mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-10-31 19:36:16 +00:00
662 lines
20 KiB
C++
662 lines
20 KiB
C++
// flocking simulations
|
|
// Copyright (C) 2018 Zeno and Tehora Rogue, see 'hyper.cpp' for details
|
|
|
|
// based on Flocking by Daniel Shiffman (which in turn implements Boids by Craig Reynold)
|
|
// https://processing.org/examples/flocking.html
|
|
|
|
// Our implementation simplifies some equations a bit.
|
|
|
|
// example parameters:
|
|
|
|
// flocking on a torus:
|
|
// -t2 3 0 0 3 0 -geo 1 -flocking 10 -rvshape 3
|
|
|
|
// flocking on the Zebra quotient:
|
|
// -geo 4 -flocking 10 -rvshape 3 -zoom .9
|
|
|
|
// press 'o' when flocking active to change the parameters.
|
|
|
|
#include "rogueviz.h"
|
|
|
|
namespace rogueviz {
|
|
|
|
namespace flocking {
|
|
|
|
void init();
|
|
|
|
int N;
|
|
|
|
bool draw_lines = false, draw_tails = false;
|
|
|
|
int follow = 0;
|
|
string follow_names[3] = {"nothing", "specific boid", "center of mass"};
|
|
|
|
ld follow_dist = 0;
|
|
|
|
map<cell*, map<cell*, transmatrix>> relmatrices;
|
|
|
|
ld ini_speed = .5;
|
|
ld max_speed = 1;
|
|
|
|
ld sep_factor = 1.5;
|
|
ld sep_range = .25;
|
|
|
|
ld align_factor = 1;
|
|
ld align_range = .5;
|
|
|
|
ld coh_factor = 1;
|
|
ld coh_range = 2.5;
|
|
|
|
ld check_range = 2.5;
|
|
|
|
bool swarm;
|
|
|
|
char shape = 'b';
|
|
|
|
vector<tuple<shiftpoint, shiftpoint, color_t> > lines;
|
|
|
|
// parameters of each boid
|
|
// m->base: the cell it is currently on
|
|
// m->vel: velocity
|
|
// m->at: determines the position and speed:
|
|
// m->at * (0, 0, 1) is the current position (in Minkowski hyperboloid coordinates relative to m->base)
|
|
// m->at * (m->vel, 0, 0) is the current velocity vector (tangent to the Minkowski hyperboloid)
|
|
// m->pat: like m->at but relative to the screen
|
|
|
|
int precision = 10;
|
|
|
|
void simulate(int delta) {
|
|
int iter = 0;
|
|
while(delta > precision && iter < (swarm ? 10000 : 100)) {
|
|
simulate(precision); delta -= precision;
|
|
iter++;
|
|
}
|
|
ld d = delta / 1000.;
|
|
int N = isize(vdata);
|
|
vector<transmatrix> pats(N);
|
|
vector<transmatrix> oris(N);
|
|
vector<ld> vels(N);
|
|
using shmup::monster;
|
|
|
|
map<cell*, vector<monster*>> monsat;
|
|
|
|
for(int i=0; i<N; i++) {
|
|
vertexdata& vd = vdata[i];
|
|
auto m = vd.m;
|
|
monsat[m->base].push_back(m);
|
|
}
|
|
|
|
lines.clear();
|
|
|
|
if(swarm) for(int i=0; i<N; i++) {
|
|
vertexdata& vd = vdata[i];
|
|
auto m = vd.m;
|
|
|
|
apply_shift_object(m->at, m->ori, xtangent(0.01)); // max_speed * d));
|
|
|
|
fixmatrix(m->at);
|
|
|
|
virtualRebase(m);
|
|
}
|
|
|
|
if(!swarm) parallelize(N, [&monsat, &d, &vels, &pats, &oris] (int a, int b) { for(int i=a; i<b; i++) {
|
|
vertexdata& vd = vdata[i];
|
|
auto m = vd.m;
|
|
|
|
transmatrix I, Rot;
|
|
bool use_rot = true;
|
|
|
|
if(mproduct) {
|
|
I = inverse(m->at);
|
|
Rot = inverse(m->ori);
|
|
}
|
|
else if(nonisotropic) {
|
|
I = gpushxto0(tC0(m->at));
|
|
Rot = inverse(I * m->at);
|
|
}
|
|
else {
|
|
I = inverse(m->at);
|
|
Rot = Id;
|
|
use_rot = false;
|
|
}
|
|
|
|
// we do all the computations here in the frame of reference
|
|
// where m is at (0,0,1) and its velocity is (m->vel,0,0)
|
|
|
|
hyperpoint velvec = hpxyz(m->vel, 0, 0);
|
|
|
|
hyperpoint sep = hpxyz(0, 0, 0);
|
|
int sep_count = 0;
|
|
|
|
hyperpoint align = hpxyz(0, 0, 0);
|
|
int align_count = 0;
|
|
|
|
hyperpoint coh = hpxyz(0, 0, 0);
|
|
int coh_count = 0;
|
|
|
|
for(auto& p: relmatrices[m->base]) {
|
|
auto f = monsat.find(p.first);
|
|
if(f != monsat.end()) for(auto m2: f->second) if(m != m2) {
|
|
ld vel2 = m2->vel;
|
|
transmatrix at2 = I * p.second * m2->at;
|
|
|
|
// at2 is like m2->at but relative to m->at
|
|
|
|
// m2's position relative to m (tC0 means *(0,0,1))
|
|
hyperpoint ac = inverse_exp(shiftless(tC0(at2)));
|
|
if(use_rot) ac = Rot * ac;
|
|
|
|
// distance and azimuth to m2
|
|
ld di = hypot_d(WDIM, ac);
|
|
|
|
color_t col = 0;
|
|
|
|
if(di < align_range) {
|
|
// we need to transfer m2's velocity vector to m's position
|
|
// this is done by applying an isometry which sends m2 to m1
|
|
// and maps the straight line on which m1 and m2 are to itself
|
|
|
|
// note: in nonisotropic it is not clear whether we should
|
|
// use gpushxto0, or parallel transport along the shortest geodesic
|
|
align += gpushxto0(tC0(at2)) * at2 * hpxyz(vel2, 0, 0);
|
|
align_count++;
|
|
col |= 0xFF0040;
|
|
}
|
|
|
|
if(di < coh_range) {
|
|
coh += tangent_length(ac, di);
|
|
coh_count++;
|
|
col |= 0xFF40;
|
|
}
|
|
|
|
if(di < sep_range && di > 0) {
|
|
sep -= tangent_length(ac, 1 / di);
|
|
sep_count++;
|
|
col |= 0xFF000040;
|
|
}
|
|
|
|
if(col && draw_lines)
|
|
lines.emplace_back(m->pat * C0, m->pat * at2 * C0, col);
|
|
}
|
|
}
|
|
|
|
// a bit simpler rules than original
|
|
|
|
if(sep_count) velvec += sep * (d * sep_factor / sep_count);
|
|
if(align_count) velvec += align * (d * align_factor / align_count);
|
|
if(coh_count) velvec += coh * (d * coh_factor / coh_count);
|
|
|
|
// hypot2 is the length of a vector in R^2
|
|
vels[i] = hypot_d(2, velvec);
|
|
|
|
transmatrix alphaspin = rspintox(velvec); // spin(-atan2(velvec));
|
|
|
|
if(vels[i] > max_speed) {
|
|
velvec = velvec * (max_speed / vels[i]);
|
|
vels[i] = max_speed;
|
|
}
|
|
|
|
pats[i] = m->at;
|
|
oris[i] = m->ori;
|
|
rotate_object(pats[i], oris[i], alphaspin);
|
|
|
|
apply_shift_object(pats[i], oris[i], xtangent(vels[i] * d));
|
|
fixmatrix(pats[i]);
|
|
|
|
/* RogueViz does not correctly rotate them */
|
|
if(mproduct) {
|
|
hyperpoint h = oris[i] * xtangent(1);
|
|
pats[i] = pats[i] * spin(-atan2(h[1], h[0]));
|
|
oris[i] = spin(+atan2(h[1], h[0])) * oris[i];
|
|
}
|
|
|
|
} return 0; });
|
|
|
|
if(!swarm) for(int i=0; i<N; i++) {
|
|
vertexdata& vd = vdata[i];
|
|
auto m = vd.m;
|
|
// these two functions compute new base and at, based on pats[i]
|
|
m->at = pats[i];
|
|
m->ori = oris[i];
|
|
virtualRebase(m);
|
|
m->vel = vels[i];
|
|
}
|
|
shmup::fixStorage();
|
|
|
|
}
|
|
|
|
bool turn(int delta) {
|
|
simulate(delta), timetowait = 0;
|
|
|
|
if(follow) {
|
|
|
|
if(follow == 1) {
|
|
gmatrix.clear();
|
|
vdata[0].m->pat = shiftless(View * calc_relative_matrix(vdata[0].m->base, centerover, C0) * vdata[0].m->at);
|
|
View = inverse(vdata[0].m->pat.T) * View;
|
|
if(mproduct) {
|
|
NLP = inverse(vdata[0].m->ori);
|
|
|
|
NLP = hr::cspin90(1, 2) * spin90() * NLP;
|
|
|
|
if(NLP[0][2]) {
|
|
auto downspin = -atan2(NLP[0][2], NLP[1][2]);
|
|
NLP = spin(downspin) * NLP;
|
|
}
|
|
}
|
|
else {
|
|
View =spin90() * View;
|
|
if(GDIM == 3) {
|
|
View = hr::cspin90(1, 2) * View;
|
|
}
|
|
shift_view(ztangent(follow_dist));
|
|
}
|
|
}
|
|
|
|
if(follow == 2) {
|
|
// we take the average in R^3 of all the boid positions of the Minkowski hyperboloid
|
|
// (in quotient spaces, the representants closest to the current view
|
|
// are taken), and normalize the result to project it back to the hyperboloid
|
|
// (the same method is commonly used on the sphere AFAIK)
|
|
hyperpoint h = Hypc;
|
|
int cnt = 0;
|
|
ld lev = 0;
|
|
for(int i=0; i<N; i++) if(gmatrix.count(vdata[i].m->base)) {
|
|
vdata[i].m->pat = gmatrix[vdata[i].m->base] * vdata[i].m->at;
|
|
auto h1 = unshift(tC0(vdata[i].m->pat));
|
|
cnt++;
|
|
if(mproduct) {
|
|
auto d1 = product_decompose(h1);
|
|
lev += d1.first;
|
|
h += d1.second;
|
|
}
|
|
else
|
|
h += h1;
|
|
}
|
|
if(cnt) {
|
|
h = cgi.emb->normalize_flat(h);
|
|
if(mproduct) h = orthogonal_move(h, lev / cnt);
|
|
View = inverse(actual_view_transform) * gpushxto0(h) * actual_view_transform * View;
|
|
shift_view(ztangent(follow_dist));
|
|
}
|
|
}
|
|
|
|
optimizeview();
|
|
compute_graphical_distance();
|
|
gmatrix.clear();
|
|
playermoved = false;
|
|
}
|
|
|
|
return false;
|
|
// shmup::pc[0]->rebase();
|
|
}
|
|
|
|
#if CAP_COMMANDLINE
|
|
int readArgs() {
|
|
using namespace arg;
|
|
|
|
// options before reading
|
|
if(0) ;
|
|
else if(argis("-flocking")) {
|
|
PHASEFROM(2);
|
|
shift(); N = argi(); swarm = false;
|
|
init();
|
|
}
|
|
else if(argis("-swarming")) {
|
|
PHASEFROM(2);
|
|
shift(); N = argi(); swarm = true;
|
|
init();
|
|
}
|
|
else if(argis("-flocktails")) {
|
|
PHASEFROM(2);
|
|
draw_tails = true;
|
|
init();
|
|
}
|
|
else if(argis("-cohf")) {
|
|
shift(); coh_factor = argf();
|
|
}
|
|
else if(argis("-alignf")) {
|
|
shift(); align_factor = argf();
|
|
}
|
|
else if(argis("-sepf")) {
|
|
shift(); sep_factor = argf();
|
|
}
|
|
else if(argis("-checkr")) {
|
|
shift(); check_range = argf();
|
|
}
|
|
else if(argis("-cohr")) {
|
|
shift(); coh_range = argf();
|
|
}
|
|
else if(argis("-alignr")) {
|
|
shift(); align_range = argf();
|
|
}
|
|
else if(argis("-sepr")) {
|
|
shift(); sep_range = argf();
|
|
}
|
|
else if(argis("-flockfollow")) {
|
|
shift(); follow = argi();
|
|
}
|
|
else if(argis("-flockprec")) {
|
|
shift(); precision = argi();
|
|
}
|
|
else if(argis("-flockshape")) {
|
|
shift(); shape = argcs()[0];
|
|
for(int i=0; i<N; i++)
|
|
vdata[i].cp.shade = shape;
|
|
}
|
|
else if(argis("-flockspd")) {
|
|
shift(); ini_speed = argf();
|
|
shift(); max_speed = argf();
|
|
}
|
|
else if(argis("-threads")) {
|
|
shift(); threads = argi();
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
void flock_marker() {
|
|
if(draw_lines)
|
|
for(auto p: lines) queueline(get<0>(p), get<1>(p), get<2>(p), 0);
|
|
}
|
|
|
|
void show() {
|
|
cmode = sm::SIDE | sm::MAYDARK;
|
|
gamescreen();
|
|
dialog::init(XLAT("flocking"), iinf[itPalace].color, 150, 0);
|
|
|
|
dialog::addSelItem("initial speed", fts(ini_speed), 'i');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(ini_speed, 0, 2, .1, .5, "", "");
|
|
});
|
|
|
|
dialog::addSelItem("max speed", fts(max_speed), 'm');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(max_speed, 0, 2, .1, .5, "", "");
|
|
});
|
|
|
|
dialog::addSelItem("separation factor", fts(sep_factor), 's');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(sep_factor, 0, 2, .1, 1.5, "", "");
|
|
});
|
|
|
|
string rangehelp = "Increasing this parameter may also require increasing the 'check range' parameter.";
|
|
|
|
dialog::addSelItem("separation range", fts(sep_range), 'S');
|
|
dialog::add_action([rangehelp]() {
|
|
dialog::editNumber(sep_range, 0, 2, .1, .5, "", rangehelp);
|
|
});
|
|
|
|
dialog::addSelItem("alignment factor", fts(align_factor), 'a');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(align_factor, 0, 2, .1, 1.5, "", "");
|
|
});
|
|
|
|
dialog::addSelItem("alignment range", fts(align_range), 'A');
|
|
dialog::add_action([rangehelp]() {
|
|
dialog::editNumber(align_range, 0, 2, .1, .5, "", rangehelp);
|
|
});
|
|
|
|
dialog::addSelItem("cohesion factor", fts(coh_factor), 'c');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(coh_factor, 0, 2, .1, 1.5, "", "");
|
|
});
|
|
|
|
dialog::addSelItem("cohesion range", fts(coh_range), 'C');
|
|
dialog::add_action([rangehelp]() {
|
|
dialog::editNumber(coh_range, 0, 2, .1, .5, "", rangehelp);
|
|
});
|
|
|
|
dialog::addSelItem("check range", fts(check_range), 't');
|
|
dialog::add_action([]() {
|
|
ld radius = 0;
|
|
for(cell *c: currentmap->allcells())
|
|
for(int i=0; i<c->degree(); i++) {
|
|
hyperpoint h = nearcorner(c, i);
|
|
radius = max(radius, hdist0(h));
|
|
}
|
|
dialog::editNumber(check_range, 0, 2, .1, .5, "",
|
|
"Value used in the algorithm: "
|
|
"only other boids in cells whose centers are at most 'check range' from the center of the current cell are considered. "
|
|
"Should be more than the other ranges by at least double the cell radius (in the current geometry, double the radius is " + fts(radius*2) + "); "
|
|
"but too large values slow the simulation down.\n\n"
|
|
"Restart the simulation to apply the changes to this parameter. In quotient spaces, the simulation may not work correctly when the same cell is in range check_range "
|
|
"in multiple directions."
|
|
);
|
|
});
|
|
|
|
dialog::addSelItem("number of boids", its(N), 'n');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(N, 0, 1000, 1, 20, "", "");
|
|
});
|
|
|
|
dialog::addSelItem("precision", its(precision), 'p');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(precision, 0, 1000, 1, 10, "", "smaller number = more precise simulation");
|
|
});
|
|
|
|
dialog::addSelItem("change geometry", XLAT(ginf[geometry].shortname), 'g');
|
|
hr::showquotients = true;
|
|
dialog::add_action(runGeometryExperiments);
|
|
|
|
dialog::addBoolItem_action("draw forces", draw_lines, 'l');
|
|
|
|
dialog::addBoolItem_action("draw tails", draw_tails, 't');
|
|
|
|
dialog::addSelItem("follow", follow_names[follow], 'f');
|
|
dialog::add_action([] () { follow++; follow %= 3; });
|
|
|
|
dialog::addSelItem("follow distance", fts(follow_dist), 'd');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(follow_dist, -1, 1, 0.1, 0, "follow distance", "");
|
|
follow++; follow %= 3;
|
|
});
|
|
|
|
dialog::addBreak(100);
|
|
|
|
dialog::addItem("restart", 'r');
|
|
dialog::add_action(init);
|
|
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
void o_key(o_funcs& v) {
|
|
v.push_back(named_dialog("flocking", show));
|
|
}
|
|
|
|
bool drawVertex(const shiftmatrix &V, cell *c, shmup::monster *m) {
|
|
if(draw_tails) {
|
|
int i = m->pid;
|
|
vertexdata& vd = vdata[i];
|
|
vid.linewidth *= 3;
|
|
queueline(V * m->at * C0, V * m->at * xpush0(-3), vd.cp.color2 & 0xFFFFFFF3F, 6);
|
|
vid.linewidth /= 3;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void init() {
|
|
if(!closed_manifold) {
|
|
addMessage("Flocking simulation needs a closed manifold.");
|
|
return;
|
|
}
|
|
stop_game();
|
|
rogueviz::init(RV_GRAPH);
|
|
rv_hook(shmup::hooks_turn, 100, turn);
|
|
rv_hook(hooks_frame, 100, flock_marker);
|
|
rv_hook(hooks_o_key, 80, o_key);
|
|
rv_hook(shmup::hooks_draw, 90, drawVertex);
|
|
|
|
vdata.resize(N);
|
|
|
|
const auto v = currentmap->allcells();
|
|
|
|
printf("computing relmatrices...\n");
|
|
// relmatrices[c1][c2] is the matrix we have to multiply by to
|
|
// change from c1-relative coordinates to c2-relative coordinates
|
|
for(cell* c1: v) {
|
|
manual_celllister cl;
|
|
cl.add(c1);
|
|
for(int i=0; i<isize(cl.lst); i++) {
|
|
cell *c2 = cl.lst[i];
|
|
transmatrix T = calc_relative_matrix(c2, c1, C0);
|
|
if(hypot_d(WDIM, inverse_exp(shiftless(tC0(T)))) <= check_range) {
|
|
relmatrices[c1][c2] = T;
|
|
forCellEx(c3, c2) cl.add(c3);
|
|
}
|
|
}
|
|
}
|
|
|
|
ld angle;
|
|
if(swarm) angle = hrand(1000);
|
|
|
|
printf("setting up...\n");
|
|
for(int i=0; i<N; i++) {
|
|
vertexdata& vd = vdata[i];
|
|
// set initial base and at to random cell and random position there
|
|
|
|
|
|
createViz(i, v[swarm ? 0 : hrand(isize(v))], Id);
|
|
vd.m->pat.T = Id;
|
|
|
|
if(swarm) {
|
|
rotate_object(vd.m->pat.T, vd.m->ori, spin(angle));
|
|
apply_shift_object(vd.m->pat.T, vd.m->ori, xtangent(i * -0.015));
|
|
}
|
|
else {
|
|
rotate_object(vd.m->pat.T, vd.m->ori, random_spin());
|
|
apply_shift_object(vd.m->pat.T, vd.m->ori, xtangent(hrandf() / 2));
|
|
rotate_object(vd.m->pat.T, vd.m->ori, random_spin());
|
|
}
|
|
|
|
vd.name = its(i+1);
|
|
vd.cp = dftcolor;
|
|
|
|
if(swarm)
|
|
vd.cp.color2 =
|
|
(rainbow_color(0.5, i * 1. / N) << 8) | 0xFF;
|
|
else
|
|
vd.cp.color2 =
|
|
((hrand(0x1000000) << 8) + 0xFF) | 0x808080FF;
|
|
|
|
vd.cp.shade = shape;
|
|
vd.m->vel = ini_speed;
|
|
vd.m->at = vd.m->pat.T;
|
|
}
|
|
|
|
storeall();
|
|
printf("done\n");
|
|
}
|
|
|
|
void set_follow() {
|
|
follow = (1+follow) % 3;
|
|
addMessage("following: " + follow_names[follow]);
|
|
}
|
|
|
|
void flock_slide(tour::presmode mode, int _N, reaction_t t) {
|
|
using namespace tour;
|
|
setCanvas(mode, '0');
|
|
if(mode == pmStart) {
|
|
slide_backup(mapeditor::drawplayer);
|
|
t();
|
|
slide_backup(rogueviz::vertex_shape, 3);
|
|
N = _N; start_game(); init();
|
|
}
|
|
if(mode == pmKey) set_follow();
|
|
}
|
|
|
|
auto hooks = addHook(hooks_args, 100, readArgs)
|
|
+ addHook_rvslides(187, [] (string s, vector<tour::slide>& v) {
|
|
if(s != "mixed") return;
|
|
using namespace tour;
|
|
string cap = "flocking simulation/";
|
|
string help = "\n\nPress '5' to make the camera follow boids, or 'o' to change more parameters.";
|
|
|
|
v.push_back(slide{
|
|
cap+"Euclidean flocking", 10, LEGAL::NONE | QUICKGEO,
|
|
"This is an Euclidean flocking simulation. Boids move according to the following rules:\n\n"
|
|
"- separation: they avoid running into other boids\n"
|
|
"- alignment: steer toward the average heading of local flockmates\n"
|
|
"- cohesion: steer toward the average position of local flockmates\n\n"
|
|
"In the Euclidean space, these rules will cause all the boids to align, and fly in the same direction in a nice flock."+help
|
|
,
|
|
[] (presmode mode) {
|
|
slide_url(mode, 'w', "Wikipedia link", "https://en.wikipedia.org/wiki/Boids");
|
|
flock_slide(mode, 50, [] {
|
|
set_geometry(gEuclid);
|
|
set_variation(eVariation::bitruncated);
|
|
auto& T0 = euc::eu_input.user_axes;
|
|
restorers.push_back([] { euc::build_torus3(); });
|
|
slide_backup(euc::eu_input);
|
|
T0[0][0] = T0[1][1] = 3;
|
|
T0[1][0] = T0[0][1] = 0;
|
|
euc::eu_input.twisted = 0;
|
|
euc::build_torus3();
|
|
});
|
|
}});
|
|
|
|
v.push_back(slide{
|
|
cap+"spherical flocking", 10, LEGAL::NONE | QUICKGEO,
|
|
"Same parameters, but in spherical geometry.\n\n"
|
|
"Since parallel lines work differently, the boids do not align that nicely. "
|
|
"However, the curvature helps them to maintain a coherent flock."
|
|
+help
|
|
,
|
|
[] (presmode mode) {
|
|
flock_slide(mode, 50, [] {
|
|
set_geometry(gSphere);
|
|
set_variation(eVariation::bitruncated);
|
|
});
|
|
}});
|
|
v.push_back(slide{
|
|
cap+"Hyperbolic flocking", 10, LEGAL::NONE | QUICKGEO,
|
|
"Same parameters, but the geometry is hyperbolic. Our boids fly in the Klein quartic.\n"
|
|
"This time, negative curvature prevents our boids from maintaining a coherent flock."
|
|
+help
|
|
,
|
|
[] (presmode mode) {
|
|
flock_slide(mode, 50, [] {
|
|
set_geometry(gKleinQuartic);
|
|
set_variation(eVariation::bitruncated);
|
|
});
|
|
}});
|
|
v.push_back(slide{
|
|
cap+"Hyperbolic flocking again", 10, LEGAL::NONE | QUICKGEO,
|
|
"Our boids still fly in the Klein quartic, but now the parameters are changed to "
|
|
"make the alignment and cohesion stronger."
|
|
,
|
|
[] (presmode mode) {
|
|
slide_url(mode, 't', "Twitter link", "https://twitter.com/ZenoRogue/status/1064660283581505536");
|
|
flock_slide(mode, 50, [] {
|
|
set_geometry(gKleinQuartic);
|
|
set_variation(eVariation::bitruncated);
|
|
slide_backup(align_factor, 2);
|
|
slide_backup(align_range, 2);
|
|
slide_backup(coh_factor, 2);
|
|
});
|
|
}});
|
|
v.push_back(slide{
|
|
cap+"Hyperbolic flocking in 3D", 10, LEGAL::NONE | QUICKGEO,
|
|
"Let's try a three-dimensional hyperbolic manifold. Alignment and cohesion are strong again."
|
|
,
|
|
[] (presmode mode) {
|
|
slide_url(mode, 'y', "YouTube link", "https://www.youtube.com/watch?v=kng_4lE0uzo");
|
|
flock_slide(mode, 50, [] {
|
|
set_geometry(gSpace534);
|
|
field_quotient_3d(5, 0x72414D0C);
|
|
slide_backup(align_factor, 2);
|
|
slide_backup(align_range, 2);
|
|
slide_backup(coh_factor, 2);
|
|
slide_backup(vid.grid, true);
|
|
slide_backup(follow_dist, 1);
|
|
});
|
|
}});
|
|
|
|
});
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|