1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-09 15:39:55 +00:00
hyperrogue/arbitrile.cpp
2024-05-28 13:08:08 +02:00

2195 lines
65 KiB
C++

// Hyperbolic Rogue -- Arbitrary Tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file arbitrile.cpp
* \brief Arbitrary tilings
*
* Arbitrary tilings, defined in .tes files.
*/
#include "hyper.h"
namespace hr {
EX namespace arb {
EX int affine_limit = 200;
#if HDR
/** a type used to specify the connections between shapes */
struct connection_t {
/** the index of the connected shape in the 'shapes' table */
int sid;
/** the index of the edge in the 'shapes' table */
int eid;
/** 1 if this connection mirrored, 0 otherwise. do_unmirror() removes all mirrors by doubling shapes */
int mirror;
bool operator == (const arb::connection_t& b) const { return tie(sid, eid, mirror) == tie(b.sid, b.eid, b.mirror); }
bool operator < (const arb::connection_t& b) const { return tie(sid, eid, mirror) < tie(b.sid, b.eid, b.mirror); }
};
inline void print(hstream& hs, const connection_t& conn) { print(hs, tie(conn.sid, conn.eid, conn.mirror)); }
/** \brief each shape of the arb tessellation
* note: the usual HyperRogue convention is: vertex 0, edge 0, vertex 1, edge 1, ...
* note: the tesfile convention is: edge 0, vertex 0, edge 1, vertex 1, ...
*/
/** edge with infinite end on the left */
constexpr ld INFINITE_LEFT = -1;
/** edge with infinite end on the right */
constexpr ld INFINITE_RIGHT = -2;
/** edge with two infinite ends */
constexpr ld INFINITE_BOTH = -3;
struct shape {
/** index in the arbi_tiling::shapes */
int id;
/** index in the original file */
int orig_id;
/** flags such as sfLINE and sfPH */
int flags;
/** list of vertices in the usual convention */
vector<hyperpoint> vertices;
/** list of angles in the tesfile convention */
vector<ld> angles;
/** list of edge lengths */
vector<ld> edges;
/** list of input edges */
vector<ld> in_edges;
/** list of input angles */
vector<ld> in_angles;
/** (ultra)ideal markers */
vector<bool> ideal_markers;
/** list of edge connections */
vector<connection_t> connections;
int size() const { return isize(vertices); }
void build_from_angles_edges(bool is_comb);
vector<pair<int, int> > sublines;
vector<pair<ld, ld>> stretch_shear;
/** '*inf' was applied to represent an apeirogon/pseudogon */
bool apeirogonal;
/** connections repeat `repeat_value` times */
int repeat_value;
/** 0 if the no mirror symmetries are declared; otherwise, edge i is the mirror of edge gmod(symmetric_value-i, size()). Make sure symmetric_value != 0, e.g., by adding size() */
int symmetric_value;
/** if a tile/edge combination may be connected to edges j1 and j2 of this, j1-j2 must be divisible by cycle_length */
int cycle_length;
/** list of valences of vertices in the tesfile convention */
vector<int> vertex_valence;
/** list of periods of vertices in the tesfile convention */
vector<int> vertex_period;
/** list of angles at vertices in the tesfile convention */
vector<vector<ld>> vertex_angles;
/** football types */
int football_type;
/** is it a mirrored version of an original tile */
bool is_mirrored;
/** auxiliary function for symmetric_value: is the edge index reflectable? */
bool reflectable(int id) {
if(!symmetric_value) return false;
if(apeirogonal && gmod(id, size()) >= size() - 2) return false;
return true;
}
/** reflect a reflectable reflect index */
int reflect(int id) {
return gmod(symmetric_value - id, size() - (apeirogonal ? 2 : 0));
}
};
struct slider {
string name;
ld zero;
ld current;
ld min;
ld max;
};
struct intslider {
string name;
int zero;
int current;
int min;
int max;
};
struct arbi_tiling {
int order;
/* line flags have been marked for tiles */
bool have_line;
/* pseudohept flags have been marked for tiles (1), or the tiling is football-colorable (2), or neither (0) */
int have_ph;
/* is the tree structure given in the tes file */
bool have_tree;
/* is the valence data reliable */
bool have_valence;
/* use "star." if the tessellation includs star polygons */
bool is_star;
/* use "combinatorial." for combinatorial tessellations; vertex valences computed based on their angles. Currently only rulegen works for combinatorial tessellations */
bool is_combinatorial;
/* reserved for future flags */
bool res0, res1, res2, res3;
int yendor_backsteps;
vector<shape> shapes;
string name;
string comment;
vector<slider> sliders;
vector<intslider> intsliders;
ld cscale;
int range;
ld floor_scale;
ld boundary_ratio;
string filename;
int mirror_rules;
vector<string> options;
int min_valence, max_valence;
bool is_football_colorable;
bool was_unmirrored;
bool was_split_for_football;
geometryinfo1& get_geometry();
eGeometryClass get_class() { return get_geometry().kind; }
ld scale();
};
#endif
/** currently loaded tiling */
EX arbi_tiling current;
/** is the currently displayed map current or slided */
EX bool using_slided;
/** for real-valued sliders, current is the tiling used by the map, while slided is the tiling used for the display */
EX arbi_tiling slided;
EX bool in_slided() { return in() && using_slided; }
EX arbi_tiling& current_or_slided() {
return using_slided ? slided : current;
}
/** id of vertex in the arbitrary tiling */
EX short& id_of(heptagon *h) { return h->zebraval; }
#if HDR
struct hr_polygon_error : hr_exception {
vector<transmatrix> v;
eGeometryClass c;
int id;
transmatrix end;
map<string, cld> params;
hr_polygon_error(const vector<transmatrix>& _v, int _id, transmatrix _e) : v(_v), c(cgclass), id(_id), end(_e) {}
~hr_polygon_error() noexcept(true) {}
string generate_error();
};
#endif
string hr_polygon_error::generate_error() {
cld dist = (hdist0(tC0(end)) / params["distunit"]);
bool angle = abs(dist) < 1e-9;
if(angle) dist = (atan2(end * lxpush0(1)) / params["angleunit"]);
return
XLAT("Polygon number %1 did not close correctly (%2 %3). Here is the picture to help you understand the issue.\n\n", its(id),
angle ? "angle" : "distance",
lalign(0, dist)
);
}
struct connection_debug_request : hr_exception {
int id;
eGeometryClass c;
connection_debug_request(int i): id(i), c(cgclass) {}
};
void ensure_geometry(eGeometryClass c) {
stop_game();
if(c != cgclass) {
if(c == gcEuclid) set_geometry(gEuclid);
if(c == gcHyperbolic) set_geometry(gNormal);
if(c == gcSphere) set_geometry(gSphere);
}
if(specialland != laCanvas) {
canvas_default_wall = waInvisibleFloor;
ccolor::set_plain(0xFFFFFF);
enable_canvas();
}
start_game();
}
void start_poly_debugger(hr_polygon_error& err) {
#if CAP_EDIT
ensure_geometry(err.c);
drawthemap();
mapeditor::drawing_tool = true;
pushScreen(mapeditor::showDrawEditor);
mapeditor::initdraw(cwt.at);
int n = isize(err.v);
mapeditor::dtcolor = 0xFF0000FF;
mapeditor::dtwidth = 0.02;
for(int i=0; i<n-1; i++)
mapeditor::dt_add_line(shiftless(tC0(err.v[i])), shiftless(tC0(err.v[i+1])), 0);
mapeditor::dtcolor = 0xFFFFFFFF;
for(int i=0; i<n; i++)
mapeditor::dt_add_text(shiftless(tC0(err.v[i])), 0.5, its(i));
#endif
}
void shape::build_from_angles_edges(bool is_comb) {
transmatrix at = Id;
int n = isize(in_angles);
hyperpoint ctr = Hypc;
vector<transmatrix> matrices;
for(int i=0; i<n; i++) {
matrices.push_back(at);
if(debugflags & DF_GEOM) println(hlog, "at = ", at);
ctr += tC0(at);
at = at * lxpush(in_edges[i]) * spin(in_angles[i]+M_PI);
}
matrices.push_back(at);
if(is_comb) return;
if(!eqmatrix(at, Id) && !apeirogonal) {
throw hr_polygon_error(matrices, id, at);
}
if(sqhypot_d(3, ctr) < 1e-2) {
// this may happen for some spherical tilings
// try to move towards the center
if(debugflags & DF_GEOM) println(hlog, "special case encountered");
for(int i=0; i<n; i++) {
ctr += at * lxpush(in_edges[i]) * spin((in_angles[i]+M_PI)/2) * lxpush0(.01);
at = at * lxpush(in_edges[i]) * spin(in_angles[i]);
}
if(debugflags & DF_GEOM) println(hlog, "ctr = ", ctr);
}
hyperpoint inf_point;
if(apeirogonal) {
transmatrix U = at;
for(int i=0; i<3; i++) for(int j=0; j<3; j++) U[i][j] -= Id[i][j];
hyperpoint v;
ld det = U[0][1] * U[1][0] - U[1][1] * U[0][0];
v[1] = (U[1][2] * U[0][0] - U[0][2] * U[1][0]) / det;
v[0] = (U[0][2] * U[1][1] - U[1][2] * U[0][1]) / det;
v[2] = 1;
inf_point = v;
ctr = mid(C0, tC0(at));
ctr = towards_inf(ctr, inf_point);
}
ctr = normalize(ctr);
vertices.clear();
angles.clear();
for(int i=0; i<n; i++) {
edges.push_back(in_edges[i]);
if(!ideal_markers[i]) {
vertices.push_back(tC0(gpushxto0(ctr) * matrices[i]));
angles.push_back(in_angles[i]);
}
else {
angles.push_back(0);
hyperpoint a1 = tC0(matrices[i]);
hyperpoint t1 = get_column(matrices[i], 0);
hyperpoint a2 = tC0(matrices[i+2]);
hyperpoint t2 = get_column(matrices[i+2], 0);
a1 /= a1[2];
a2 /= a2[2];
t1 -= a1 * t1[2];
t2 -= a2 * t2[2];
ld c1 = a2[0] - a1[0], c2 = a2[1] - a1[1];
ld v1 = t1[0], v2 = t1[1];
ld u1 = t2[0], u2 = t2[1];
ld r = (u2 * c1 - c2 * u1) / (v1 * u2 - v2 * u1);
// ld s = (v2 * c1 - c2 * v1) / (v1 * u2 - v2 * u1);
hyperpoint v = a1 + r * t1;
// also v == a2 + s * t2;
v[2] = 1;
v = gpushxto0(ctr) * v;
v /= v[2];
vertices.push_back(v);
i++;
}
}
if(apeirogonal) {
vertices.push_back(gpushxto0(ctr) * tC0(at));
hyperpoint v = gpushxto0(ctr) * inf_point;
v /= v[2];
vertices.push_back(v);
auto b = angles.back() / 2;
angles.back() = b;
angles.push_back(0);
angles.push_back(b);
edges.push_back(0);
edges.push_back(0);
}
n = isize(angles);
for(int i=0; i<n; i++) {
bool left = angles[i] == 0;
bool right = angles[gmod(i-1, isize(vertices))] == 0;
if(left && right) edges[i] = INFINITE_BOTH;
else if(left) edges[i] = INFINITE_LEFT;
else if(right) edges[i] = INFINITE_RIGHT;
}
}
EX bool correct_index(int index, int size) { return index >= 0 && index < size; }
template<class T> bool correct_index(int index, const T& v) { return correct_index(index, isize(v)); }
template<class T> void verify_index(int index, const T& v, exp_parser& ep) { if(!correct_index(index, v)) throw hr_parse_exception("bad index: " + its(index) + " at " + ep.where()); }
string unnamed = "unnamed";
EX void load_tile(exp_parser& ep, arbi_tiling& c, bool unit) {
c.shapes.emplace_back();
auto& cc = c.shapes.back();
cc.id = isize(c.shapes) - 1;
cc.orig_id = cc.id;
cc.is_mirrored = false;
cc.symmetric_value = 0;
cc.flags = 0;
cc.repeat_value = 1;
cc.apeirogonal = false;
bool is_symmetric = false;
while(ep.next() != ')') {
cld dist = 1;
ep.skip_white();
if(ep.eat("|")) {
cc.symmetric_value = ep.iparse();
is_symmetric = true;
ep.force_eat(")");
break;
}
if(ep.eat("*")) {
ld frep = ep.rparse(0);
if(isinf(frep)) {
cc.apeirogonal = true;
set_flag(ginf[gArbitrary].flags, qIDEAL, true);
if(ep.eat(",") && ep.eat("|")) {
is_symmetric = true;
if(isize(cc.in_edges) == 1 && ep.eat(")")) break;
cc.symmetric_value = ep.iparse();
}
ep.force_eat(")");
break;
}
int rep = int(frep+.5);
int repeat_from = 0;
int repeat_to = cc.in_edges.size();
if(rep == 0) {
cc.in_edges.resize(repeat_from);
cc.in_angles.resize(repeat_from);
cc.ideal_markers.resize(repeat_from);
}
else if(rep < 0) throw hr_parse_exception("don't know how to use a negative repeat in tile definition");
for(int i=1; i<rep; i++)
for(int j=repeat_from; j<repeat_to; j++) {
cc.in_edges.push_back(cc.in_edges[j]);
cc.in_angles.push_back(cc.in_angles[j]);
cc.ideal_markers.push_back(cc.ideal_markers[j]);
}
ep.skip_white();
if(ep.eat(",")) {
ep.force_eat("|");
is_symmetric = true;
if(repeat_to == 1 && ep.eat(")")) goto skip;
cc.symmetric_value = ep.iparse();
}
if(ep.eat(")")) {
skip:
if(repeat_from == 0) cc.repeat_value = rep;
break;
}
else throw hr_parse_exception("expecting ) after repeat");
}
if(!unit) {
dist = ep.parse(0);
ep.force_eat(",");
}
cld angle;
ep.skip_white();
if(ep.eat("[")) {
cc.in_edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
angle = ep.parse(0); ep.force_eat(",");
cc.in_angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"]));
cc.ideal_markers.push_back(true);
dist = ep.parse(0); ep.force_eat(",");
angle = ep.parse(0); ep.force_eat("]");
set_flag(ginf[gArbitrary].flags, qIDEAL, true);
}
else
angle = ep.parse(0);
cc.in_edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
cc.in_angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"]));
cc.ideal_markers.push_back(false);
if(ep.eat(",")) continue;
else if(ep.eat(")")) break;
else throw hr_parse_exception("expecting , or )");
}
try {
cc.build_from_angles_edges(c.is_combinatorial);
}
catch(hr_parse_exception& ex) {
throw hr_parse_exception(ex.s + ep.where());
}
catch(hr_polygon_error& poly) {
poly.params = ep.extra_params;
throw;
}
int n = cc.size();
if(is_symmetric && !cc.symmetric_value) cc.symmetric_value += n - (cc.apeirogonal ? 2 : 0);
cc.connections.resize(n);
for(int i=0; i<isize(cc.connections); i++)
cc.connections[i] = connection_t{cc.id, i, false};
if(cc.apeirogonal) {
cc.connections[n-2].eid = n-1;
cc.connections[n-1].eid = n-2;
}
cc.stretch_shear.resize(n, make_pair(1, 0));
}
EX bool do_unmirror = true;
template<class T> void cycle(vector<T>& t) {
std::rotate(t.begin(), t.begin() + 2, t.end());
}
/** \brief for tessellations which contain mirror rules, remove them by taking the orientable double cover */
EX void unmirror(arbi_tiling& c) {
if(cgflags & qAFFINE) return;
auto& mirror_rules = c.mirror_rules;
mirror_rules = 0;
for(auto& s: c.shapes)
for(auto& t: s.connections)
if(t.mirror)
mirror_rules++;
if(!mirror_rules) return;
auto& sh = c.shapes;
int s = isize(sh);
vector<int> mirrored_id(s, -1);
for(int i=0; i<s; i++)
if(!sh[i].symmetric_value) {
mirrored_id[i] = isize(sh);
sh.push_back(sh[i]);
}
int ss = isize(sh);
for(int i=0; i<ss; i++) {
sh[i].id = i;
if(i >= s) sh[i].is_mirrored = true;
}
for(int i=s; i<ss; i++) {
for(auto& v: sh[i].vertices)
v[1] = -v[1];
reverse(sh[i].edges.begin(), sh[i].edges.end());
for(auto& e: sh[i].edges) {
if(e == INFINITE_LEFT) e = INFINITE_RIGHT;
else if(e == INFINITE_RIGHT) e = INFINITE_LEFT;
}
reverse(sh[i].vertices.begin()+1, sh[i].vertices.end());
reverse(sh[i].angles.begin(), sh[i].angles.end()-1);
reverse(sh[i].connections.begin(), sh[i].connections.end());
if(sh[i].apeirogonal) {
cycle(sh[i].edges);
cycle(sh[i].vertices);
if(debugflags & DF_GEOM) println(hlog, "angles before = ", sh[i].angles);
cycle(sh[i].angles);
if(debugflags & DF_GEOM) println(hlog, "angles now = ", sh[i].angles);
cycle(sh[i].connections);
}
}
if(true) for(int i=0; i<ss; i++) {
for(auto& co: sh[i].connections) {
bool mirr = co.mirror ^ (i >= s);
co.mirror = false;
if(mirr && mirrored_id[co.sid] == -1) {
if(sh[co.sid].reflectable(co.eid)) {
co.eid = sh[co.sid].reflect(co.eid);
}
}
else if(mirr) {
co.sid = mirrored_id[co.sid];
co.eid = isize(sh[co.sid].angles) - 1 - co.eid;
if(sh[co.sid].apeirogonal)
co.eid = gmod(co.eid - 2, isize(sh[co.sid].angles));
}
}
}
c.was_unmirrored = true;
}
static void reduce_gcd(int& a, int b) {
a = abs(gcd(a, b));
}
EX void mirror_connection(arb::arbi_tiling& ac, connection_t& co) {
if(co.mirror && ac.shapes[co.sid].reflectable(co.eid)) {
co.eid = ac.shapes[co.sid].reflect(co.eid);
co.mirror = !co.mirror;
}
}
EX void compute_vertex_valence_prepare(arb::arbi_tiling& ac) {
int tcl = -1;
while(true) {
for(auto& sh: ac.shapes) {
int i = sh.id;
int n = isize(sh.vertices);
for(int k=sh.cycle_length; k<n; k++) {
auto co = sh.connections[k];
auto co1 = sh.connections[k-sh.cycle_length];
if(co.sid != co1.sid) {
println(hlog, "ik = ", tie(i,k), " co=", co, " co1=", co1, " cl=", sh.cycle_length);
throw hr_parse_exception("connection error #2 in compute_vertex_valence");
}
mirror_connection(ac, co);
mirror_connection(ac, co1);
reduce_gcd(ac.shapes[co.sid].cycle_length, co.eid - co1.eid);
}
for(int k=0; k<n; k++) {
auto co = sh.connections[k];
auto co0 = co;
co = ac.shapes[co.sid].connections[co.eid];
if(co.sid != i) throw hr_parse_exception("connection error in compute_vertex_valence");
co.mirror ^= co0.mirror;
mirror_connection(ac, co);
reduce_gcd(sh.cycle_length, k-co.eid);
}
if(debugflags & DF_GEOM)
println(hlog, "tile ", i, " cycle_length = ", sh.cycle_length, " / ", n);
}
int new_tcl = 0;
for(auto& sh: ac.shapes) {
auto& len = sh.cycle_length;
if(len < 0) len = -len;
new_tcl += len;
}
if(new_tcl == tcl) break;
tcl = new_tcl;
}
}
/** returns true if we need to recompute */
EX bool compute_vertex_valence_flat(arb::arbi_tiling& ac) {
for(auto& sh: ac.shapes) {
int n = sh.size();
int i = sh.id;
sh.vertex_valence.resize(n);
sh.vertex_period.resize(n);
sh.vertex_angles.resize(n);
for(int k=0; k<n; k++) {
ld total = 0;
int qty = 0, pqty = 0;
connection_t at = {i, k, false};
connection_t at1 = at;
vector<ld> anglelist;
do {
if(at.sid == at1.sid && (at.eid-at1.eid) % ac.shapes[at.sid].cycle_length == 0) pqty = 0;
if(qty && pqty == 0 && !total) break;
ld a = ac.shapes[at.sid].angles[at.eid];
while(a < 0) a += TAU;
while(a > TAU) a -= TAU;
total += a;
anglelist.push_back(a);
qty++;
pqty++;
at.eid++;
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
at = ac.shapes[at.sid].connections[at.eid];
}
while(total < TAU - 1e-6);
if(total == 0) qty = OINF;
if(total > TAU + 1e-6) throw hr_parse_exception("improper total in compute_stats");
if(at.sid != i) throw hr_parse_exception("ended at wrong type determining vertex_valence");
if((at.eid - k) % ac.shapes[i].cycle_length) {
reduce_gcd(ac.shapes[i].cycle_length, at.eid - k);
return true;
}
sh.vertex_valence[k] = qty;
sh.vertex_period[k] = pqty;
sh.vertex_angles[k] = std::move(anglelist);
}
if(debugflags & DF_GEOM)
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
}
return false;
}
/** returns true if we need to recompute */
EX bool compute_vertex_valence_generic(arb::arbi_tiling& ac) {
for(auto& sh: ac.shapes) {
int n = sh.size();
int i = sh.id;
sh.vertex_valence.resize(n);
for(int k=0; k<n; k++) {
connection_t at = {i, k, false};
transmatrix T = Id;
int qty = 0;
do {
if(qty && at.sid == i) {
auto co1 = at;
bool found = find_connection(T, Id, co1);
if(found) {
mirror_connection(ac, co1);
if((co1.eid - k) % ac.shapes[i].cycle_length) {
reduce_gcd(ac.shapes[i].cycle_length, co1.eid - k);
return true;
}
break;
}
}
if(at.mirror) {
if(at.eid == 0) at.eid = isize(ac.shapes[at.sid].angles);
at.eid--;
}
else {
at.eid++;
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
}
auto at0 = at;
at = ac.shapes[at.sid].connections[at.eid];
T = T * get_adj(ac, at0.sid, at0.eid, at.sid, at.eid, at.mirror);
at.mirror ^= at0.mirror;
qty++;
}
while(qty < OINF);
sh.vertex_valence[k] = qty;
}
if(debugflags & DF_GEOM)
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
}
return false;
}
EX void compute_vertex_valence(arb::arbi_tiling& ac) {
for(auto& sh: ac.shapes)
sh.cycle_length = isize(sh.vertices) / sh.repeat_value;
bool generic = false;
if(!ac.was_unmirrored) for(auto& sh: ac.shapes) if(sh.symmetric_value) generic = true;
for(auto& sh: ac.shapes) for(auto& co: sh.connections) if(co.mirror) generic = true;
if(cgflags & qAFFINE) generic = true;
if(ac.is_star) generic = true;
recompute:
compute_vertex_valence_prepare(ac);
if(generic ? compute_vertex_valence_generic(ac) : compute_vertex_valence_flat(ac)) goto recompute;
ac.have_valence = true;
ac.min_valence = UNKNOWN; ac.max_valence = 0;
for(auto& sh: ac.shapes)
for(auto& val: sh.vertex_valence) {
if(val < ac.min_valence) ac.min_valence = val;
if(val > ac.max_valence) ac.max_valence = val;
}
}
EX bool extended_football = true;
EX void check_football_colorability(arbi_tiling& c) {
if(!c.have_valence) return;
for(auto&sh: c.shapes) for(auto v: sh.vertex_valence)
if(v % 3) return;
for(int i=0; i<3; i++) {
for(auto&sh: c.shapes) sh.football_type = 3;
vector<int> aqueue;
c.shapes[0].football_type = i;
aqueue = {0};
bool bad = false;
for(int qi=0; qi<isize(aqueue); qi++) {
int sid = aqueue[qi];
auto& sh = c.shapes[sid];
for(int j=0; j<sh.size(); j++) {
auto &co = sh.connections[j];
auto t = sh.football_type;
if(c.have_ph && ((sh.flags & arcm::sfPH) != (t==2))) bad = true;
if(sh.apeirogonal && t < 2 && (isize(sh) & 1)) bad = true;
auto assign = [&] (int tt) {
auto& t1 = c.shapes[co.sid].football_type;
if(t1 == 3) {
t1 = tt;
aqueue.push_back(co.sid);
}
else {
if(t1 != tt) bad = true;
}
};
if(t < 2) {
if((j & 1) == t) assign(2); else assign((co.eid & 1) ? 0 : 1);
}
else {
assign((co.eid & 1) ? 1 : 0);
}
}
}
if(!bad) {
c.have_ph = 2;
for(auto& sh: c.shapes) if(sh.football_type == 2) sh.flags |= arcm::sfPH;
return;
}
}
if(extended_football && !c.have_tree) {
for(auto&sh: c.shapes)
sh.football_type = 0;
for(int i=0; i<3*isize(c.shapes); i++) {
for(auto&sh: c.shapes) {
int &res = sh.football_type;
int siz = sh.size();
if(sh.apeirogonal) siz -= 2;
else if(siz & 1) res |= 3;
if((sh.cycle_length & 1) && !sh.apeirogonal) {
if(res & 3) res |= 3;
}
if(sh.apeirogonal && (siz & 1)) {
if(res & 3) res |= 3;
}
if(sh.flags & arcm::sfPH) res |= 3;
for(int i=0; i<sh.size(); i++) {
auto co = sh.connections[i];
co.eid %= c.shapes[co.sid].cycle_length;
if(res & 1) {
if(i&1) {
if(co.eid & 1)
c.shapes[co.sid].football_type |= 1;
else
c.shapes[co.sid].football_type |= 2;
}
else
c.shapes[co.sid].football_type |= 4;
}
if(res & 2) {
if(!(i&1)) {
if(co.eid & 1)
c.shapes[co.sid].football_type |= 1;
else
c.shapes[co.sid].football_type |= 2;
}
else
c.shapes[co.sid].football_type |= 4;
}
if(res & 4) {
if(co.eid & 1)
c.shapes[co.sid].football_type |= 2;
else
c.shapes[co.sid].football_type |= 1;
}
}
}
}
c.is_football_colorable = true;
c.was_split_for_football = true;
for(auto&sh: c.shapes)
if(sh.football_type == 7)
c.is_football_colorable = false;
if(c.is_football_colorable) {
vector<array<int, 3> > new_indices(isize(c.shapes), make_array(-1, -1, -1));
auto oldshapes = c.shapes;
c.shapes.clear();
for(int i=0; i<isize(oldshapes); i++)
for(int t=0; t<3; t++)
if(!(oldshapes[i].football_type & (1<<t))) {
if(t == 1 && (oldshapes[i].cycle_length & 1) && !oldshapes[i].apeirogonal) continue;
new_indices[i][t] = isize(c.shapes);
c.shapes.push_back(oldshapes[i]);
c.shapes.back().football_type = t;
if(t == 2) c.shapes.back().flags |= arcm::sfPH;
}
for(int i=0; i<isize(oldshapes); i++)
for(int t=0; t<3; t++) {
int ni = new_indices[i][t];
if(ni == -1) continue;
auto& sh = c.shapes[ni];
sh.id = ni;
for(int j=0; j<isize(sh); j++) {
auto &co = sh.connections[j];
auto assign = [&] (int tt) {
auto ni1 = new_indices[co.sid][tt];
if(ni1 == -1 && tt == 1) {
ni1 = new_indices[co.sid][0];
co.eid += oldshapes[co.sid].cycle_length;
co.eid %= isize(oldshapes[co.sid]);
}
co.sid = ni1;
};
if(sh.apeirogonal && j >= isize(sh)-2) {
co.sid = ni;
if(t < 2 && (isize(sh) & 1)) co.sid = new_indices[i][t^1];
continue;
}
co.eid %= oldshapes[co.sid].cycle_length;
if(t < 2) {
if((j & 1) == t) assign(2); else assign((co.eid & 1) ? 0 : 1);
}
else {
assign((co.eid & 1) ? 1 : 0);
}
}
if((sh.cycle_length&1) && (t < 2) && !sh.apeirogonal) sh.cycle_length *= 2;
if(debugflags & DF_GEOM)
println(hlog, tie(i,t), " becomes ", ni, " with connections ", sh.connections, " and cycle length = ", sh.cycle_length);
}
c.have_ph = 2;
return;
}
}
for(auto&sh: c.shapes) sh.football_type = 3;
}
EX void add_connection_sub(arbi_tiling& c, int ai, int as, int bi, int bs, int m) {
int as0 = as, bs0 = bs;
auto& ash = c.shapes[ai];
auto& bsh = c.shapes[bi];
do {
ash.connections[as] = connection_t{bi, bs, m};
as = gmod(as + ash.size() / ash.repeat_value, ash.size());
}
while(as != as0);
do {
c.shapes[bi].connections[bs] = connection_t{ai, as, m};
bs = gmod(bs + bsh.size() / bsh.repeat_value, bsh.size());
}
while(bs != bs0);
}
EX void add_connection(arbi_tiling& c, int ai, int as, int bi, int bs, int m) {
auto& ash = c.shapes[ai];
auto& bsh = c.shapes[bi];
add_connection_sub(c, ai, as, bi, bs, m);
int as1, bs1;
if(ash.symmetric_value) {
as1 = ash.reflect(as);
add_connection_sub(c, ai, as1, bi, bs, !m);
}
if(bsh.symmetric_value) {
bs1 = bsh.reflect(bs);
add_connection_sub(c, ai, as, bi, bs1, !m);
}
if(ash.symmetric_value && bsh.symmetric_value)
add_connection_sub(c, ai, as1, bi, bs1, m);
}
EX void set_defaults(arb::arbi_tiling& c, bool keep_sliders, string fname) {
c.order++;
c.name = unnamed;
c.comment = "";
c.filename = fname;
c.cscale = 1;
c.range = 0;
c.boundary_ratio = 1;
c.floor_scale = .5;
c.have_ph = 0;
c.have_line = false;
c.is_football_colorable = false;
c.have_tree = false;
c.have_valence = false;
c.yendor_backsteps = 0;
c.is_star = false;
c.is_combinatorial = false;
c.was_unmirrored = false;
c.was_split_for_football = false;
c.shapes.clear();
if(!keep_sliders) {
c.sliders.clear();
c.intsliders.clear();
}
}
EX void load(const string& fname, bool load_as_slided IS(false), bool keep_sliders IS(false)) {
fhstream f(fname, "rt");
if(!f.f) throw hr_parse_exception("file " + fname + " does not exist");
string s;
while(true) {
int c = fgetc(f.f);
if(c < 0) break;
s += c;
}
auto& c = load_as_slided ? slided : current;
set_defaults(c, keep_sliders, fname);
int qsliders = 0, qintsliders = 0;
exp_parser ep;
ep.s = s;
ld angleunit = 1, distunit = 1;
auto addflag = [&] (int f) {
int ai;
if(ep.next() == ')') ai = isize(c.shapes)-1;
else ai = ep.iparse();
verify_index(ai, c.shapes, ep);
c.shapes[ai].flags |= f;
ep.force_eat(")");
};
while(true) {
ep.extra_params["distunit"] = distunit;
ep.extra_params["angleunit"] = angleunit;
ep.skip_white();
if(ep.next() == 0) break;
if(ep.eat("#")) {
bool doubled = ep.eat("#");
while(ep.eat(" ")) ;
string s = "";
while(ep.next() >= 32) s += ep.next(), ep.at++;
if(doubled) {
if(c.name == unnamed) c.name = s;
else {
c.comment += s;
c.comment += "\n";
}
}
}
else if(ep.eat("c2(")) {
ld curv = ep.rparse(0);
ep.force_eat(")");
ginf[gArbitrary].g = curv > 0 ? giSphere2 : curv < 0 ? giHyperb2 : giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, curv > 0);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("e2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("a2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, true);
affine_limit = 200;
geom3::apply_always3();
}
else if(ep.eat("h2.")) {
ginf[gArbitrary].g = giHyperb2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("s2.")) {
ginf[gArbitrary].g = giSphere2;
ginf[gArbitrary].sides = 5;
set_flag(ginf[gArbitrary].flags, qCLOSED, true);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("star.")) {
c.is_star = true;
}
else if(ep.eat("combinatorial.")) {
c.is_combinatorial = true;
}
else if(ep.eat("option(\"")) {
next:
string s = "";
while(ep.next() != '"') s += ep.eatchar();
ep.force_eat("\"");
c.options.push_back(s);
ep.skip_white();
if(ep.eat(",")) { ep.skip_white(); ep.force_eat("\""); goto next; }
ep.force_eat(")");
}
else if(ep.eat("angleunit(")) angleunit = real(ep.parsepar());
else if(ep.eat("distunit(")) distunit = real(ep.parsepar());
else if(ep.eat("line(")) {
addflag(arcm::sfLINE);
c.have_line = true;
}
else if(ep.eat("grave(")) {
addflag(arcm::sfPH);
c.have_ph = true;
}
else if(ep.eat("slider(")) {
slider sl;
sl.name = ep.next_token();
ep.force_eat(",");
sl.current = sl.zero = ep.rparse();
ep.force_eat(",");
sl.min = ep.rparse();
ep.force_eat(",");
sl.max = ep.rparse();
ep.force_eat(")");
if(load_as_slided || !keep_sliders)
c.sliders.push_back(sl);
if(load_as_slided || keep_sliders)
ep.extra_params[sl.name] = current.sliders[qsliders++].current;
else
ep.extra_params[sl.name] = sl.zero;
}
else if(ep.eat("intslider(")) {
intslider sl;
sl.name = ep.next_token();
ep.force_eat(",");
sl.current = sl.zero = ep.iparse();
ep.force_eat(",");
sl.min = ep.iparse();
ep.force_eat(",");
sl.max = ep.iparse();
ep.force_eat(")");
if(load_as_slided || !keep_sliders)
c.intsliders.push_back(sl);
if(load_as_slided || keep_sliders)
ep.extra_params[sl.name] = current.intsliders[qintsliders++].current;
else
ep.extra_params[sl.name] = sl.zero;
}
else if(ep.eat("let(")) {
string tok = ep.next_token();
ep.force_eat("=");
ep.extra_params[tok] =ep.parsepar();
if(debugflags & DF_GEOM)
println(hlog, "let ", tok, " = ", ep.extra_params[tok]);
}
else if(ep.eat("unittile(")) load_tile(ep, c, true);
else if(ep.eat("tile(")) load_tile(ep, c, false);
else if(ep.eat("affine_limit(")) {
affine_limit = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("cscale(")) {
c.cscale = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("treestate(")) {
rulegen::parse_treestate(c, ep);
}
else if(ep.eat("first_treestate(")) {
rulegen::rule_root = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("yendor_backsteps(")) {
c.yendor_backsteps = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("range(")) {
c.range = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("floor_scale(")) {
c.floor_scale = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("boundary_ratio(")) {
c.boundary_ratio = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("conway(\"")) {
string s = "";
while(true) {
int m = 0;
if(ep.eat("(")) m = 0;
else if(ep.eat("[")) m = 1;
else if(ep.eat("\"")) break;
else throw hr_parse_exception("cannot parse Conway notation, " + ep.where());
int ai = 0;
int as = ep.iparse();
while(ep.eat("'")) ai++;
if(ep.eat("@")) ai = ep.iparse();
int bi = 0, bs = 0;
if(ep.eat(")") || ep.eat("]")) bs = as, bi = ai;
else {
bs = ep.iparse();
while(ep.eat("'")) bi++;
if(ep.eat("@")) bi = ep.iparse();
}
if(ep.eat(")") || ep.eat("]")) {}
verify_index(ai, c.shapes, ep);
verify_index(as, c.shapes[ai], ep);
verify_index(bi, c.shapes, ep);
verify_index(bs, c.shapes[bi], ep);
add_connection(c, ai, as, bi, bs, m);
}
ep.force_eat(")");
}
else if(ep.eat("c(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bi = ep.iparse(); verify_index(bi, c.shapes, ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[bi], ep); ep.force_eat(",");
int m = ep.iparse(); ep.force_eat(")");
add_connection(c, ai, as, bi, bs, m);
}
else if(ep.eat("subline(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[ai], ep); ep.force_eat(")");
c.shapes[ai].sublines.emplace_back(as, bs);
}
else if(ep.eat("sublines(")) {
ld d = ep.rparse() * distunit;
ld eps = 1e-4;
if(ep.eat(",")) eps = ep.rparse() * distunit;
ep.force_eat(")");
for(auto& sh: c.shapes) {
for(int i=0; i<isize(sh.vertices); i++)
for(int j=0; j<i; j++)
if(j != i+1 && i != j+1 && !(i==0 && j == isize(sh.vertices)-1) && !(j==0 && i == isize(sh.vertices)-1) && i != j) {
ld dist = hdist(sh.vertices[i], sh.vertices[j]);
if(abs(dist - d) < eps) {
sh.sublines.emplace_back(i, j);
if(debugflags & DF_GEOM) println(hlog, "add subline ", i, "-", j);
}
}
}
}
else if(ep.eat("repeat(")) {
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(",");
int rep = ep.iparse(0);
ep.force_eat(")");
auto& sh = c.shapes[i];
int N = isize(sh.angles);
if(N % rep)
throw hr_parse_exception("repeat value should be a factor of the number of vertices, " + ep.where());
sh.repeat_value = rep;
int d = N / rep;
for(int i=d; i<N; i++)
sh.connections[i] = sh.connections[i-d];
}
else if(ep.eat("debug(")) {
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(")");
throw connection_debug_request(i);
}
else if(ep.eat("stretch_shear(")) {
ld stretch = ep.rparse(0);
ep.force_eat(",");
ld shear = ep.rparse(0);
ep.force_eat(",");
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(",");
int j = ep.iparse(0);
verify_index(j, c.shapes[i], ep);
ep.force_eat(")");
auto& sh = c.shapes[i];
sh.stretch_shear[j] = {stretch, shear};
auto& co = sh.connections[j];
auto& xsh = c.shapes[co.sid];
ld scale = sh.edges[j] / xsh.edges[co.eid];
println(hlog, "scale = ", scale);
xsh.stretch_shear[co.eid] = {1/stretch, shear * (co.mirror ? 1 : -1) * stretch };
}
else throw hr_parse_exception("expecting command, " + ep.where());
}
if(!(cgflags & qAFFINE)) {
for(int i=0; i<isize(c.shapes); i++) {
auto& sh = c.shapes[i];
for(int j=0; j<isize(sh.edges); j++) {
ld d1 = sh.edges[j];
auto con = sh.connections[j];
auto& xsh = c.shapes[con.sid];
ld d2 = xsh.edges[con.eid];
if(d1 == INFINITE_LEFT) d1 = INFINITE_RIGHT;
else if(d1 == INFINITE_RIGHT) d1 = INFINITE_LEFT;
if(abs(d1 - d2) > 1e-6)
throw hr_parse_exception(lalign(0, "connecting ", make_pair(i,j), " to ", con, " of different lengths only possible in a2"));
}
}
}
if(do_unmirror) {
unmirror(c);
}
if(!c.have_tree) compute_vertex_valence(c);
check_football_colorability(c);
if(c.have_tree) rulegen::verify_parsed_treestates(c);
if(!load_as_slided) slided = current;
}
arbi_tiling debugged;
vector<pair<transmatrix, int> > debug_polys;
string primes(int i) {
string res;
while(i--) res += "'";
return res;
}
void connection_debugger() {
cmode = sm::SIDE | sm::DIALOG_STRICT_X;
gamescreen();
auto& last = debug_polys.back();
initquickqueue();
for(auto& p: debug_polys) {
int id = p.second;
shiftmatrix V = gmatrix[cwt.at] * p.first;
auto& sh = debugged.shapes[id].vertices;
for(auto& v: sh)
curvepoint(v);
curvepoint(sh[0]);
color_t col = ccolor::shape.ctab[id];
col = darkena(col, 0, 0xFF);
if(&p == &last) {
vid.linewidth *= 2;
queuecurve(V, 0xFFFF00FF, col, PPR::LINE);
vid.linewidth /= 2;
for(int i=0; i<isize(sh); i++)
queuestr(V * sh[i], vid.fsize, its(i), 0xFFFFFFFF);
}
else
queuecurve(V, 0xFFFFFFFF, col, PPR::LINE);
}
quickqueue();
dialog::init(XLAT("connection debugger"));
dialog::addInfo(debugged.name);
dialog::addHelp(debugged.comment);
dialog::addBreak(50);
dialog::addInfo("face index " + its(last.second));
dialog::addBreak(50);
auto& sh = debugged.shapes[last.second];
int N = isize(sh.edges);
for(int k=0; k<N; k++) {
auto con = sh.connections[k];
string cap = its(k) + primes(last.second) + " -> " + its(con.eid) + primes(con.sid) + (con.mirror ? " (m) " : "");
dialog::addSelItem(cap, "go", '0' + k);
dialog::add_action([k, last, con] {
if(euclid) cgflags |= qAFFINE;
debug_polys.emplace_back(last.first * get_adj(debugged, last.second, k), con.sid);
if(euclid) cgflags &= ~qAFFINE;
});
}
dialog::addItem("undo", 'u');
dialog::add_action([] {
if(isize(debug_polys) > 1)
debug_polys.pop_back();
});
dialog::addBack();
dialog::display();
keyhandler = [] (int sym, int uni) {
handlePanning(sym, uni);
dialog::handleNavigation(sym, uni);
if(doexiton(sym, uni)) popScreen();
};
}
geometryinfo1& arbi_tiling::get_geometry() {
return ginf[gEuclid].g;
}
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
EX map<heptagon*, pair<heptagon*, transmatrix>> arbi_matrix;
EX hrmap *current_altmap;
heptagon *build_child(heptspin p, pair<int, int> adj);
/** get the midedge of lr; it takes infinite vertices into account */
EX hyperpoint get_midedge(ld len, const hyperpoint &l, const hyperpoint &r) {
if(len == INFINITE_BOTH) {
return normalize(closest_to_zero(l, r));
}
else if(len == INFINITE_RIGHT) {
return towards_inf(r, l);
}
else if(len == INFINITE_LEFT) {
return towards_inf(l, r);
}
else return mid(l, r);
}
EX bool is_apeirogonal(cell *c) {
if(!in()) return false;
return current_or_slided().shapes[id_of(c->master)].apeirogonal;
}
EX bool is_apeirogonal() {
if(!in()) return false;
for(auto& sh: current_or_slided().shapes)
if(sh.apeirogonal) return true;
return false;
}
EX bool apeirogon_consistent_coloring = true;
EX bool apeirogon_hide_grid_edges = true;
EX bool apeirogon_simplified_display = false;
/** get the adj matrix corresponding to the connection of (t,dl) to connection_t{t1, xdl, xmirror} */
EX transmatrix get_adj(arbi_tiling& c, int t, int dl, int t1, int xdl, bool xmirror) {
auto& sh = c.shapes[t];
int dr = gmod(dl+1, sh.size());
auto& xsh = c.shapes[t1];
int xdr = gmod(xdl+1, xsh.size());
hyperpoint vl = sh.vertices[dl];
hyperpoint vr = sh.vertices[dr];
hyperpoint xvl = xsh.vertices[xdl];
hyperpoint xvr = xsh.vertices[xdr];
bool emb = embedded_plane;
if(emb) {
vl = cgi.emb->actual_to_base(vl);
vr = cgi.emb->actual_to_base(vr);
xvl = cgi.emb->actual_to_base(xvl);
xvr = cgi.emb->actual_to_base(xvr);
geom3::light_flip(true);
}
hyperpoint vm = get_midedge(sh.edges[dl], vl, vr);
transmatrix rm = gpushxto0(vm);
hyperpoint xvm = get_midedge(xsh.edges[xdl], xvl, xvr);
transmatrix xrm = gpushxto0(xvm);
transmatrix Res = rgpushxto0(vm) * rspintox(rm*vr);
if(cgflags & qAFFINE) {
ld sca = hdist(vl, vr) / hdist(xvl, xvr);
transmatrix Tsca = Id;
Tsca[0][0] = Tsca[1][1] = sca;
auto& ss = sh.stretch_shear[dl];
Tsca[0][1] = ss.first * ss.second * sca;
Tsca[1][1] *= ss.first;
Res = Res * Tsca;
}
if(xmirror) Res = Res * MirrorX;
Res = Res * spintox(xrm*xvl) * xrm;
if(xmirror) swap(vl, vr);
if(hdist(vl, Res*xvr) + hdist(vr, Res*xvl) > .1 && !c.is_combinatorial) {
println(hlog, "s1 = ", kz(spintox(rm*vr)), " s2 = ", kz(rspintox(xrm*xvr)));
println(hlog, tie(t, dl), " = ", kz(Res));
println(hlog, hdist(vl, Res * xvr), " # ", hdist(vr, Res * xvl));
throw hr_exception("error in arb::get_adj");
}
if(emb) {
Res = cgi.emb->base_to_actual(Res);
geom3::light_flip(false);
}
return Res;
}
/** get the adj matrix corresponding to the connection of (t,dl) -- note: it may be incorrect for rotated/symmetric connections */
EX transmatrix get_adj(arbi_tiling& c, int t, int dl) {
auto& sh = c.shapes[t];
auto& co = sh.connections[dl];
return get_adj(c, t, dl, co.sid, co.eid, co.mirror);
}
/** Returns if F describes the same tile as T, taking possible symmetries into account. Paramater co is the expected edge (co.sid tells us the tile type); if yes, co may be adjusted */
EX bool find_connection(const transmatrix& T, const transmatrix& F, connection_t& co) {
if(!same_point_may_warn(tC0(F), tC0(T))) return false;
auto& xsh = current.shapes[co.sid];
int n = isize(xsh.connections);
for(int oth = 0; oth < n; oth++) {
int oth1 = gmod(oth+1, n);
int eid1 = gmod(co.eid+1, n);
if(same_point_may_warn(F * xsh.vertices[oth], T * xsh.vertices[co.eid]) && same_point_may_warn(F * xsh.vertices[oth1], T * xsh.vertices[eid1])) {
co.eid = oth;
return true;
}
if(same_point_may_warn(F * xsh.vertices[oth], T * xsh.vertices[eid1]) && same_point_may_warn(F * xsh.vertices[oth1], T * xsh.vertices[co.eid])) {
co.eid = oth; co.mirror = !co.mirror;
return true;
}
}
return false;
}
struct hrmap_arbi : hrmap {
heptagon *origin;
heptagon *getOrigin() override { return origin; }
hrmap_arbi() {
dynamicval<hrmap*> curmap(currentmap, this);
origin = init_heptagon(current.shapes[0].size());
origin->s = hsOrigin;
origin->c7 = newCell(origin->type, origin);
heptagon *alt = NULL;
if(mhyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
alt = init_heptagon(S7);
alt->s = hsOrigin;
alt->alt = alt;
current_altmap = newAltMap(alt);
}
transmatrix T = lxpush(.01241) * spin(1.4117) * lxpush(0.1241) * Id;
arbi_matrix[origin] = make_pair(alt, T);
altmap[alt].emplace_back(origin, T);
if(!current.range)
current.range = auto_compute_range(origin->c7);
}
~hrmap_arbi() {
clearfrom(origin);
altmap.clear();
arbi_matrix.clear();
if(current_altmap) {
dynamicval<eGeometry> g(geometry, gNormal);
delete current_altmap;
current_altmap = NULL;
}
}
void verify() override { }
transmatrix adj(heptagon *h, int dl) override {
if(h->c.move(dl))
return get_adj(current_or_slided(), id_of(h), dl, id_of(h->c.move(dl)), h->c.spin(dl), h->c.mirror(dl));
else
return get_adj(current_or_slided(), id_of(h), dl);
}
heptagon *create_step(heptagon *h, int d) override {
if(geom3::flipped) return geom3::in_not_flipped([&] { return create_step(h, d); });
dynamicval<bool> sl(using_slided, false);
int t = id_of(h);
auto& sh = current.shapes[t];
auto& co = sh.connections[d];
if(cgflags & qAFFINE) {
set<heptagon*> visited;
vector<pair<heptagon*, transmatrix> > v;
visited.insert(h);
v.emplace_back(h, Id);
transmatrix goal = adj(h, d);
for(int i=0; i<affine_limit && i < isize(v); i++) {
transmatrix T = v[i].second;
heptagon *h2 = v[i].first;
if(eqmatrix(T, goal)) {
h->c.connect(d, h2, co.eid, co.mirror);
return h2;
}
for(int i=0; i<h2->type; i++) {
heptagon *h3 = h2->move(i);
if(!h3) continue;
if(visited.count(h3)) continue;
visited.insert(h3);
v.emplace_back(h3, T * adj(h2, i));
}
}
auto h1 = init_heptagon(current.shapes[co.sid].size());
h1->distance = h->distance + 1;
h1->zebraval = co.sid;
h1->c7 = newCell(h1->type, h1);
h1->emeraldval = h->emeraldval ^ co.mirror;
h->c.connect(d, h1, co.eid, co.mirror);
return h1;
}
const auto& p = arbi_matrix[h];
heptagon *alt = p.first;
transmatrix T = p.second * adj(h, d);
if(mhyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
dynamicval<hrmap*> cm(currentmap, current_altmap);
// transmatrix U = T;
current_altmap->virtualRebase(alt, T);
// U = U * inverse(T);
}
fixmatrix(T);
if(meuclid) {
/* hash the rough coordinates as heptagon* alt */
size_t s = size_t(T[0][LDIM]+.261) * 124101 + size_t(T[1][LDIM]+.261) * 82143;
alt = (heptagon*) s;
}
for(auto& p2: altmap[alt]) if(id_of(p2.first) == co.sid) {
connection_t co1 = co;
if(find_connection(T, p2.second, co1)) {
if(p2.first->move(co1.eid)) {
throw hr_exception("already connected!");
}
h->c.connect(d, p2.first, co1.eid, co1.mirror);
return p2.first;
}
}
auto h1 = init_heptagon(current.shapes[co.sid].size());
h1->distance = h->distance + 1;
h1->zebraval = co.sid;
h1->c7 = newCell(h1->type, h1);
h1->emeraldval = h->emeraldval ^ co.mirror;
h->c.connect(d, h1, co.eid, co.mirror);
arbi_matrix[h1] = make_pair(alt, T);
altmap[alt].emplace_back(h1, T);
return h1;
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
transmatrix adj(cell *c, int dir) override { return adj(c->master, dir); }
ld spin_angle(cell *c, int d) override { return SPIN_NOT_AVAILABLE; }
int shvid(cell *c) override {
return id_of(c->master);
}
hyperpoint get_corner(cell *c, int cid, ld cf) override {
auto& sh = arb::current_or_slided().shapes[arb::id_of(c->master)];
int id = gmod(cid, c->type);
if(sh.angles[gmod(id-1, c->type)] <= 0)
return sh.vertices[id];
return normalize(C0 + (sh.vertices[id] - C0) * 3 / cf);
}
};
EX hrmap *new_map() { return new hrmap_arbi; }
EX void run(string fname) {
stop_game();
eGeometry g = geometry;
arbi_tiling t = current;
auto v = variation;
set_geometry(gArbitrary);
try {
load(fname);
ginf[gArbitrary].tiling_name = current.name;
tes = fname;
}
catch(hr_polygon_error& poly) {
set_geometry(g);
set_variation(v);
current = t;
start_poly_debugger(poly);
string help = poly.generate_error();
showstartmenu = false;
for(auto& p: poly.params)
help += lalign(-1, p.first, " = ", p.second, "\n");
gotoHelp(help);
}
catch(hr_parse_exception& ex) {
println(hlog, "failed: ", ex.s);
set_geometry(g);
current = t;
start_game();
addMessage("failed: " + ex.s);
}
catch(connection_debug_request& cr) {
set_geometry(g);
debugged = current;
current = t;
ensure_geometry(cr.c);
debug_polys.clear();
debug_polys.emplace_back(Id, cr.id);
pushScreen(connection_debugger);
}
start_game();
}
string slider_error;
EX void sliders_changed(bool need_restart, bool need_start) {
if(need_restart) stop_game();
auto& c = current_or_slided();
arbi_tiling backup = c;
try {
load(current.filename, !need_restart, need_restart);
using_slided = !need_restart;
slider_error = "OK";
#if CAP_TEXTURE
texture::config.remap();
#endif
}
catch(hr_parse_exception& ex) {
c = backup;
slider_error = ex.s;
}
catch(hr_polygon_error& poly) {
c = backup;
slider_error = poly.generate_error();
}
if(need_restart && need_start) start_game();
}
EX void set_sliders() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("tessellation sliders"));
dialog::addHelp(current.comment);
char ch = 'A';
for(auto& sl: current.sliders) {
dialog::addSelItem(sl.name, fts(sl.current), ch++);
dialog::add_action([&] {
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
dialog::get_di().reaction = [] { sliders_changed(false, false); };
});
}
if(isize(current.intsliders))
dialog::addInfo(XLAT("the following sliders will restart the game"));
for(auto& sl: current.intsliders) {
dialog::addSelItem(sl.name, its(sl.current), ch++);
dialog::add_action([&] {
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
dialog::get_di().reaction = [] { sliders_changed(true, true); };
});
}
dialog::addInfo(slider_error);
dialog::addBack();
dialog::display();
}
/** convert a tessellation (e.g. Archimedean, regular, etc.) to the arb::current internal representation */
EX namespace convert {
EX eGeometry base_geometry;
EX eVariation base_variation;
struct id_record {
int target; /* master of this id type */
int shift; /* sample direction 0 == our direction shift */
int modval; /* this master type is the same as itself rotated by modval */
cell *sample; /* sample of the master type */
};
inline void print(hstream& hs, const id_record& i) { print(hs, "[", i.target, " shift=", i.shift, " mod=", i.modval, "]"); }
map<int, id_record> identification;
id_record& get_identification(int s, cell *c) {
if(!identification.count(s)) {
auto &id = identification[s];
id.target = s;
id.shift = 0;
id.modval = c->type;
id.sample = c;
}
return identification[s];
}
id_record& get_identification(cell *c) {
auto id = currentmap->full_shvid(c);
return get_identification(id, c);
}
int changes;
void be_identified(cellwalker cw1, cellwalker cw2) {
auto& id1 = get_identification(cw1.at);
auto& id2 = get_identification(cw2.at);
indenter ind(2);
int t = cw2.at->type;
if(cw1.at->type != t) {
println(hlog, cw1.at->type, " vs ", t);
throw hr_exception("numbers disagree");
}
int d2 = gmod(-cw2.to_spin(id2.shift), id2.modval);
int d1 = gmod(-cw1.to_spin(id1.shift), id1.modval);
indenter ind1(2);
if(id2.target != id1.target) {
auto oid2 = id2;
id1.modval = gcd(id1.modval, id2.modval);
for(auto& p: identification) {
auto& idr = p.second;
if(idr.target == oid2.target) {
idr.target = id1.target;
idr.modval = id1.modval;
idr.shift = gmod(idr.shift + (d2-d1), idr.modval);
idr.sample = id1.sample;
}
}
changes++;
println(hlog, identification);
return;
}
if(d2 != d1) {
auto oid2 = id2;
id2.modval = gcd(id2.modval, abs(d2-d1));
for(auto& p: identification)
if(p.second.target == oid2.target) p.second.modval = id2.modval;
changes++;
println(hlog, identification);
return;
}
}
EX bool reverse_order;
EX bool minimize_on_convert;
EX void convert_max() {
identification.clear(); changes = 0;
manual_celllister cl;
cl.add(currentmap->gamestart());
int more_tests = 1000;
pointer_indices.clear();
int chg = -1;
while(changes > chg) {
changes = chg;
set<int> masters_analyzed;
for(int i=0; i<isize(cl.lst); i++) {
auto c = cl.lst[i];
auto& id = get_identification(c);
if(masters_analyzed.count(id.target)) {
more_tests--;
if(more_tests < 0) continue;
}
masters_analyzed.insert(id.target);
cellwalker cw0(c, id.shift);
cellwalker cws(id.sample, 0);
for(int i=0; i<c->type; i++) {
if(1) {
indenter ind(2);
be_identified(cw0 + i + wstep, cws + i + wstep);
be_identified(cw0 + i + wstep, cw0 + i + id.modval + wstep);
}
if(1) {
indenter ind(2);
auto cwx = cw0 + i + wstep;
auto idx = get_identification(cwx.at);
cellwalker xsample(idx.sample, cwx.spin);
xsample -= idx.shift;
be_identified(cwx + wstep, xsample + wstep);
cl.add((cw0 + i).cpeek());
}
}
}
}
}
EX void convert_minimize(int N, vector<int>& old_shvids, map<int, int>& old_to_new) {
vector<pair<int, int>> address;
vector<int> address_start;
for(int i=0; i<N; i++) {
int q = identification[old_shvids[i]].modval;
int c = isize(address);
address_start.push_back(c);
for(int j=0; j<q; j++) {
address.emplace_back(i, j);
}
}
int K = isize(address);
vector<int> next(K), step(K);
for(int k=0; k<K; k++) {
auto i = address[k].first;
auto j = address[k].second;
auto& id = identification[old_shvids[i]];
next[k] = address_start[i] + (j+1) % id.modval;
cell *s = id.sample;
cellwalker cw(s, j);
cw += wstep;
auto idx = get_identification(cw.at);
step[k] = address_start[old_to_new.at(idx.target)] + gmod(cw.spin - idx.shift, idx.modval);
}
vector<array<ld, 3> > dists(K);
for(int i=0; i<K; i++) {
auto pi = address[i];
auto si = identification[old_shvids[pi.first]];
pi.second += si.shift;
array<hyperpoint, 3> pcorner;
array<ld, 3> pdists;
for(int j=0; j<3; j++)
pcorner[j] = currentmap->get_corner(si.sample, gmod(pi.second+j, si.sample->type));
for(int j=0; j<3; j++)
pdists[j] = hdist(pcorner[j], pcorner[(j+1)%3]);
dists[i] = pdists;
}
// this is O(K^3) and also possibly could get confused on convex/concave,
// but should be good enough, hopefully
vector<vector<int>> equal(K);
for(int i=0; i<K; i++) equal[i].resize(K, 0);
for(int i=0; i<K; i++)
for(int j=0; j<K; j++) {
equal[i][j] = true;
for(int s=0; s<3; s++)
equal[i][j] = equal[i][j] && abs(dists[i][s] - dists[j][s]) < 1e-6;
}
int chg = 1;
while(chg) {
if(debugflags & DF_GEOM) {
println(hlog, "current table of equals:");
int eqid = 0;
for(auto& eq: equal) {
println(hlog, eq, " for ", eqid, ": ", address[eqid], " next= ", next[eqid], " step= ", step[eqid]);
eqid++;
}
}
chg = 0;
for(int i=0; i<K; i++)
for(int j=0; j<K; j++)
if(equal[i][j] && (!equal[next[i]][next[j]] || !equal[step[i]][step[j]])) {
equal[i][j] = false;
chg++;
}
}
for(int i=0; i<K; i++)
for(int j=0; j<K; j++) if(i!=j && equal[i][j]) {
auto pi = address[i];
auto si = identification[old_shvids[pi.first]];
cellwalker cwi(si.sample, si.shift + pi.second);
auto pj = address[j];
auto sj = identification[old_shvids[pj.first]];
cellwalker cwj(sj.sample, sj.shift + pj.second);
be_identified(cwi, cwj);
}
}
EX void convert() {
start_game();
convert_max();
bool minimize = minimize_on_convert;
reidentify:
vector<int> old_shvids;
map<int, int> old_to_new;
for(auto id: identification)
if(id.first == id.second.target) {
old_to_new[id.first] = isize(old_shvids);
old_shvids.push_back(id.first);
}
int N = isize(old_shvids);
println(hlog, "N = ", N);
if(minimize) {
convert_minimize(N, old_shvids, old_to_new);
minimize = false;
goto reidentify;
}
if(reverse_order) {
reverse(old_shvids.begin(), old_shvids.end());
for(int i=0; i<isize(old_shvids); i++)
old_to_new[old_shvids[i]] = i;
}
auto& ac = arb::current;
ac.order++;
ac.comment = ac.filename = "converted from: " + full_geometry_name();
ac.cscale = cgi.scalefactor;
ac.boundary_ratio = 1;
ac.floor_scale = cgi.hexvdist / cgi.scalefactor;
ac.range = cgi.base_distlimit;
ac.shapes.clear();
ac.shapes.resize(N);
ginf[gArbitrary].g = cginf.g;
ginf[gArbitrary].flags = cgflags & qCLOSED;
for(int i=0; i<N; i++) {
auto id = identification[old_shvids[i]];
cell *s = id.sample;
auto& sh = ac.shapes[i];
sh.id = i;
int t = s->type;
sh.vertices.clear();
sh.connections.clear();
sh.cycle_length = id.modval;
if(arcm::in())
sh.orig_id = arcm::get_graphical_id(s);
else
sh.orig_id = shvid(s);
sh.repeat_value = t / id.modval;
sh.flags = hr::pseudohept(s) ? arcm::sfPH : 0;
#if CAP_ARCM
if(arcm::in() && arcm::linespattern(s)) { sh.flags |= arcm::sfLINE; ac.have_line = true; }
#endif
for(int j=0; j<t; j++) {
auto co = currentmap->get_corner(s, j);
sh.vertices.push_back(co);
cellwalker cw(s, j);
cw += wstep;
auto idx = get_identification(cw.at);
cellwalker xsample(idx.sample, cw.spin);
xsample -= idx.shift;
sh.connections.emplace_back(arb::connection_t{old_to_new.at(idx.target), xsample.spin, false});
}
sh.stretch_shear.resize(t, make_pair(1, 0));
sh.edges.clear();
for(int j=0; j<t-1; j++)
sh.edges.push_back(hdist(sh.vertices[j], sh.vertices[j+1]));
sh.edges.push_back(hdist(sh.vertices[t-1], sh.vertices[0]));
sh.angles.clear();
for(int j=0; j<t; j++) {
hyperpoint v0 = sh.vertices[j];
hyperpoint v1 = sh.vertices[(j+1) % t];
hyperpoint v2 = sh.vertices[(j+2) % t];
transmatrix T = gpushxto0(v1);
v0 = T * v0;
v2 = T * v2;
ld alpha = atan2(v0) - atan2(v2);
cyclefix(alpha, 0);
sh.angles.push_back(alpha);
}
if(debugflags & DF_GEOM) {
println(hlog, "shape ", i, ":");
indenter indp(2);
println(hlog, "vertices=", sh.vertices);
println(hlog, "connections=", sh.connections);
println(hlog, "edges=", sh.edges);
println(hlog, "angles=", sh.angles);
}
}
arb::compute_vertex_valence(ac);
ac.have_ph = geosupport_football() ? 1 : 0;
arb::check_football_colorability(ac);
}
EX bool in() {
return arb::in() && base_geometry != gArbitrary;
}
/** activate the converted tessellation */
EX void activate() {
if(geometry != gArbitrary) {
base_geometry = geometry;
base_variation = variation;
stop_game();
geometry = gArbitrary;
variation = eVariation::pure;
}
}
EX }
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-tes") || argis("-arbi")) {
PHASEFROM(2);
shift();
run(args());
}
else if(argis("-tes-opt")) {
arg::run_arguments(current.options);
}
else if(argis("-arb-convert")) {
try {
convert::convert();
set_geometry(gArbitrary);
}
catch(hr_exception& e) {
println(hlog, "failed to convert: ", e.what());
}
}
else if(argis("-arb-unmirror")) {
shift(); do_unmirror = argi();
}
else if(argis("-arb-football")) {
shift(); extended_football = argi();
}
else if(argis("-arb-slider")) {
PHASEFROM(2);
shift();
string slider = args();
bool found = true;
for(auto& sl: current.sliders)
if(sl.name == slider) {
shift_arg_formula(sl.current, [] { sliders_changed(false, false); });
found = true;
}
for(auto& sl: current.intsliders)
if(sl.name == slider) {
shift(); sl.current = argi();
stop_game();
sliders_changed(true, false);
found = true;
}
if(!found) {
println(hlog, "warning: no slider named ", slider, " found");
shift();
}
}
else return 1;
return 0;
}
auto hook = addHook(hooks_args, 100, readArgs);
#endif
EX bool in() { return geometry == gArbitrary; }
EX string tes = find_file("tessellations/sample/marjorie-rice.tes");
EX bool linespattern(cell *c) {
return current.shapes[id_of(c->master)].flags & arcm::sfLINE;
}
EX bool pseudohept(cell *c) {
if(!current.have_ph) return true;
return current.shapes[id_of(c->master)].flags & arcm::sfPH;
}
EX void choose() {
dialog::openFileDialog(tes, XLAT("open a tiling"), ".tes",
[] () {
run(tes);
#if CAP_COMMANDLINE
if(!current.options.empty())
dialog::push_confirm_dialog([] { arg::run_arguments(current.options); start_game(); }, "load the settings defined in this file?");
#endif
return true;
});
}
EX pair<ld, ld> rep_ideal(ld e, ld u IS(1)) {
ld alpha = TAU / e;
hyperpoint h1 = point3(cos(alpha)*u, -sin(alpha)*u, 1);
hyperpoint h2 = point3(u, 0, 1);
hyperpoint h3 = point3(cos(alpha)*u, sin(alpha)*u, 1);
hyperpoint h12 = mid(h1, h2);
hyperpoint h23 = mid(h2, h3);
ld len = hdist(h12, h23);
transmatrix T = gpushxto0(h12);
auto T0 = T * C0;
auto Th23 = T * h23;
ld beta = atan2(T0);
ld gamma = atan2(Th23);
return {len, 90._deg - (gamma - beta)};
}
EX void swap_vertices() {
for(auto& p: {&current, &slided})
for(auto& s: p->shapes)
for(auto& v: s.vertices)
swappoint(v);
}
#if MAXMDIM >= 4
auto hooksw = addHook(hooks_swapdim, 100, [] {
swap_vertices();
for(auto& p: altmap) for(auto& pp: p.second) swapmatrix(pp.second);
for(auto& p: arbi_matrix) swapmatrix(p.second.second);
});
#endif
EX }
}