_b" : in_h2xe() ? "itkt*from_poco_h2xr_h" : "itkt*from_poco_s2xr_s";
fmain +=
" if(pconnection.w < .5) { position.z = -position.z; nposition.z = -nposition.z; nposition.x = -nposition.x; position.x = -position.x; }\n"
" zspeed = (nposition.z - position.z) * 1e3;\n"
" zpos = position.z + (pconnection.w - .5) * 16.;\n"
" mediump mat4 itkt = " + getM("mid+2") + ";\n"
" position = "+fn+"(position);\n"
" nposition = "+fn+"(nposition);\n"
" tangent = (nposition - position) * 1e3;\n"
" mediump float pnorm = tangent.z * position.z "+sgn+" tangent.x * position.x "+sgn+" tangent.y * position.y;\n"
" tangent -= position * pnorm;\n"
" xspeed = sqrt(tangent.x * tangent.x + tangent.y * tangent.y "+sgn+" tangent.z * tangent.z);\n"
" tangent /= xspeed;\n";
}
fmain += " } else {\n";
if(1) {
string sgn = in_h2xe() ? "-" : "+";
string fn = in_h2xe() ? "from_poco_h2xr_e" : "from_poco_s2xr_e";
fmain +=
" mediump mat4 itkt = " + getM("mid+2") + ";\n";
fmain +=
" zpos = position.y;\n"
" zspeed = (nposition.y - zpos) * 1e3;\n"
" position = itkt * "+fn+"(position);\n"
" nposition = itkt * "+fn+"(nposition);\n"
" tangent = (nposition - position) * 1e3;\n"
" mediump float pnorm = tangent.z * position.z "+sgn+" dot(position.xy, tangent.xy);\n"
" tangent -= position * pnorm;\n"
" xspeed = sqrt(dot(tangent.xy, tangent.xy) "+sgn+" tangent.z * tangent.z);\n"
" tangent /= xspeed;\n"
" mediump float l = xspeed*xspeed+zspeed*zspeed;\n"
" xspeed /= sqrt(l); zspeed /= sqrt(l);\n";
}
fmain += "}\n";
}
else if(sol) {
fmain +=
" mediump mat4 itkt = " + getM("mid+2") + ";\n";
fmain +=
" position.z *= exp(position.y);\n"
" nposition.z *= exp(nposition.y);\n"
" position = itkt * position;\n"
" nposition = itkt * nposition;\n"
" tangent = (nposition - position) * 1e3;\n"
" float next = maxstep;\n";
}
else {
fmain +=
" mediump mat4 itkt = " + getM("mid+2") + ";\n";
if(hyperbolic || sphere) {
string sgn = hyperbolic ? "-" : "+";
if(hyperbolic && bt::in()) {
fmain +=
" position.z *= exp(-position.y);\n"
" nposition.z *= exp(-nposition.y);\n"
" position = itkt * position;\n"
" nposition = itkt * nposition;\n"
" position = enparabolici13(position);\n"
" nposition = enparabolici13(nposition);\n";
}
else {
string he = hyperbolic ? "from_poco_h3" : "from_poco_s3";
fmain +=
" position = itkt * "+he+"(position);\n"
" nposition = itkt * "+he+"(nposition);\n";
}
fmain +=
" tangent = (nposition - position) * 1e3;\n"
" mediump float pnorm = position.w * position.w "+sgn+" dot(position.xyz, position.xyz);\n"
" position /= sqrt(pnorm);\n"
" pnorm = tangent.w * position.w "+sgn+" dot(position.xyz, tangent.xyz);\n"
" tangent -= position * pnorm;\n"
" mediump float xspeed = sqrt(dot(tangent.xyz, tangent.xyz) "+sgn+" tangent.w * tangent.w);\n"
" tangent /= xspeed;\n";
}
else fmain +=
" position = itkt * position;\n"
" nposition = itkt * nposition;\n"
" tangent = (nposition - position) * 1e3;\n"
" tangent /= dot(tangent.xyz, tangent.xyz);\n";
}
}
void raygen::emit_iterate(int gid1) {
using glhr::to_glsl;
if(intra::in && gproduct)
fmain += " const mediump float uPLevel = " + to_glsl(cgi.plevel/2) + ";\n";
int flat1 = 0, flat2 = deg;
if(gproduct || rotspace) flat2 -= 2;
#if CAP_BT
if(horos()) {
if(intra::in)
fmain += "mediump float uBLevel = " + to_glsl(log(bt::expansion()) / 2) + ";\n";
else
fsh += "uniform mediump float uBLevel;\n";
flat1 = bt::dirs_outer();
flat2 -= bt::dirs_inner();
}
#endif
fmain +=
" mediump float dist = 100.;\n";
fmain +=
" int which = -1;\n";
if(intra::in) {
if(hyperbolic) fmain += "iter += 44;\n";
else if(!sol) fmain += "iter += 4;\n";
}
if(in_e2xe() && !eyes) fmain += "tangent.w = position.w = 0.;\n";
if(IN_ODS) fmain +=
" if(go == 0.) {\n"
" mediump float best = "+f_len()+"(position);\n"
" for(int i=0; i<sides; i++) {\n"
" mediump float cand = "+f_len()+"(" + getM("i") + " * position);\n"
" if(cand < best - .001) { dist = 0.; best = cand; which = i; }\n"
" }\n"
" }\n";
compute_which_and_dist(flat1, flat2);
vid.fixed_yz = false;
// shift d units
if(use_reflect) fmain +=
"bool reflect = false;\n";
move_forward();
if(!eyes) {
if(hyperbolic) fmain +=
"position /= sqrt(position.w*position.w - dot(position.xyz, position.xyz));\n"
"tangent -= dot(vec4(-position.xyz, position.w), tangent) * position;\n"
"tangent /= sqrt(dot(tangent.xyz, tangent.xyz) - tangent.w*tangent.w);\n";
if(in_h2xe()) fmain +=
"position /= sqrt(position.z*position.z - dot(position.xy, position.xy));\n"
"tangent -= dot(vec3(-position.xy, position.z), tangent.xyz) * position;\n"
"tangent /= sqrt(dot(tangent.xy, tangent.xy) - tangent.z*tangent.z);\n";
}
if(horos()) {
string w20, w21;
if(in_h2xe() && hybrid::underlying == gBinary4) {
w21 = " for(int i=0; i<2; i++) {\n";
w20 = "int i=3; {\n";
}
else if(in_h2xe() && hybrid::underlying == gTernary) {
w21 = " for(int i=0; i<3; i++) {\n";
w20 = "int i=4; {\n";
}
else if(in_h2xe() && hybrid::underlying == gBinaryTiling) {
w20 = "int i = sides == 8 ? 5 : position.y < 0. ? 5 : 6; {\n";
w21 = "for(int i=1; i<4; i++) {\n";
}
else {
w20 = " for(int i="+its(flat2)+"; i<"+its(S7)+"; i++) {\n";
w21 = "for(int i=0; i<"+its(flat1)+"; i++) {\n";
}
fmain +=
"if(which == 20) {\n"
" mediump float best = 999.;\n"
+w20+
" mediump float cand = "+f_len_prod()+"(" + getM("walloffset+i") + " * position);\n"
" if(cand < best) { best = cand; which = i; }\n"
" }\n"
"}\n"
"if(which == 21) {\n"
"mediump float best = 999.;\n"
+w21+
" mediump float cand = "+f_len_prod()+"(" + getM("walloffset+i") + " * position);\n"
" if(cand < best) { best = cand; which = i; }\n"
" }\n"
"}\n";
}
if(volumetric::on) fmain +=
"if(dist > 0. && go < " + to_glsl(hard_limit) + ") {\n"
" if(dist > "+to_glsl(hard_limit)+" - go) dist = "+to_glsl(hard_limit)+" - go;\n"
" mediump vec4 col = texture2D(tVolumetric, cid);\n"
" mediump float factor = col.w; col.w = 1.;\n"
" mediump float frac = exp(-(factor + 1. / uExpDecay) * dist);\n"
" gl_FragColor += left * (1.-frac) * col;\n"
" left *= frac;\n"
" }\n;";
fmain += " go = go + dist;\n";
fmain += "if(which == -1) continue;\n";
if(gproduct && eyes) fmain += "position.w = -nzpos;\n";
else if(gproduct) fmain += "position.w = -zpos;\n";
if(reg3::ultra_mirror_in()) fmain +=
"if(which >= " + its(S7) + ") {"
" tangent = " + getM("which") + " * tangent;\n"
" continue;\n"
" }\n";
// apply wall color
fmain +=
" mediump vec2 u = cid + vec2(float(which) / float(uLength), 0);\n"
" mediump vec4 col = texture2D(tWallcolor, u);\n"
" if(col[3] > 0.0) {\n";
if(eyes)
fmain += " mediump float gou = go / uAbsUnit;\n";
else
fmain += " mediump float gou = go;\n";
if(hard_limit < NO_LIMIT)
fmain += " if(gou > " + to_glsl(hard_limit) + ") { gl_FragDepth = 1.; return; }\n";
if(!(levellines && disable_texture)) {
fmain += " mediump vec4 pos = position;\n";
if(nil) fmain += "if(which == 2 || which == 5) pos.z = 0.;\n";
else if(hyperbolic && bt::in()) fmain +=
"pos = deparabolici13(pos);\n"
"pos.xyz = pos.zxy;\n";
else if(hyperbolic || sphere) fmain +=
"pos /= pos.w;\n";
else if(gproduct && bt::in()) fmain +=
"pos.xy = deparabolic12(pos).xy;\n"
"pos.z = -pos.w; pos.w = 0.;\n"
;
else if(gproduct) fmain +=
"pos = vec4(pos.x/pos.z, pos.y/pos.z, -pos.w, 0);\n";
fmain +=
" mediump vec2 inface = map_texture(pos, which+walloffset);\n"
" mediump vec3 tmap = texture2D(tTextureMap, u).rgb;\n"
" if(tmap.z == 0.) col.xyz *= min(1., (1.-inface.x)/ tmap.x);\n"
" else {\n"
" mediump vec2 inface2 = tmap.xy + tmap.z * inface;\n"
" col.xyz *= texture2D(tTexture, inface2).rgb;\n"
" }\n";
}
if(volumetric::on)
fmain += " mediump float d = uExpStart * exp(-gou / uExpDecay);\n";
else
fmain +=
" mediump float d = max(1. - gou / uLinearSightRange, uExpStart * exp(-gou / uExpDecay));\n";
if(!volumetric::on) fmain +=
" col.xyz = col.xyz * d + uFogColor.xyz * (1.-d);\n";
if(nil) fmain +=
" if(abs(abs(position.x)-abs(position.y)) < .005) col.xyz /= 2.;\n";
if(use_reflect) fmain +=
" if(col.w == 1.) {\n"
" col.w = " + to_glsl(1-reflect_val)+";\n"
" reflect = true;\n"
" }\n";
ld vnear = glhr::vnear_default;
ld vfar = glhr::vfar_default;
fmain +=
" gl_FragColor.xyz += left * col.xyz * col.w;\n";
if(use_reflect) fmain +=
" if(reflect && depthtoset) {\n";
else fmain +=
" if(col.w == 1.) {\n";
if(hyperbolic && !eyes && !intra::in) {
fmain +=
" mediump vec4 t = at0 * tanh(go);\n"
" t.w = 1.;\n";
fmain += "gl_FragColor.xyz *= 0.9999 + 0.0001 * t.z;\n";
fmain += "gl_FragColor.xyz /= 0.9999 + 0.0001 * t.z;\n";
}
else {
fmain +=
" mediump vec4 t = at0 * go;\n"
" t.w = 1.;\n";
}
if(levellines) {
if(hyperbolic && !eyes && !intra::in)
fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(t.z * uLevelLines * 2. * PI);\n";
else
fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(go * uLevelLines * 2. * PI);\n";
if(fsh.find("uLevelLines") == string::npos)
fsh += "uniform mediump float uLevelLines;\n";
}
if(panini_alpha)
fmain += panini_shader();
else if(stereo_alpha)
fmain += stereo_shader();
#ifndef GLES_ONLY
fmain +=
" gl_FragDepth = (" + to_glsl(-vnear-vfar)+"+t.w*" + to_glsl(2*vnear*vfar)+"/t.z)/" + to_glsl(vnear-vfar)+";\n"
" gl_FragDepth = (gl_FragDepth + 1.) / 2.;\n";
#endif
if(!use_reflect) fmain +=
" return;\n";
else fmain +=
" depthtoset = false;\n";
fmain +=
" }\n"
" left *= (1. - col.w);\n"
" }\n";
if(use_reflect)
apply_reflect(flat1, flat2);
// next cell
fmain +=
" mediump vec4 connection = texture2D(tConnections, u);\n"
" cid = connection.xy;\n";
if(many_cell_types)
fmain += "int nwalloffset = int(connection.w * " + to_glsl(max_wall_offset) + ");\n";
fmain += " int mid = int(connection.z * 1024.);\n";
string no_intra_portal = "";
no_intra_portal +=
" mediump mat4 m = " + getM("mid") + " * " + getM("walloffset+which") + ";\n";
if(eyes)
no_intra_portal += " vw = m * vw;\n";
else no_intra_portal +=
" position = m * position;\n"
" tangent = m * tangent;\n";
if(gproduct) no_intra_portal =
" if(which == sides-2) { zpos += uPLevel+uPLevel; }\n"
" else if(which == sides-1) { zpos -= uPLevel+uPLevel; }\n"
" else {\n" + no_intra_portal + "}\n";
if(stretch::mstretch) no_intra_portal +=
" m = s_itranslate(m*vec4(0,0,0,1)) * m;"
" fromOrig = m * fromOrig;\n"
" m[0][1] = -m[0][1]; m[1][0] = -m[1][0];\n" // inverse
" toOrig = toOrig * m;\n";
if(!intra::in) fmain += no_intra_portal;
else {
if(intra::in) {
int q = isize(intra::data);
fmain +=" mediump vec4 pconnection = texture2D(tPortalConnections, u);\n";
fmain += "if(pconnection.x == 0.) {\n";
fmain += no_intra_portal;
fmain += " } else\n";
for(int gid2=0; gid2<q; gid2++) {
if(gid2 == q-1)
fmain += " {\n";
else {
fmain += " if(nwalloffset < " + its(intra::data[gid2+1].wallindex) + ") {\n";
}
emit_intra_portal(gid1, gid2);
if(gid2 == q-1)
fmain += " }\n";
else
fmain += " } else\n";
}
}
else
fmain += no_intra_portal;
}
if(many_cell_types) {
fmain +=
"walloffset = nwalloffset;\n"
"sides = int(connection.w * " + to_glsl(max_wall_offset * max_celltype) + ") - " + its(max_celltype) + " * walloffset;\n";
// fmain += "if(sides != 8) { gl_FragColor = vec4(.5,float(sides)/8.,.5,1); return; }";
}
}
void enable_raycaster() {
using glhr::to_glsl;
auto state = raycaster_state();
if(state != saved_state) {
reset_raycaster();
saved_state = state;
}
last_geometry = geometry;
if(!our_raycaster) {
auto& g = our_raygen;
g.create();
g.fsh += g.fmain;
callhooks(hooks_rayshader, g.vsh, g.fsh);
our_raycaster = make_shared<raycaster> (g.vsh, g.fsh);
}
full_enable(our_raycaster);
}
void raygen::add_functions() {
add_if("xpush_h3",
"mediump mat4 xpush_h3(float x) { return mat4("
"cosh(x), 0., 0., sinh(x),\n"
"0., 1., 0., 0.,\n"
"0., 0., 1., 0.,\n"
"sinh(x), 0., 0., cosh(x)"
");}\n");
add_if("zpush_h3",
"mediump mat4 zpush_h3(float x) { return mat4("
"1., 0., 0., 0.,\n"
"0., 1., 0., 0.,\n"
"0., 0., cosh(x), sinh(x),\n"
"0., 0., sinh(x), cosh(x)"
");}\n");
add_if("xpush_h2",
"mediump mat4 xpush_h2(float x) { return mat4("
"cosh(x), 0., sinh(x), 0.,\n"
"0., 1., 0., 0.,\n"
"sinh(x), 0., cosh(x), 0.,\n"
"0., 0., 0., 1."
");}\n");
add_if("xpush_s",
"mediump mat4 xpush_s(float x) { return mat4("
"cos(x), 0., 0., sin(x),\n"
"0., 1., 0., 0.,\n"
"0., 0., 1., 0.,\n"
"-sin(x), 0., 0., cos(x)"
");}\n"
);
add_if("xzspin",
"mediump mat4 xzspin(float x) { return mat4("
"cos(x), 0., sin(x), 0.,\n"
"0., 1., 0., 0.,\n"
"-sin(x), 0., cos(x), 0.,\n"
"0., 0., 0., 1."
");}\n");
add_if("yzspin",
"mediump mat4 yzspin(float x) { return mat4("
"1., 0., 0., 0.,\n"
"0., cos(x), sin(x), 0.,\n"
"0., -sin(x), cos(x), 0.,\n"
"0., 0., 0., 1."
");}\n"
);
/* note: this is called deparabolici13 because it orders the coordinates differently from deparabolic13 */
add_if("deparabolici13",
"mediump vec4 deparabolici13(mediump vec4 h) {\n"
" h /= (1. + h[3]);\n"
" h[0] -= 1.;\n"
" h /= h.x*h.x + h.y*h.y + h.z * h.z;\n"
" h[0] += .5;\n"
" mediump vec4 res;\n"
" res.x = h.y * 2.;\n"
" res.y = h.z * 2.;\n"
" res.z = (log(2.) + log(-h.x));\n"
" res.w = 1.;\n"
" return res;\n"
" }\n\n");
/* note: this is called eeparabolici13 because it orders the coordinates differently from enparabolic13 */
add_if("enparabolici13",
"mediump vec4 enparabolici13(mediump vec4 h) {\n"
" mediump vec4 res;\n"
" float diag = (h.x*h.x + h.y*h.y)/2.;\n"
" res.x = sinh(h.z) + diag * exp(-h.z);\n"
" res.y = h.x * exp(-h.z);\n"
" res.z = h.y * exp(-h.z);\n"
" res.w = cosh(h.z) + diag * exp(-h.z);\n"
" return res;\n"
" }\n\n");
add_if("to_poco_h3",
"mediump vec4 to_poco_h3(mediump vec4 pos) {\n"
" pos = pos / pos[3];\n"
" pos[2] /= sqrt(1.-pos.x*pos.x-pos.y*pos.y);\n"
" return pos;\n"
" }\n\n");
add_if("from_poco_h3",
"mediump vec4 from_poco_h3(mediump vec4 pos) {\n"
" pos[2] *= sqrt(1.-pos.x*pos.x-pos.y*pos.y);\n"
" float s = 1. - dot(pos.xyz, pos.xyz);\n"
" return pos / sqrt(s);\n"
" }\n\n");
add_if("to_poco_s3",
"mediump vec4 to_poco_s3(mediump vec4 pos) {\n"
" pos = pos / pos[3];\n"
" pos[2] /= sqrt(1.+pos.x*pos.x+pos.y*pos.y);\n"
" return pos;\n"
" }\n\n");
add_if("from_poco_s3",
"mediump vec4 from_poco_s3(mediump vec4 pos) {\n"
" pos[2] *= sqrt(1.+pos.x*pos.x+pos.y*pos.y);\n"
" float s = 1. + dot(pos.xyz, pos.xyz);\n"
" return pos / sqrt(s);\n"
" }\n\n");
add_if("from_poco_h2xr_h",
"mediump vec4 from_poco_h2xr_h(mediump vec4 pos) {\n"
" float s = 1. - pos.x*pos.x - pos.y * pos.y;\n"
" pos.z = 1.;\n"
" return pos / sqrt(s);\n"
" }\n\n");
add_if("to_poco_h2xr_h",
"mediump vec4 to_poco_h2xr_h(mediump vec4 pos) {\n"
" pos /= pos[2];\n"
" pos.w = 1.;\n"
" return pos;\n"
" }\n\n");
add_if("from_poco_h2xr_b",
"mediump vec4 from_poco_h2xr_b(mediump vec4 pos) {\n"
" return enparabolic12(pos);\n"
" }\n\n");
add_if("to_poco_h2xr_b",
"mediump vec4 to_poco_h2xr_b(mediump vec4 pos) {\n"
" pos /= sqrt(pos.z*pos.z-pos.x*pos.x-pos.y*pos.y);\n"
" pos = deparabolic12(pos);\n"
" return pos;\n"
" }\n\n");
add_if("from_poco_h2xr_e",
"mediump vec4 from_poco_h2xr_e(mediump vec4 pos) {\n"
" return vec4(sinh(pos[2]), sinh(pos[0]) * cosh(pos[2]), cosh(pos[0]) * cosh(pos[2]), 0);\n"
" }\n\n");
add_if("to_poco_h2xr_e",
"mediump vec4 to_poco_h2xr_e(mediump vec4 pos) {\n"
" mediump float x = asinh(pos[0]);\n"
" return vec4(asinh(pos[1] / cosh(x)), 0, x, 1);\n"
" }\n\n");
add_if("from_poco_s2xr_s",
"mediump vec4 from_poco_s2xr_s(mediump vec4 pos) {\n"
" float s = 1. + pos.x*pos.x + pos.y * pos.y;\n"
" pos.z = 1.;\n"
" return pos / sqrt(s);\n"
" }\n\n");
add_if("to_poco_s2xr_s",
"mediump vec4 to_poco_s2xr_s(mediump vec4 pos) {\n"
" pos /= pos[2];\n"
" pos.w = 1.;\n"
" return pos;\n"
" }\n\n");
add_if("from_poco_s2xr_e",
"mediump vec4 from_poco_s2xr_e(mediump vec4 pos) {\n"
" return vec4(sin(pos[2]), sin(pos[0]) * cos(pos[2]), cos(pos[0]) * cos(pos[2]), 0);\n"
" }\n\n");
add_if("to_poco_s2xr_e",
"mediump vec4 to_poco_s2xr_e(mediump vec4 pos) {\n"
" mediump float x = asin_clamp(pos[0]);\n"
" return vec4(asin_clamp(pos[1] / cos(x)), 0, x, 1);\n"
" }\n\n");
add_if("deparabolic12",
"mediump vec4 deparabolic12(mediump vec4 h) {\n"
" h /= (1. + h.z);\n"
" h[0] -= 1.;\n"
" h /= h.x*h.x + h.y*h.y;\n"
" h[0] += .5;\n"
" mediump vec4 res;\n"
" res.x = (log(2.) + log(-h.x));\n"
" res.y = h.y * 2.;\n"
" res.w = 1.;\n"
" return res;\n"
" }\n\n");
add_if("enparabolic12",
"mediump vec4 enparabolic12(mediump vec4 h) {\n"
" mediump vec4 res;\n"
" float diag = h.y*h.y /2.;\n"
" res.x = sinh(h.x) + diag * exp(-h.x);\n"
" res.y = h.y * exp(-h.x);\n"
" res.z = cosh(h.x) + diag * exp(-h.x);\n"
" return res;\n"
" }\n\n");
add_if("len_rotspace", "mediump float len_rotspace(vec4 h) { return 1. - h[3]; }\n");
add_if("len_h3", " mediump float len_h3(mediump vec4 x) { return x[3]; }\n");
add_if("len_sr", " mediump float len_sr(mediump vec4 x) { return 1.+x.x*x.x+x.y*x.y-x.z*x.z-x.w*x.w; }\n");
add_if("len_sl2"," mediump float len_sl2(mediump vec4 x) { return 1.+x.x*x.x+x.y*x.y; }\n");
add_if("len_s3", " mediump float len_s3(mediump vec4 x) { return 1.-x[3]; }\n");
add_if("len_x", " mediump float len_x(mediump vec4 x) { return length(x.xyz); }\n");
add_if("len_h2", " mediump float len_h2(mediump vec4 x) { return x[2]; }\n");
add_if("len_s2", " mediump float len_s2(mediump vec4 x) { return 1.-x[2]; }\n");
add_if("len_e2", " mediump float len_e2(mediump vec4 x) { return length(x.xy); }\n");
}
void raygen::emit_raystarter() {
if(gproduct) {
string sgn=in_h2xe() ? "-" : "+";
fmain +=
" position = vw * vec4(0., 0., 1., 0.);\n"
" mediump vec4 at1 = uLP * at0;\n";
if(in_e2xe()) fmain +=
" zpos = log(position.z);\n";
else fmain +=
" zpos = log(position.z*position.z"+sgn+"position.x*position.x"+sgn+"position.y*position.y)/2.;\n";
if(eyes) fmain +=
" vw *= exp(-zpos);\n";
else fmain +=
" position *= exp(-zpos);\n"
" zspeed = at1.z;\n"
" xspeed = length(at1.xy);\n"
" tangent = vw * exp(-zpos) * vec4(at1.xy, 0, 0) / xspeed;\n";
}
else if(!eyes) {
fmain +=
" position = vw * vec4(0., 0., 0., 1.);\n"
" tangent = vw * at0;\n";
}
if(eyes) {
fsh += "mediump uniform mat4 uEyeShift;\n";
fsh += "mediump uniform float uAbsUnit;\n";
}
if(stretch::in()) {
if(stretch::mstretch) {
fsh += "mediump uniform mat4 uITOA;\n";
fsh += "mediump uniform mat4 uATOI;\n";
fsh += "mediump uniform mat4 uToOrig;\n";
fsh += "mediump uniform mat4 uFromOrig;\n";
fsh += "mediump mat4 toOrig;\n";
fsh += "mediump mat4 fromOrig;\n";
fmain +=
"toOrig = uToOrig;\n"
"fromOrig = uFromOrig;\n";
fmain +=
"tangent = s_itranslate(toOrig * position) * toOrig * tangent;\n";
fmain +=
"tangent = uITOA * tangent;\n";
fmain +=
"tangent = fromOrig * s_translate(toOrig * position) * tangent;\n";
}
else {
fmain +=
"tangent = s_itranslate(position) * tangent;\n";
fmain +=
"tangent[2] /= " + glhr::to_glsl(stretch::not_squared()) + ";\n";
fmain +=
"tangent = s_translate(position) * tangent;\n";
}
}
}
void raygen::create() {
using glhr::to_glsl;
currentmap->wall_offset(centerover); /* so raywall is not empty and deg is not zero */
deg = 0;
auto samples = used_sample_list();
for(int i=0; i<isize(samples)-1; i++)
deg = max(deg, samples[i+1].first - samples[i].first);
if(true) {
asonov = hr::asonov::in();
use_reflect = reflect_val && !nil && !levellines;
many_cell_types = need_many_cell_types();
vsh =
"attribute mediump vec4 aPosition;\n"
"uniform mediump mat4 uProjection;\n"
"varying mediump vec4 at;\n"
"void main() { \n"
" gl_Position = aPosition; at = uProjection * aPosition; \n"
" }\n";
if(intra::in) {
irays = 0;
intra::resetter ir;
for(int i=0; i<isize(intra::data); i++) {
intra::switch_to(i);
irays += isize(cgi.raywall);
}
}
else irays = isize(cgi.raywall);
string rays = its(irays);
fsh =
"varying mediump vec4 at;\n"
"uniform mediump int uLength;\n"
"uniform mediump float uIPD;\n"
"uniform mediump mat4 uStart;\n"
"uniform mediump vec2 uStartid;\n"
"uniform mediump sampler2D tConnections;\n"
"uniform mediump sampler2D tWallcolor;\n"
"uniform mediump sampler2D tVolumetric;\n"
"uniform mediump sampler2D tTexture;\n"
"uniform mediump sampler2D tTextureMap;\n"
"uniform mediump vec4 uFogColor;\n"
"uniform mediump float uLinearSightRange, uExpStart, uExpDecay;\n";
if(intra::in) fsh +=
"uniform mediump sampler2D tPortalConnections;\n";
if(wall_via_texture) {
fsh +=
"uniform mediump sampler2D tWall;\n"
"uniform mediump float uInvLengthWall;\n"
"mediump vec4 getWall(mediump int x, mediump int coord) {\n"
" mediump vec4 result;\n"
" mediump vec4 v = texture2D(tWall, vec2((float(x)+.5) * uInvLengthWall, (float(coord)+.5) / 4.));\n"
" for(int j=0; j<4; j++) result[j] = (v[j] - .5) * " + to_glsl(ray_scale) + ";\n"
" return result;\n"
" }\n"
"mediump int getWallstart(mediump int x) {\n"
" mediump vec4 v = texture2D(tWall, vec2((float(x)+.5) * uInvLengthWall, 0.625));\n"
" return int(v[0] / uInvLengthWall);\n"
" }\n";
}
else fsh +=
"uniform mediump vec4 uWallX["+rays+"];\n"
"uniform mediump vec4 uWallY["+rays+"];\n"
"uniform mediump int uWallstart["+its(isize(cgi.wallstart))+"];\n";
if(m_via_texture) {
fsh +=
"uniform mediump sampler2D tM;\n"
"uniform mediump float uInvLengthM;\n"
"mediump mat4 getM(mediump int x) {\n"
" mediump mat4 result;\n"
" for(int i=0; i<4; i++) {\n"
" mediump vec4 v = texture2D(tM, vec2((float(x)+.5) * uInvLengthM, (float(i)+.5) / 4.));\n"
" for(int j=0; j<4; j++) result[j][i] = (v[j] - .5) * " + to_glsl(ray_scale) + ";\n"
" }\n"
" return result;\n"
" }\n";
}
else fsh +=
"uniform mediump mat4 uM[" + its(gms_limit) + "];\n";
#ifdef GLES_ONLY
if(!wall_via_texture) {
fsh += build_getter("mediump vec4", "uWallX", irays);
fsh += build_getter("mediump vec4", "uWallY", irays);
fsh += build_getter("mediump int", "uWallstart", deg+1);
}
if(!m_via_texture)
fsh += build_getter("mediump mat4", "uM", gms_limit);
#endif
if(gproduct || intra::in) fsh +=
"uniform mediump mat4 uLP;\n";
if(gproduct || intra::in) fsh +=
"uniform mediump float uPLevel;\n";
if(many_cell_types) fsh +=
"uniform int uWallOffset, uSides;\n";
if(many_cell_types) {
fsh += "int walloffset, sides;\n";
}
else {
fsh += "const int walloffset = 0;\n"
"const int sides = " + its(centerover->type+(WDIM == 2 ? 2 : 0)) + ";\n";
}
fsh +=
"mediump vec2 map_texture(mediump vec4 pos, int which) {\n";
fsh +=
"int s = " + getWallstart("which") + ";\n"
"int e = " + getWallstart("which+1") + ";\n"
"for(int ix=0; ix<16; ix++) {\n"
"int i = s+ix; if(i >= e) break;\n"
"mediump vec2 v = vec2(dot(" + getWall("i", 0) + ", pos), dot(" + getWall("i", 1) + ", pos));\n"
"if(v.x >= 0. && v.y >= 0. && v.x + v.y <= 1.) return vec2(v.x+v.y, v.x-v.y);\n"
"}\n"
"return vec2(1, 1);\n"
"}\n";
eyes = is_eyes();
fmain = "void main() {\n";
if(use_reflect) fmain += " bool depthtoset = true;\n";
if(IN_ODS) fmain +=
" mediump float lambda = at[0];\n" // -PI to PI
" mediump float phi;\n"
" mediump float eye;\n"
" if(at.y < 0.) { phi = at.y + PI/2.; eye = uIPD / 2.; }\n" // right
" else { phi = at.y - PI/2.; eye = -uIPD / 2.; }\n"
" mediump mat4 vw = uStart * xzspin(-lambda) * "+f_xpush()+"(eye) * yzspin(phi);\n"
" mediump vec4 at0 = vec4(0., 0., 1., 0.);\n";
else {
fmain +=
" mediump mat4 vw = uStart;\n"
" mediump vec4 at0 = at;\n"
" gl_FragColor = vec4(0,0,0,1);\n"
" mediump float left = 1.;\n"
" at0.y = -at.y;\n"
" at0.w = 0.;\n";
if(panini_alpha) fmain +=
"mediump float hr = at0.x*at0.x;\n"
"mediump float alpha = " + to_glsl(panini_alpha) + ";\n"
"mediump float A = 1. + hr;\n"
"mediump float B = -2.*hr*alpha;\n"
"mediump float C = 1. - hr*alpha*alpha;\n"
"B /= A; C /= A;\n"
"mediump float hz = B / 2. + sqrt(C + B*B/4.);\n"
"if(abs(hz) > 1e-3) {"
"at0.xyz *= hz+alpha;\n"
"at0.z = hz;\n}"
" else at0.z = 0.;\n"
"\n"
;
else if(stereo_alpha) fmain +=
"mediump float hr = at0.x*at0.x+at0.y*at0.y;\n"
"mediump float alpha = " + to_glsl(stereo_alpha) + ";\n"
"mediump float A = 1. + hr;\n"
"mediump float B = -2.*hr*alpha;\n"
"mediump float C = 1. - hr*alpha*alpha;\n"
"B /= A; C /= A;\n"
"mediump float hz = B / 2. + sqrt(C + B*B/4.);\n"
"if(abs(hz) > 1e-3) {"
"at0.xyz *= hz+alpha;\n"
"at0.z = hz;\n}"
" else at0.z = 0.;\n"
"\n"
;
fmain +=
" at0.xyz = at0.xyz / length(at0.xyz);\n";
if(eyes) fmain += " at0.xyz /= uAbsUnit;\n";
}
ld s = 1;
#if CAP_VR
if(eyes) s *= vrhr::absolute_unit_in_meters;
#endif
if(is_stepbased() || intra::in) fmain +=
" const mediump float maxstep = " + fts(maxstep_current() * s) + ";\n"
" const mediump float minstep = " + fts(minstep * s) + ";\n"
" mediump float next = maxstep;\n";
string fmain_prod, fmain_nprod;
fmain += " mediump vec4 position;\n";
fmain += " mediump vec4 tangent;\n";
if(gproduct || intra::in) {
fmain += " mediump float zspeed = 1.;\n";
fmain += " mediump float xspeed = 1.;\n";
fmain += " mediump float zpos = 0.;\n";
}
if(many_cell_types) fmain += " walloffset = uWallOffset; sides = uSides;\n";
if(intra::in) {
int q = isize(intra::data);
intra::resetter ir;
for(int gid2=0; gid2<q; gid2++) {
if(gid2 == q-1)
fmain += " {\n";
else {
fmain += " if(walloffset < " + its(intra::data[gid2+1].wallindex) + ") {\n";
}
intra::switch_to(gid2);
emit_raystarter();
if(gid2 == q-1)
fmain += " }\n";
else
fmain += " } else\n";
}
}
else emit_raystarter();
fmain +=
" mediump float go = 0.;\n"
" mediump vec2 cid = uStartid;\n"
" for(int iter=0; iter<" + its(max_iter_current()) + "; iter++) {\n";
if(intra::in) {
int gi = isize(intra::data);
for(int i=0; i<gi; i++) {
if(i == gi-1)
fmain += " {\n";
else {
fmain += " if(walloffset < " + its(intra::data[i+1].wallindex) + ") {\n";
}
intra::resetter ir;
intra::switch_to(i);
emit_iterate(i);
if(i == gi-1)
fmain += " }\n";
else
fmain += " } else\n";
}
}
else
emit_iterate(-1);
fmain +=
" }\n"
" gl_FragColor.xyz += left * uFogColor.xyz;\n";
#ifndef GLES_ONLY
if(use_reflect) fmain +=
" if(depthtoset) gl_FragDepth = 1.;\n";
else fmain +=
" gl_FragDepth = 1.;\n";
#endif
fmain +=
" }";
}
add_functions();
}
void bind_array(vector<array<float, 4>>& v, GLint t, GLuint& tx, int id, int length) {
if(t == -1) println(hlog, "bind to nothing");
glUniform1i(t, id);
if(tx == 0) glGenTextures(1, &tx);
glActiveTexture(GL_TEXTURE0 + id);
GLERR("activeTexture");
glBindTexture(GL_TEXTURE_2D, tx);
GLERR("bindTexture");
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLERR("texParameteri");
#ifdef GLES_ONLY
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]);
#else
glTexImage2D(GL_TEXTURE_2D, 0, 0x8814 /* GL_RGBA32F */, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]);
#endif
GLERR("bind_array");
}
void uniform2(GLint id, array<float, 2> fl) {
glUniform2f(id, fl[0], fl[1]);
}
color_t color_out_of_range = 0x0F0800FF;
EX transmatrix get_ms(cell *c, int a, bool mirror) {
int z = a ? 1 : -1;
if(c->type == 3) {
hyperpoint h =
project_on_triangle(
hybrid::get_corner(c, a, 0, z),
hybrid::get_corner(c, a, 1, z),
hybrid::get_corner(c, a, 2, z)
);
transmatrix T = rspintox(h);
if(mirror) T = T * MirrorX;
return T * xpush(-2*hdist0(h)) * spintox(h);
}
else {
hyperpoint h = Hypc;
for(int a=0; a<c->type; a++) {
hyperpoint corner = hybrid::get_corner(c, a, 0, z);
h += corner;
}
h = normalize(h);
ld d = hdist0(h);
d -= cgi.emb->center_z();
if(h[2] > 0) d = -d;
if(mirror) return MirrorZ * lzpush(2*d);
return lzpush(2*d);
}
}
int nesting;
EX transmatrix mirrorize(transmatrix T) {
T = inverse(T);
hyperpoint h = tC0(T);
ld d = hdist0(h);
return rspintox(h) * xpush(d/2) * MirrorX * xpush(-d/2) * spintox(h);
}
transmatrix protect_prod(transmatrix T) {
if(MDIM == 3)
for(int i=0; i<4; i++) T[i][3] = T[3][i] = i == 3;
return T;
}
struct raycast_map {
int saved_frameid;
int saved_map_version;
vector<cell*> lst;
map<cell*, int> ids;
vector<transmatrix> ms;
int length, per_row, rows, mirror_shift, deg;
vector<array<float, 4>> connections, wallcolor, texturemap, volumetric, portal_connections;
void apply_shape() {
length = 4096;
deg = our_raygen.deg;
per_row = length / deg;
rows = next_p2((isize(lst)+per_row-1) / per_row);
int q = length * rows;
connections.resize(q);
portal_connections.resize(q);
wallcolor.resize(q);
texturemap.resize(q);
volumetric.resize(q);
}
void generate_initial_ms(cell *cs) {
auto sa = used_sample_list();
ms.clear();
ms.resize(sa.back().first, Id);
intra::resetter ir;
for(auto& p: sa) {
int id = p.first;
cell *c = p.second;
if(!c) continue;
intra::may_switch_to(c);
for(int j=0; j<c->type; j++)
ms[id+j] = protect_prod(currentmap->ray_iadj(c, j));
if(WDIM == 2) for(int a: {0, 1}) {
ms[id+c->type+a] = get_ms(c, a, false);
}
}
// println(hlog, ms);
mirror_shift = isize(ms);
if(!sol && !nil && (reflect_val || reg3::ultra_mirror_in())) {
ms.resize(mirror_shift * 2);
for(auto& p: sa) {
int id = p.first;
cell *c = p.second;
if(!c) continue;
intra::may_switch_to(c);
for(int j=0; j<c->type; j++)
ms[mirror_shift+id+j] = protect_prod(mirrorize(ms[id+j]));
if(WDIM == 2) for(int a: {0, 1}) {
ms[mirror_shift+id+c->type+a] = get_ms(c, a, true);
}
}
if(reg3::ultra_mirror_in()) {
for(auto v: cgi.ultra_mirrors)
ms.push_back(v);
}
}
for(auto p: sa) {
cell *c = p.second;
if(!c) continue;
intra::may_switch_to(c);
int id =p.first;
if(gproduct) {
ms[id+c->type-2] = Id;
ms[id+c->type-1] = Id;
}
}
}
void generate_cell_listing(cell *cs) {
manual_celllister cl;
cl.add(cs);
bool optimize = !isWall3(cs);
intra::resetter ir;
// vector<int> legaldir = { -1 };
for(int i=0; i<isize(cl.lst); i++) {
cell *c = cl.lst[i];
intra::may_switch_to(c);
if(racing::on && i > 0 && c->wall == waBarrier) continue;
if(optimize && isWall3(c)) continue;
forCellIdCM(c2, d, c) {
// if(reflect_val == 0 && !((1<<d) & legaldir[i])) continue;
if(intra::in && !intra::intra_id.count(c2)) intra::intra_id[c2] = intra::current;
if(intra::in) {
cellwalker cw(c, d);
auto p = at_or_null(intra::connections, cw);
if(p) {
cell *c3 = p->tcw.at;
if(rays_generate && c3->mpdist > 7) { intra::may_switch_to(c3); setdist(c3, 7, c); intra::may_switch_to(c2); }
cl.add(c3);
}
}
if(rays_generate) setdist(c2, 7, c);
/* if(!cl.listed(c2))
legaldir.push_back(legaldir[i] &~ (1<<((d+3)%6)) ); */
cl.add(c2);
if(isize(cl.lst) >= max_cells) goto finish;
}
}
finish:
lst = cl.lst;
ids.clear();
for(int i=0; i<isize(lst); i++) ids[lst[i]] = i;
}
array<float, 2> enc(int i, int a) {
array<float, 2> res;
res[0] = ((i%per_row) * deg + a + .5) / length;
res[1] = ((i / per_row) + .5) / rows;
return res;
}
void generate_connections(cell *c, int id) {
intra::may_switch_to(c);
auto& vmap = volumetric::vmap;
if(volumetric::on) {
celldrawer dd;
dd.c = c;
dd.setcolors();
int u = (id/per_row*length) + (id%per_row * deg);
color_t vcolor;
if(vmap.count(c))
vcolor = vmap[c];
else
vcolor = (backcolor << 8);
volumetric[u] = glhr::acolor(vcolor);
}
forCellIdEx(c1_real, i, c) {
cell *c1 = c1_real;
const intra::connection_data *p = nullptr;
if(intra::in) {
cellwalker cw(c, i);
p = at_or_null(intra::connections, cw);
if(p) c1 = p->tcw.at;
}
int u = (id/per_row*length) + (id%per_row * deg) + i;
if(!ids.count(c1)) {
wallcolor[u] = glhr::acolor(color_out_of_range | 0xFF);
texturemap[u] = glhr::makevertex(0.1,0,0);
continue;
}
auto code = enc(ids[c1], 0);
connections[u][0] = code[0];
connections[u][1] = code[1];
portal_connections[u][0] = 0;
if(isWall3(c1)) {
celldrawer dd;
dd.c = c1;
dd.setcolors();
shiftmatrix Vf;
dd.set_land_floor(Vf);
color_t wcol = darkena(dd.wcol, 0, 0xFF);
int dv = get_darkval(c1, c->c.spin(i));
float p = 1 - dv / 16.;
wallcolor[u] = glhr::acolor(wcol);
for(int a: {0,1,2}) wallcolor[u][a] *= p;
if(qfi.fshape) {
texturemap[u] = floor_texture_map[qfi.fshape->id];
}
else
texturemap[u] = glhr::makevertex(0.1,0,0);
}
else {
color_t col = transcolor(c, c1, winf[c->wall].color) | transcolor(c1, c, winf[c1->wall].color);
if(col == 0)
wallcolor[u] = glhr::acolor(0);
else {
int dv = get_darkval(c1, c->c.spin(i));
float p = 1 - dv / 16.;
wallcolor[u] = glhr::acolor(col);
for(int a: {0,1,2}) wallcolor[u][a] *= p;
texturemap[u] = glhr::makevertex(0.001,0,0);
}
}
int wo = intra::full_wall_offset(c);
if(wo >= our_raygen.irays) {
println(hlog, "wo=", wo, " irays = ", our_raygen.irays);
reset_raycaster();
return;
}
if(p) {
int k = isize(ms);
auto bak = geometry;
ms.push_back(p->T);
geometry = bak;
ms.push_back(p->id1.T);
ms.push_back(p->id2.iT);
connections[u][2] = (k+.5) / 1024.;
portal_connections[u][0] = p->id1.kind / 16. + .5;
portal_connections[u][1] = p->id1.d / 16 + .5;
portal_connections[u][2] = p->id2.kind / 16. + .5;
portal_connections[u][3] = p->id2.d / 16 + .5;
}
else {
transmatrix T = currentmap->iadj(c, i) * inverse(ms[wo + i]);
if(in_e2xe() && i >= c->type-2)
T = Id;
T = protect_prod(T);
for(int k=0; k<=isize(ms); k++) {
if(k < isize(ms) && !eqmatrix(ms[k], T, 1e-5)) continue;
if(k == isize(ms)) ms.push_back(T);
connections[u][2] = (k+.5) / 1024.;
break;
}
}
intra::resetter ir;
intra::may_switch_to(c1);
int wo1 = intra::full_wall_offset(c1);
if(wo1 >= max_wall_offset)
println(hlog, "error: wall_offset ", wo1, " exceeds ", max_wall_offset);
if(c1->type >= max_celltype)
println(hlog, "error: type " + its(c1->type) + " exceeds ", max_celltype);
connections[u][3] = (wo1 * 1. / max_wall_offset) + (c1->type + (WDIM == 2 ? 2 : 0) + .5) * 1. / max_wall_offset / max_celltype;
}
if(WDIM == 2) for(int a: {0, 1}) {
celldrawer dd;
dd.c = c;
dd.setcolors();
shiftmatrix Vf;
dd.set_land_floor(Vf);
int u = (id/per_row*length) + (id%per_row * deg) + c->type + a;
wallcolor[u] = glhr::acolor(darkena(dd.fcol, 0, 0xFF));
if(qfi.fshape)
texturemap[u] = floor_texture_map[qfi.fshape->id];
else
texturemap[u] = glhr::makevertex(0.1,0,0);
}
}
void generate_connections() {
int id = 0;
intra::resetter ir;
for(cell* c: lst) if(!reset_rmap)
generate_connections(c, id++);
}
bool gms_exceeded() {
if(m_via_texture) return false;
return isize(ms) > gms_array_size;
}
void assign_uniforms(raycaster* o) {
if(!o) return;
glUniform1i(o->uLength, length);
GLERR("uniform mediump length");
if(m_via_texture) {
int mlength = next_p2(isize(ms));
vector<array<float, 4>> m_map;
m_map.resize(4 * mlength);
for(int i=0; i<isize(ms); i++)
for(int a=0; a<4; a++)
for(int b=0; b<4; b++) {
m_map[i+a*mlength][b] = ms[i][a][b]/ray_scale + .5;
}
bind_array(m_map, o->tM, txM, 7, mlength);
glUniform1f(o->uInvLengthM, 1. / mlength);
}
else {
vector<glhr::glmatrix> gms;
for(auto& m: ms) gms.push_back(glhr::tmtogl_transpose3(m));
glUniformMatrix4fv(o->uM, isize(gms), 0, gms[0].as_array());
}
bind_array(wallcolor, o->tWallcolor, txWallcolor, 4, length);
bind_array(connections, o->tConnections, txConnections, 3, length);
bind_array(texturemap, o->tTextureMap, txTextureMap, 5, length);
if(volumetric::on) bind_array(volumetric, o->tVolumetric, txVolumetric, 6, length);
if(o->tPortalConnections != -1)
bind_array(portal_connections, o->tPortalConnections, txPortalConnections, 1, length);
if(o->uMirrorShift != -1) {
glUniform1i(o->uMirrorShift, mirror_shift);
}
}
void create_all(cell *cs) {
saved_frameid = frameid;
saved_map_version = mapeditor::map_version;
generate_initial_ms(cs);
generate_cell_listing(cs);
apply_shape();
generate_connections();
}
bool need_to_create(cell *cs) {
if(!fixed_map && frameid != saved_frameid) return true;
if(saved_map_version != mapeditor::map_version) return true;
return !ids.count(cs);
}
};
unique_ptr<raycast_map> rmap;
EX bool reset_rmap = false;
EX cell* rmap_get_by_id(int id) {
return rmap->lst[id];
}
EX int rmap_get_id_of(cell *c) {
return rmap->ids[c];
}
EX void reset_raycaster() {
our_raycaster = nullptr;
reset_rmap = true;
rots::saved_matrices_ray = {};
}
EX void reset_raycaster_map() {
rmap = nullptr;
}
EX void load_walls(vector<glvertex>& wallx, vector<glvertex>& wally, vector<GLint>& wallstart) {
int q = 0;
if(isize(wallx)) {
q = isize(wallx);
wallstart.pop_back();
}
for(auto i: cgi.wallstart) wallstart.push_back(q + i);
dynamicval<eGeometry> g(geometry, gCubeTiling);
for(auto& m: cgi.raywall) {
wallx.push_back(glhr::pointtogl(m[0]));
wally.push_back(glhr::pointtogl(m[1]));
}
}
EX void cast() {
// may call itself recursively in case of bugs -- just in case...
dynamicval<int> dn(nesting, nesting+1);
if(nesting > 10) return;
if(isize(cgi.raywall) > our_raygen.irays) reset_raycaster();
enable_raycaster();
auto& o = our_raycaster;
if(need_many_cell_types() && o->uWallOffset == -1) {
reset_raycaster();
cast();
return;
}
if(comparison_mode)
glColorMask( GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE );
vector<glvertex> screen = {
glhr::makevertex(-1, -1, 1),
glhr::makevertex(-1, +1, 1),
glhr::makevertex(+1, -1, 1),
glhr::makevertex(-1, +1, 1),
glhr::makevertex(+1, -1, 1),
glhr::makevertex(+1, +1, 1)
};
ld d = current_display->eyewidth();
if(vid.stereo_mode == sLR) d = 2 * d - 1;
else d = -d;
auto& cd = current_display;
cd->set_viewport(global_projection);
cd->set_mask(global_projection);
#if CAP_VR
if(o->uEyeShift != -1) {
dynamicval<eGeometry> g(geometry, gCubeTiling);
transmatrix T = vrhr::eyeshift;
if(nonisotropic)
T = inverse(NLP) * T;
glUniformMatrix4fv(o->uEyeShift, 1, 0, glhr::tmtogl_transpose(T).as_array());
glUniform1f(o->uAbsUnit, vrhr::absolute_unit_in_meters);
}
if(vrhr::rendering_eye()) {
dynamicval<eGeometry> g(geometry, gCubeTiling);
glUniformMatrix4fv(o->uProjection, 1, 0, glhr::tmtogl_transpose(vrhr::eyeproj).as_array());
}
#else
if(0) ;
#endif
else {
dynamicval<eGeometry> g(geometry, gCubeTiling);
transmatrix proj = Id;
proj = eupush(-global_projection * d, 0) * proj;
proj = euscale(cd->tanfov / (vid.stereo_mode == sLR ? 2 : 1), cd->tanfov * cd->ysize / cd->xsize) * proj;
proj = eupush(-((cd->xcenter-cd->xtop)*2./cd->xsize - 1), -((cd->ycenter-cd->ytop)*2./cd->ysize - 1)) * proj;
glUniformMatrix4fv(o->uProjection, 1, 0, glhr::tmtogl_transpose(proj).as_array());
}
if(!callhandlers(false, hooks_rayset, o)) {
cell *cs = centerover;
transmatrix T = cview().T;
if(global_projection)
T = xpush(vid.ipd * global_projection/2) * T;
if(nonisotropic) T = NLP * T;
T = inverse(T);
virtualRebase(cs, T);
int ray_fixes = 0;
transmatrix msm = stretch::mstretch_matrix;
hyperpoint TC0 = tile_center();
back:
for(int a=0; a<cs->type; a++)
if(hdist(currentmap->ray_iadj(cs, a) * T * C0, TC0) < hdist(T * C0, TC0)) {
T = currentmap->iadj(cs, a) * T;
if(o->uToOrig != -1) {
transmatrix HT = currentmap->adj(cs, a);
HT = stretch::itranslate(tC0(HT)) * HT;
msm = HT * msm;
}
cs = cs->move(a);
ray_fixes++;
if(ray_fixes > 100) {
println(hlog, "major ray error");
return;
}
goto back;
}
if(ray_fixes) println(hlog, "ray error x", ray_fixes, " centerover = ", centerover, " -> ", cs);
glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose3(T).as_array());
if(o->uLP != -1) glUniformMatrix4fv(o->uLP, 1, 0, glhr::tmtogl_transpose3(inverse(NLP)).as_array());
GLERR("uniform mediump startid");
glUniform1f(o->uIPD, vid.ipd);
GLERR("uniform mediump IPD");
if(o->uITOA != -1) {
glUniformMatrix4fv(o->uITOA, 1, 0, glhr::tmtogl_transpose3(stretch::m_itoa).as_array());
glUniformMatrix4fv(o->uATOI, 1, 0, glhr::tmtogl_transpose3(stretch::m_atoi).as_array());
}
if(o->uToOrig != -1) {
glUniformMatrix4fv(o->uToOrig, 1, 0, glhr::tmtogl_transpose3(msm).as_array());
glUniformMatrix4fv(o->uFromOrig, 1, 0, glhr::tmtogl_transpose3(inverse(msm)).as_array());
}
if(o->uWallOffset != -1) {
glUniform1i(o->uWallOffset, intra::full_wall_offset(cs));
glUniform1i(o->uSides, cs->type + (WDIM == 2 ? 2 : 0));
}
vector<glvertex> wallx, wally;
vector<GLint> wallstart;
if(intra::in) {
intra::resetter ir;
for(int i=0; i<isize(intra::data); i++) {
intra::switch_to(i);
load_walls(wallx, wally, wallstart);
}
}
else
load_walls(wallx, wally, wallstart);
if(wall_via_texture) {
int wlength = next_p2(isize(wallx));
vector<array<float, 4>> w_map;
w_map.resize(4 * wlength);
ld minval = 9, maxval = -9;
for(int i=0; i<isize(wallx); i++) {
for(int a=0; a<4; a++) {
w_map[i][a] = wallx[i][a]/ray_scale + .5;
w_map[i+wlength][a] = wally[i][a]/ray_scale + .5;
minval = min<ld>(minval, w_map[i][a]);
minval = min<ld>(minval, w_map[i+wlength][a]);
maxval = max<ld>(maxval, w_map[i][a]);
maxval = max<ld>(maxval, w_map[i+wlength][a]);
}
}
// println(hlog, "wallrange = ", tie(minval, maxval), " wallx = ", isize(wallx), " wallstart = ", isize(cgi.wallstart));
for(int i=0; i<isize(wallstart); i++)
w_map[i+2*wlength][0] = (wallstart[i]+.5) / wlength;
bind_array(w_map, o->tWall, txWall, 8, wlength);
glUniform1f(o->uInvLengthWall, 1. / wlength);
}
else {
glUniform1iv(o->uWallstart, isize(wallstart), &wallstart[0]);
glUniform4fv(o->uWallX, isize(wallx), &wallx[0][0]);
glUniform4fv(o->uWallY, isize(wally), &wally[0][0]);
}
if(o->uLevelLines != -1)
glUniform1f(o->uLevelLines, levellines);
if(o->uBinaryWidth != -1)
glUniform1f(o->uBinaryWidth, vid.binary_width/2 * (nih?1:log(2)));
#if CAP_SOLV
if(o->uStraighten != -1) {
glUniformMatrix4fv(o->uStraighten, 1, 0, glhr::tmtogl_transpose(asonov::straighten).as_array());
}
if(o->uReflectX != -1) {
auto h = glhr::pointtogl(tangent_length(spin90() * asonov::ty, 2));
glUniform4fv(o->uReflectX, 1, &h[0]);
h = glhr::pointtogl(tangent_length(spin90() * asonov::tx, 2));
glUniform4fv(o->uReflectY, 1, &h[0]);
}
#endif
if(o->uPLevel != -1)
glUniform1f(o->uPLevel, cgi.plevel / 2);
#if CAP_BT
if(o->uBLevel != -1)
glUniform1f(o->uBLevel, log(bt::expansion()) / 2);
#endif
if(o->uLinearSightRange != -1)
glUniform1f(o->uLinearSightRange, sightranges[geometry]);
glUniform1f(o->uExpDecay, exp_decay_current());
glUniform1f(o->uExpStart, exp_start);
auto cols = glhr::acolor(darkena(backcolor, 0, 0xFF));
if(o->uFogColor != -1)
glUniform4f(o->uFogColor, cols[0], cols[1], cols[2], cols[3]);
if(reset_rmap) rmap = nullptr, reset_rmap = false;
if(!rmap) rmap = (unique_ptr<raycast_map>) new raycast_map;
if(rmap->need_to_create(cs)) {
rmap->create_all(cs);
if(reset_rmap) {
reset_raycaster();
cast();
return;
}
if(rmap->gms_exceeded()) {
if(isize(rmap->ms) > gms_limit || can_via_texture) {
m_via_texture = true;
wall_via_texture = true;
println(hlog, "enabling m_via_texture");
reset_raycaster();
cast();
}
else {
gms_array_size = isize(rmap->ms);
println(hlog, "changing gms_array_size to ", gms_array_size);
reset_raycaster();
cast();
}
return;
}
rmap->assign_uniforms(&*o);
}
// we may learn about this now...
if(need_many_cell_types() && o->uWallOffset == -1) {
reset_raycaster();
cast();
return;
}
GLERR("uniform mediump start");
if(!o) { cast(); return; }
uniform2(o->uStartid, rmap->enc(rmap->ids[cs], 0));
}
#if CAP_VERTEXBUFFER
glhr::bindbuffer_vertex(screen);
glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), 0);
#else
glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), &screen[0]);
#endif
if(ray::comparison_mode)
glhr::set_depthtest(false);
else {
glhr::set_depthtest(true);
glhr::set_depthwrite(true);
}
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
if(!floor_textures) {
println(hlog, "make_floor_textures called");
make_floor_textures();
check_cgi();
}
glActiveTexture(GL_TEXTURE0 + 0);
glBindTexture(GL_TEXTURE_2D, floor_textures->renderedTexture);
GLERR("bind");
glDrawArrays(GL_TRIANGLES, 0, 6);
GLERR("finish");
}
EX namespace volumetric {
EX bool on;
EX map<cell*, color_t> vmap;
int intensity = 16;
EX void enable() {
if(!on) {
on = true;
reset_raycaster();
}
}
EX void random_fog() {
enable();
for(cell *c: currentmap->allcells())
vmap[c] = ((rand() % 0x1000000) << 8) | intensity;
}
EX void menu() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("volumetric raycasting"));
if(!cheater) {
dialog::addItem(XLAT("enable the cheat mode for additional options"), 'X');
dialog::add_action(enable_cheat);
dialog::addBack();
dialog::display();
return;
}
dialog::addBoolItem(XLAT("active"), on, 'a');
dialog::add_action([&] {
on = !on;
reset_raycaster();
});
dialog::addSelItem(XLAT("intensity of random coloring"), its(intensity), 'i');
dialog::add_action([] {
dialog::editNumber(intensity, 0, 255, 5, 15, "", "");
dialog::reaction = random_fog;
});
dialog::addItem(XLAT("color randomly"), 'r');
dialog::add_action(random_fog);
dialog::addColorItem("color cell under cursor", vmap.count(centerover) ? vmap[centerover] : 0, 'c');
dialog::add_action([&] {
enable();
dialog::openColorDialog(vmap[centerover]);
dialog::dialogflags |= sm::SIDE;
});
dialog::addColorItem("color cell under player", vmap.count(cwt.at) ? vmap[cwt.at] : 0, 'p');
dialog::add_action([&] {
enable();
dialog::openColorDialog(vmap[cwt.at]);
dialog::dialogflags |= sm::SIDE;
});
dialog::addBreak(150);
dialog::addHelp("This fills all the cells with glowing fog, for cool visualizations");
dialog::addBreak(150);
dialog::addBack();
dialog::display();
}
EX }
EX void configure() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("raycasting configuration"));
dialog::addBoolItem(XLAT("available in current geometry"), available(), 0);
dialog::addBoolItem(XLAT("use raycasting?"), want_use == 2 ? true : in_use, 'u');
if(want_use == 1) dialog::lastItem().value = XLAT("SMART");
dialog::add_action([] {
want_use++; want_use %= 3;
});
dialog::addBoolItem_action(XLAT("comparison mode"), comparison_mode, 'c');
dialog::addSelItem(XLAT("exponential range"), fts(exp_decay_current()), 'r');
dialog::add_action([&] {
dialog::editNumber(exp_decay_current(), 0, 40, 0.25, 5, XLAT("exponential range"),
XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))")
);
});
dialog::addSelItem(XLAT("exponential start"), fts(exp_start), 's');
dialog::add_action([&] {
dialog::editNumber(exp_start, 0, 1, 0.1, 1, XLAT("exponential start"),
XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))\n")
);
});
if(hard_limit < NO_LIMIT)
dialog::addSelItem(XLAT("hard limit"), fts(hard_limit), 'H');
else
dialog::addBoolItem(XLAT("hard limit"), false, 'H');
dialog::add_action([&] {
if(hard_limit >= NO_LIMIT) hard_limit = 10;
dialog::editNumber(hard_limit, 0, 100, 1, 10, XLAT("hard limit"), "");
dialog::reaction = reset_raycaster;
dialog::extra_options = [] {
dialog::addItem("no limit", 'N');
dialog::add_action([] { hard_limit = NO_LIMIT; reset_raycaster(); });
};
});
if(!nil) {
dialog::addSelItem(XLAT("reflective walls"), fts(reflect_val), 'R');
dialog::add_action([&] {
dialog::editNumber(reflect_val, 0, 1, 0.1, 0, XLAT("reflective walls"), "");
dialog::reaction = reset_raycaster;
});
}
if(is_stepbased()) {
dialog::addSelItem(XLAT("max step"), fts(maxstep_current()), 'x');
dialog::add_action([] {
auto& ms = maxstep_current();
dialog::editNumber(maxstep_current(), 1e-6, 1, .1,
&ms == &maxstep_pro ? .05 :
&ms == &maxstep_nil ? .1 : .5,
XLAT("max step"), "affects the precision of solving the geodesic equation in Solv");
dialog::scaleLog();
dialog::bound_low(1e-9);
dialog::reaction = reset_raycaster;
});
dialog::addSelItem(XLAT("min step"), fts(minstep), 'n');
dialog::add_action([] {
dialog::editNumber(minstep, 1e-6, 1, 0.1, 0.001, XLAT("min step"), "how precisely should we find out when do cross the cell boundary");
dialog::scaleLog();
dialog::bound_low(1e-9);
dialog::reaction = reset_raycaster;
});
}
dialog::addBoolItem(XLAT("volumetric raycasting"), volumetric::on, 'v');
dialog::add_action_push(volumetric::menu);
dialog::addSelItem(XLAT("iterations"), its(max_iter_current()), 's');
dialog::add_action([&] {
dialog::editNumber(max_iter_current(), 0, 600, 1, 60, XLAT("iterations"), "in H3/H2xE/E3 this is the number of cell boundaries; in nonisotropic, the number of simulation steps");
dialog::reaction = reset_raycaster;
});
dialog::addSelItem(XLAT("max cells"), its(max_cells), 's');
dialog::add_action([&] {
dialog::editNumber(max_cells, 16, 131072, 0.1, 4096, XLAT("max cells"), "");
dialog::scaleLog();
dialog::extra_options = [] {
dialog::addBoolItem_action("generate", rays_generate, 'G');
dialog::addColorItem(XLAT("out-of-range color"), color_out_of_range, 'X');
dialog::add_action([] {
dialog::openColorDialog(color_out_of_range);
dialog::dialogflags |= sm::SIDE;
});
};
});
dialog::addBoolItem_action(XLAT("the map is fixed (improves performance)"), ray::fixed_map, 'F');
if(gms_array_size > gms_limit && ray::in_use) {
dialog::addBreak(100);
dialog::addHelp(XLAT("unfortunately this honeycomb is too complex for the current implementation (%1>%2)", its(gms_array_size), its(gms_limit)));
}
edit_levellines('L');
dialog::addBack();
dialog::display();
}
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-ray-do")) {
PHASEFROM(2);
want_use = 2;
}
else if(argis("-ray-dont")) {
PHASEFROM(2);
want_use = 0;
}
else if(argis("-ray-smart")) {
PHASEFROM(2);
want_use = 1;
}
else if(argis("-ray-range")) {
PHASEFROM(2);
shift_arg_formula(exp_start, reset_raycaster);
shift_arg_formula(exp_decay_current(), reset_raycaster);
}
else if(argis("-ray-hard")) {
PHASEFROM(2);
shift_arg_formula(hard_limit);
}
else if(argis("-ray-out")) {
PHASEFROM(2); shift(); color_out_of_range = argcolor(32);
}
else if(argis("-ray-comp")) {
PHASEFROM(2);
comparison_mode = true;
}
else if(argis("-ray-sol")) {
PHASEFROM(2);
shift(); max_iter_sol = argi();
shift_arg_formula(maxstep_sol, reset_raycaster);
reset_raycaster();
}
else if(argis("-ray-iter")) {
PHASEFROM(2);
shift(); max_iter_current() = argi();
}
else if(argis("-ray-step")) {
PHASEFROM(2);
println(hlog, "maxstep_current() is ", maxstep_current());
shift_arg_formula(maxstep_current());
}
else if(argis("-ray-cells")) {
PHASEFROM(2); shift();
rays_generate = true;
max_cells = argi();
}
else if(argis("-ray-reflect")) {
PHASEFROM(2);
shift_arg_formula(reflect_val, reset_raycaster);
}
else if(argis("-ray-cells-no")) {
PHASEFROM(2); shift();
rays_generate = false;
max_cells = argi();
}
else if(argis("-ray-random")) {
start_game();
shift(); volumetric::intensity = argi();
volumetric::random_fog();
}
else if(argis("-ray-cursor")) {
start_game();
volumetric::enable();
shift(); volumetric::vmap[centerover] = argcolor(32);
}
else return 1;
return 0;
}
auto hook = addHook(hooks_args, 100, readArgs)
+ addHook(hooks_clearmemory, 40, [] { rmap = {}; });
#endif
#if CAP_CONFIG
void addconfig() {
param_f(exp_start, "ray_exp_start");
param_f(exp_decay_exp, "ray_exp_decay_exp");
param_f(maxstep_sol, "ray_maxstep_sol");
param_f(maxstep_nil, "ray_maxstep_nil");
param_f(minstep, "ray_minstep");
param_f(reflect_val, "ray_reflect_val");
param_f(hard_limit, "ray_hard_limit");
addsaver(want_use, "ray_want_use");
param_f(exp_decay_poly, "ray_exp_decay_poly");
addsaver(max_iter_iso, "ray_max_iter_iso");
addsaver(max_iter_sol, "ray_max_iter_sol");
param_i(max_cells, "ray_max_cells");
addsaver(rays_generate, "ray_generate");
param_b(fixed_map, "ray_fixed_map");
param_i(max_wall_offset, "max_wall_offset");
param_i(max_celltype, "max_celltype");
}
auto hookc = addHook(hooks_configfile, 100, addconfig);
#endif
#endif
#if !CAP_RAY
EX always_false in_use;
EX always_false comparison_mode;
EX void reset_raycaster() { }
EX void cast() { }
#endif
EX }
}