mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-25 01:20:37 +00:00
688 lines
21 KiB
C++
688 lines
21 KiB
C++
|
|
// implementation of the Solv space
|
|
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
namespace hr {
|
|
|
|
EX namespace nisot {
|
|
typedef array<float, 3> ptlow;
|
|
|
|
EX transmatrix local_perspective;
|
|
#if HDR
|
|
inline bool local_perspective_used() { return nonisotropic; }
|
|
#endif
|
|
|
|
EX bool geodesic_movement = true;
|
|
|
|
EX transmatrix translate(hyperpoint h) {
|
|
transmatrix T = Id;
|
|
for(int i=0; i<GDIM; i++) T[i][GDIM] = h[i];
|
|
if(sol) {
|
|
T[0][0] = exp(-h[2]);
|
|
T[1][1] = exp(+h[2]);
|
|
}
|
|
if(nil)
|
|
T[2][1] = h[0];
|
|
return T;
|
|
}
|
|
|
|
EX }
|
|
|
|
EX namespace solv {
|
|
|
|
int PRECX, PRECY, PRECZ;
|
|
|
|
vector<nisot::ptlow> inverse_exp_table;
|
|
|
|
bool table_loaded;
|
|
|
|
EX string solfname = "solv-geodesics.dat";
|
|
|
|
EX void load_table() {
|
|
if(table_loaded) return;
|
|
FILE *f = fopen(solfname.c_str(), "rb");
|
|
// if(!f) f = fopen("/usr/lib/soltable.dat", "rb");
|
|
if(!f) { addMessage(XLAT("geodesic table missing")); pmodel = mdPerspective; return; }
|
|
fread(&PRECX, 4, 1, f);
|
|
fread(&PRECY, 4, 1, f);
|
|
fread(&PRECZ, 4, 1, f);
|
|
inverse_exp_table.resize(PRECX * PRECY * PRECZ);
|
|
fread(&inverse_exp_table[0], sizeof(nisot::ptlow) * PRECX * PRECY * PRECZ, 1, f);
|
|
fclose(f);
|
|
table_loaded = true;
|
|
}
|
|
|
|
hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) {
|
|
return hpxyz3(
|
|
-velocity[2] * transported[0] - velocity[0] * transported[2],
|
|
velocity[2] * transported[1] + velocity[1] * transported[2],
|
|
velocity[0] * transported[0] * exp(2*at[2]) - velocity[1] * transported[1] * exp(-2*at[2]),
|
|
0
|
|
);
|
|
}
|
|
|
|
ld x_to_ix(ld u) {
|
|
if(u == 0.) return 0.;
|
|
ld diag = u*u/2.;
|
|
|
|
ld x = diag;
|
|
ld y = u;
|
|
ld z = diag+1.;
|
|
|
|
x /= (1.+z);
|
|
y /= (1.+z);
|
|
|
|
return 0.5 - atan((0.5-x) / y) / M_PI;
|
|
}
|
|
|
|
hyperpoint get_inverse_exp(hyperpoint h, bool lazy) {
|
|
load_table();
|
|
|
|
ld ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);
|
|
ld iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);
|
|
ld iz = tanh(h[2]);
|
|
|
|
if(h[2] < 0.) { iz = -iz; swap(ix, iy); }
|
|
|
|
ix *= PRECX-1;
|
|
iy *= PRECY-1;
|
|
iz *= PRECZ-1;
|
|
|
|
hyperpoint res = C0;
|
|
|
|
if(lazy) {
|
|
auto r = inverse_exp_table[(int(iz)*PRECY+int(iy))*PRECX+int(ix)];
|
|
for(int i=0; i<3; i++) res[i] = r[i];
|
|
}
|
|
|
|
else {
|
|
|
|
if(ix >= PRECX-1) ix = PRECX-2;
|
|
if(iy >= PRECX-1) iy = PRECX-2;
|
|
if(iz >= PRECZ-1) iz = PRECZ-2;
|
|
|
|
int ax = ix, bx = ax+1;
|
|
int ay = iy, by = ay+1;
|
|
int az = iz, bz = az+1;
|
|
|
|
#define S0(x,y,z) inverse_exp_table[(z*PRECY+y)*PRECX+x][t]
|
|
#define S1(x,y) (S0(x,y,az) * (bz-iz) + S0(x,y,bz) * (iz-az))
|
|
#define S2(x) (S1(x,ay) * (by-iy) + S1(x,by) * (iy-ay))
|
|
|
|
for(int t=0; t<3; t++)
|
|
res[t] = S2(ax) * (bx-ix) + S2(bx) * (ix-ax);
|
|
}
|
|
|
|
if(h[2] < 0.) { swap(res[0], res[1]); res[2] = -res[2]; }
|
|
if(h[0] < 0.) res[0] = -res[0];
|
|
if(h[1] < 0.) res[1] = -res[1];
|
|
|
|
return res;
|
|
|
|
/* ld r = sqrt(res[0] * res[0] + res[1] * res[1] + res[2] * res[2]);
|
|
if(r == 0.) return res;
|
|
return res * atanh(r) / r; */
|
|
}
|
|
|
|
struct hrmap_sol : hrmap {
|
|
hrmap *binary_map;
|
|
unordered_map<pair<heptagon*, heptagon*>, heptagon*> at;
|
|
unordered_map<heptagon*, pair<heptagon*, heptagon*>> coords;
|
|
|
|
heptagon *origin;
|
|
|
|
heptagon *getOrigin() override { return origin; }
|
|
|
|
heptagon *get_at(heptagon *x, heptagon *y) {
|
|
auto& h = at[make_pair(x, y)];
|
|
if(h) return h;
|
|
h = tailored_alloc<heptagon> (S7);
|
|
h->c7 = newCell(S7, h);
|
|
coords[h] = make_pair(x, y);
|
|
h->distance = x->distance;
|
|
h->dm4 = 0;
|
|
h->zebraval = x->emeraldval;
|
|
h->emeraldval = y->emeraldval;
|
|
h->fieldval = 0;
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
return h;
|
|
}
|
|
|
|
hrmap_sol() {
|
|
|
|
heptagon *alt;
|
|
|
|
if(true) {
|
|
dynamicval<eGeometry> g(geometry, gBinary4);
|
|
alt = tailored_alloc<heptagon> (S7);
|
|
alt->s = hsOrigin;
|
|
alt->alt = alt;
|
|
alt->cdata = NULL;
|
|
alt->c7 = NULL;
|
|
alt->zebraval = 0;
|
|
alt->distance = 0;
|
|
alt->emeraldval = 0;
|
|
binary_map = binary::new_alt_map(alt);
|
|
}
|
|
|
|
origin = get_at(alt, alt);
|
|
}
|
|
|
|
heptagon *altstep(heptagon *h, int d) {
|
|
dynamicval<eGeometry> g(geometry, gBinary4);
|
|
dynamicval<hrmap*> cm(currentmap, binary_map);
|
|
return h->cmove(d);
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
auto p = coords[parent];
|
|
auto pf = p.first, ps = p.second;
|
|
auto rule = [&] (heptagon *c1, heptagon *c2, int d1) {
|
|
auto g = get_at(c1, c2);
|
|
parent->c.connect(d, g, d1, false);
|
|
return g;
|
|
};
|
|
|
|
switch(d) {
|
|
case 0: // right
|
|
return rule(altstep(pf, 2), ps, 4);
|
|
case 1: // up
|
|
return rule(pf, altstep(ps, 2), 5);
|
|
case 2: // front left
|
|
return rule(altstep(pf, 0), altstep(ps, 3), ps->zebraval ? 7 : 6);
|
|
case 3: // front right
|
|
return rule(altstep(pf, 1), altstep(ps, 3), ps->zebraval ? 7 : 6);
|
|
case 4: // left
|
|
return rule(altstep(pf, 4), ps, 0);
|
|
case 5: // down
|
|
return rule(pf, altstep(ps, 4), 1);
|
|
case 6: // back down
|
|
return rule(altstep(pf, 3), altstep(ps, 0), pf->zebraval ? 3 : 2);
|
|
case 7: // back up
|
|
return rule(altstep(pf, 3), altstep(ps, 1), pf->zebraval ? 3 : 2);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
~hrmap_sol() {
|
|
delete binary_map;
|
|
}
|
|
|
|
transmatrix adjmatrix(int i, int j) {
|
|
ld z = log(2);
|
|
ld bw = vid.binary_width * z;
|
|
ld bwh = bw / 4;
|
|
switch(i) {
|
|
case 0: return xpush(+bw);
|
|
case 1: return ypush(+bw);
|
|
case 2: return xpush(-bwh) * zpush(+z) * ypush(j == 6 ? +bwh : -bwh);
|
|
case 3: return xpush(+bwh) * zpush(+z) * ypush(j == 6 ? +bwh : -bwh);
|
|
case 4: return xpush(-bw);
|
|
case 5: return ypush(-bw);
|
|
case 6: return ypush(-bwh) * zpush(-z) * xpush(j == 2 ? +bwh : -bwh);
|
|
case 7: return ypush(+bwh) * zpush(-z) * xpush(j == 2 ? +bwh : -bwh);
|
|
default:return Id;
|
|
}
|
|
}
|
|
|
|
virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override {
|
|
for(int i=0; i<h1->type; i++) if(h1->move(i) == h2) return adjmatrix(i, h1->c.spin(i));
|
|
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
|
|
return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7];
|
|
return Id; // not implemented yet
|
|
}
|
|
|
|
void draw() override {
|
|
dq::visited.clear();
|
|
|
|
dq::enqueue(viewctr.at, cview());
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = get<0>(p);
|
|
transmatrix V = get<1>(p);
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V, 0, false);
|
|
|
|
for(int i=0; i<S7; i++) {
|
|
// note: need do cmove before c.spin
|
|
heptagon *h1 = h->cmove(i);
|
|
dq::enqueue(h1, V * adjmatrix(i, h->c.spin(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
EX pair<heptagon*,heptagon*> getcoord(heptagon *h) {
|
|
return ((hrmap_sol*)currentmap)->coords[h];
|
|
}
|
|
|
|
EX heptagon *get_at(heptagon *h1, heptagon *h2, bool gen) {
|
|
auto m = ((hrmap_sol*)currentmap);
|
|
if(!gen && !m->at.count(make_pair(h1, h2))) return nullptr;
|
|
return m->get_at(h1, h2);
|
|
}
|
|
|
|
EX ld solrange_xy = 15;
|
|
EX ld solrange_z = 4;
|
|
|
|
EX ld glitch_xy = 2, glitch_z = 0.6;
|
|
|
|
EX bool in_table_range(hyperpoint h) {
|
|
if(abs(h[0]) > glitch_xy && abs(h[1]) > glitch_xy && abs(h[2]) < glitch_z) return false;
|
|
return abs(h[0]) < solrange_xy && abs(h[1]) < solrange_xy && abs(h[2]) < solrange_z;
|
|
}
|
|
|
|
EX int approx_distance(heptagon *h1, heptagon *h2) {
|
|
auto m = (hrmap_sol*) currentmap;
|
|
dynamicval<eGeometry> g(geometry, gBinary4);
|
|
dynamicval<hrmap*> cm(currentmap, m->binary_map);
|
|
int d1 = binary::celldistance3_approx(m->coords[h1].first, m->coords[h2].first);
|
|
int d2 = binary::celldistance3_approx(m->coords[h1].second, m->coords[h2].second);
|
|
return d1 + d2 - abs(h1->distance - h2->distance);
|
|
}
|
|
|
|
EX string solshader =
|
|
"uniform mediump sampler3D tInvExpTable;"
|
|
"uniform mediump float PRECX, PRECY, PRECZ;"
|
|
|
|
"float x_to_ix(float u) {"
|
|
" if(u < 1e-6) return 0.;"
|
|
" float diag = u*u/2.;"
|
|
|
|
" float x = diag;"
|
|
" float y = u;"
|
|
" float z = diag+1.;"
|
|
|
|
" x /= (1.+z);"
|
|
" y /= (1.+z);"
|
|
|
|
" return 0.5 - atan((0.5-x) / y) / 3.1415926535897932384626433832795;"
|
|
" }"
|
|
|
|
|
|
"vec4 inverse_exp(vec4 h) {"
|
|
|
|
"float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);"
|
|
"float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);"
|
|
"float iz = tanh(h[2]);"
|
|
|
|
"if(h[2] < 1e-6) { iz = -iz; float s = ix; ix = iy; iy = s; }"
|
|
"if(iz < 0.) iz = 0.;"
|
|
|
|
"vec4 res = texture3D(tInvExpTable, vec3(ix*(1.-1./PRECX) + 0.5/PRECX, iy*(1.-1./PRECY) + .5/PRECY, iz*(1.-1./PRECZ) + .5/PRECZ));"
|
|
|
|
"if(h[2] < 1e-6) { res.xy = res.yx; res[2] = -res[2]; }"
|
|
"if(h[0] < 0.) res[0] = -res[0];"
|
|
"if(h[1] < 0.) res[1] = -res[1];"
|
|
|
|
"return res;"
|
|
"}";
|
|
EX }
|
|
|
|
EX namespace nilv {
|
|
|
|
hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) {
|
|
ld x = Position[0];
|
|
return point3(
|
|
x * Velocity[1] * Transported[1] - 0.5 * (Velocity[1] * Transported[2] + Velocity[2] * Transported[1]),
|
|
-.5 * x * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2]),
|
|
-.5 * (x*x-1) * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * x * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2])
|
|
);
|
|
}
|
|
|
|
EX hyperpoint formula_exp(hyperpoint v) {
|
|
// copying Modelling Nil-geometry in Euclidean Space with Software Presentation
|
|
// v[0] = c cos alpha
|
|
// v[1] = c sin alpha
|
|
// v[2] = w
|
|
|
|
if(v[0] == 0 && v[1] == 0) return point31(v[0], v[1], v[2]);
|
|
|
|
if(v[2] == 0) return point31(v[0], v[1], v[0] * v[1] / 2);
|
|
|
|
ld alpha = atan2(v[1], v[0]);
|
|
ld w = v[2];
|
|
ld c = hypot(v[0], v[1]) / v[2];
|
|
|
|
return point31(
|
|
2 * c * sin(w/2) * cos(w/2 + alpha),
|
|
2 * c * sin(w/2) * sin(w/2 + alpha),
|
|
w * (1 + (c*c/2) * ((1 - sin(w)/w) + (1-cos(w))/w * sin(w + 2 * alpha)))
|
|
);
|
|
}
|
|
|
|
EX hyperpoint get_inverse_exp(hyperpoint h, int iterations) {
|
|
ld wmin, wmax;
|
|
|
|
ld side = h[2] - h[0] * h[1] / 2;
|
|
|
|
if(hypot_d(2, h) < 1e-6) return point3(h[0], h[1], h[2]);
|
|
else if(side > 1e-6) {
|
|
wmin = 0, wmax = 2 * M_PI;
|
|
}
|
|
else if(side < -1e-6) {
|
|
wmin = - 2 * M_PI, wmax = 0;
|
|
}
|
|
else return point3(h[0], h[1], 0);
|
|
|
|
ld alpha_total = h[0] ? atan(h[1] / h[0]) : M_PI/2;
|
|
|
|
ld b;
|
|
if(abs(h[0]) > abs(h[1]))
|
|
b = h[0] / 2 / cos(alpha_total);
|
|
else
|
|
b = h[1] / 2 / sin(alpha_total);
|
|
|
|
ld s = sin(2 * alpha_total);
|
|
|
|
for(int it=0;; it++) {
|
|
ld w = (wmin + wmax) / 2;
|
|
ld z = b * b * (s + (sin(w) - w)/(cos(w) - 1)) + w;
|
|
|
|
if(it == iterations) {
|
|
ld alpha = alpha_total - w/2;
|
|
ld c = b / sin(w/2);
|
|
return point3(c * w * cos(alpha), c * w * sin(alpha), w);
|
|
}
|
|
if(h[2] > z) wmin = w;
|
|
else wmax = w;
|
|
}
|
|
}
|
|
|
|
EX string nilshader =
|
|
"vec4 inverse_exp(vec4 h) {"
|
|
"float wmin, wmax;"
|
|
"float side = h[2] - h[0] * h[1] / 2.;"
|
|
"if(h[0]*h[0] + h[1]*h[1] < 1e-12) return vec4(h[0], h[1], h[2], 1);"
|
|
"if(side > 1e-6) { wmin = 0.; wmax = 2.*PI; }"
|
|
"else if(side < -1e-6) { wmin = -2.*PI; wmax = 0.; }"
|
|
"else return vec4(h[0], h[1], 0., 1.);"
|
|
"float at = h[0] != 0. ? atan(h[1] / h[0]) : PI/2.;"
|
|
"float b = abs(h[0]) > abs(h[1]) ? h[0] / 2. / cos(at) : h[1] / 2. / sin(at);"
|
|
"float s = sin(2. * at);"
|
|
|
|
"for(int it=0; it<50; it++) {"
|
|
"float w = (wmin + wmax) / 2.;"
|
|
// the formula after ':' produces visible numerical artifacts for w~0
|
|
"float z = b * b * (s + (abs(w) < .1 ? w/3. + w*w*w/90. + w*w*w*w*w/2520.: (sin(w) - w)/(cos(w) - 1.))) + w;"
|
|
"if(h[2] > z) wmin = w;"
|
|
"else wmax = w;"
|
|
"}"
|
|
|
|
"float w = (wmin + wmax) / 2.;"
|
|
"float alpha = at - w/2.;"
|
|
"float c = b / sin(w/2.);"
|
|
"return vec4(c*w*cos(alpha), c*w*sin(alpha), w, 1.);"
|
|
"}";
|
|
|
|
struct mvec : array<int, 3> {
|
|
|
|
mvec() { }
|
|
|
|
mvec(int x, int y, int z) {
|
|
auto& a = *this;
|
|
a[0] = x; a[1] = y; a[2] = z;
|
|
}
|
|
mvec inverse() {
|
|
auto& a = *this;
|
|
return mvec(-a[0], -a[1], -a[2]+a[1] * a[0]);
|
|
}
|
|
mvec operator * (const mvec b) {
|
|
auto& a = *this;
|
|
return mvec(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1]);
|
|
}
|
|
};
|
|
|
|
static const mvec mvec_zero = mvec(0, 0, 0);
|
|
|
|
hyperpoint mvec_to_point(mvec m) { return hpxy3(m[0], m[1], m[2]); }
|
|
|
|
#if HDR
|
|
static const int nilv_S7 = 8;
|
|
#endif
|
|
|
|
array<mvec, nilv_S7> movevectors = {{ mvec(-1,0,0), mvec(-1,0,1), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(1,0,-1), mvec(0,1,0), mvec(0,0,1) }};
|
|
|
|
EX array<vector<hyperpoint>, nilv_S7> facevertices = {{
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(-0.5,0.5,-0.25), },
|
|
{ point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), },
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(-0.5,-0.5,-0.25), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,-0.5,-0.75), },
|
|
{ point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,-0.75), },
|
|
{ point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), },
|
|
{ point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), },
|
|
}};
|
|
|
|
struct hrmap_nil : hrmap {
|
|
unordered_map<mvec, heptagon*> at;
|
|
unordered_map<heptagon*, mvec> coords;
|
|
|
|
heptagon *getOrigin() override { return get_at(mvec_zero); }
|
|
|
|
heptagon *get_at(mvec c) {
|
|
auto& h = at[c];
|
|
if(h) return h;
|
|
h = tailored_alloc<heptagon> (S7);
|
|
h->c7 = newCell(S7, h);
|
|
coords[h] = c;
|
|
h->dm4 = 0;
|
|
h->zebraval = c[0];
|
|
h->emeraldval = c[1];
|
|
h->fieldval = c[2];
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
return h;
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
auto p = coords[parent];
|
|
auto q = p * movevectors[d];
|
|
auto child = get_at(q);
|
|
parent->c.connect(d, child, (d + nilv_S7/2) % nilv_S7, false);
|
|
return child;
|
|
}
|
|
|
|
transmatrix adjmatrix(int i) {
|
|
return nisot::translate(mvec_to_point(movevectors[i]));
|
|
}
|
|
|
|
virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override {
|
|
return nisot::translate(mvec_to_point(coords[h1].inverse() * coords[h2]));
|
|
}
|
|
|
|
void draw() override {
|
|
dq::visited.clear();
|
|
|
|
dq::enqueue(viewctr.at, cview());
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = get<0>(p);
|
|
transmatrix V = get<1>(p);
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V, 0, false);
|
|
|
|
if(0) for(int t=0; t<c->type; t++) {
|
|
if(!c->move(t)) continue;
|
|
dynamicval<color_t> g(poly_outline, darkena((0x142968*t) & 0xFFFFFF, 0, 255) );
|
|
queuepoly(V, cgi.shWireframe3D[t], 0);
|
|
}
|
|
|
|
for(int i=0; i<S7; i++) {
|
|
// note: need do cmove before c.spin
|
|
heptagon *h1 = h->cmove(i);
|
|
dq::enqueue(h1, V * adjmatrix(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
EX hyperpoint on_geodesic(hyperpoint s0, hyperpoint s1, ld x) {
|
|
hyperpoint local = inverse(nisot::translate(s0)) * s1;
|
|
hyperpoint h = get_inverse_exp(local, 100);
|
|
return nisot::translate(s0) * formula_exp(h * x);
|
|
}
|
|
EX }
|
|
|
|
EX namespace nisot {
|
|
|
|
EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) {
|
|
if(sol) return solv::christoffel(at, velocity, transported);
|
|
else if(nil) return nilv::christoffel(at, velocity, transported);
|
|
else return point3(0, 0, 0);
|
|
}
|
|
|
|
EX bool in_table_range(hyperpoint h) {
|
|
if(sol) return solv::in_table_range(h);
|
|
return true;
|
|
}
|
|
|
|
#if HDR
|
|
enum iePrecision { iLazy, iTable };
|
|
#endif
|
|
|
|
EX hyperpoint inverse_exp(const hyperpoint h, iePrecision p) {
|
|
if(sol) return solv::get_inverse_exp(h, p == iLazy);
|
|
if(nil) return nilv::get_inverse_exp(h, p == iLazy ? 5 : 20);
|
|
return point3(h[0], h[1], h[2]);
|
|
}
|
|
|
|
EX void geodesic_step(hyperpoint& at, hyperpoint& velocity) {
|
|
auto acc = christoffel(at, velocity, velocity);
|
|
|
|
auto at2 = at + velocity / 2;
|
|
auto velocity2 = velocity + acc / 2;
|
|
|
|
auto acc2 = christoffel(at2, velocity2, velocity2);
|
|
|
|
at = at + velocity + acc2 / 2;
|
|
|
|
velocity = velocity + acc;
|
|
}
|
|
|
|
EX hyperpoint direct_exp(hyperpoint v, int steps) {
|
|
hyperpoint at = point31(0, 0, 0);
|
|
v /= steps;
|
|
v[3] = 0;
|
|
for(int i=0; i<steps; i++) geodesic_step(at, v);
|
|
return at;
|
|
}
|
|
|
|
EX transmatrix transpose(transmatrix T) {
|
|
transmatrix result;
|
|
for(int i=0; i<MDIM; i++)
|
|
for(int j=0; j<MDIM; j++)
|
|
result[j][i] = T[i][j];
|
|
return result;
|
|
}
|
|
|
|
EX transmatrix parallel_transport_bare(transmatrix Pos, transmatrix T) {
|
|
|
|
hyperpoint h = tC0(T);
|
|
h[3] = 0;
|
|
|
|
h = Pos * h;
|
|
|
|
int steps = 100;
|
|
h /= steps;
|
|
|
|
auto tPos = transpose(Pos);
|
|
|
|
for(int i=0; i<steps; i++) {
|
|
for(int j=0; j<3; j++)
|
|
tPos[j] += christoffel(tPos[3], h, tPos[j]);
|
|
geodesic_step(tPos[3], h);
|
|
}
|
|
|
|
return transpose(tPos);
|
|
}
|
|
|
|
EX void fixmatrix(transmatrix& T) {
|
|
transmatrix push = eupush( tC0(T) );
|
|
transmatrix push_back = inverse(push);
|
|
transmatrix gtl = push_back * T;
|
|
{ dynamicval<eGeometry> g(geometry, gSphere); hr::fixmatrix(gtl); }
|
|
T = push * gtl;
|
|
}
|
|
|
|
EX transmatrix parallel_transport(const transmatrix Position, const transmatrix T) {
|
|
auto P = Position;
|
|
nisot::fixmatrix(P);
|
|
if(!geodesic_movement) return inverse(eupush(Position * inverse(T) * inverse(Position) * C0)) * Position;
|
|
return parallel_transport_bare(P, T);
|
|
}
|
|
|
|
EX transmatrix transport_view(const transmatrix T, const transmatrix V) {
|
|
if(!geodesic_movement) {
|
|
transmatrix IV = inverse(V);
|
|
nisot::fixmatrix(IV);
|
|
const transmatrix V1 = inverse(IV);
|
|
return V1 * eupush(IV * T * V1 * C0);
|
|
}
|
|
return inverse(parallel_transport(inverse(V), inverse(T)));
|
|
}
|
|
|
|
EX transmatrix spin_towards(const transmatrix Position, const hyperpoint goal) {
|
|
|
|
hyperpoint at = tC0(Position);
|
|
transmatrix push_back = inverse(translate(at));
|
|
hyperpoint back_goal = push_back * goal;
|
|
back_goal = inverse_exp(back_goal, iTable);
|
|
|
|
transmatrix back_Position = push_back * Position;
|
|
|
|
return rspintox(inverse(back_Position) * back_goal);
|
|
}
|
|
|
|
EX hrmap *new_map() {
|
|
if(sol) return new solv::hrmap_sol;
|
|
if(nil) return new nilv::hrmap_nil;
|
|
return NULL;
|
|
}
|
|
|
|
auto config = addHook(hooks_args, 0, [] () {
|
|
using namespace arg;
|
|
if(argis("-solrange")) {
|
|
shift_arg_formula(solv::solrange_xy);
|
|
shift_arg_formula(solv::solrange_z);
|
|
return 0;
|
|
}
|
|
else if(argis("-fsol")) {
|
|
shift(); solv::solfname = args();
|
|
return 0;
|
|
}
|
|
else if(argis("-solglitch")) {
|
|
shift_arg_formula(solv::glitch_xy);
|
|
shift_arg_formula(solv::glitch_z);
|
|
return 0;
|
|
}
|
|
else if(argis("-solgeo")) {
|
|
geodesic_movement = true;
|
|
pmodel = mdGeodesic;
|
|
return 0;
|
|
}
|
|
else if(argis("-solnogeo")) {
|
|
geodesic_movement = false;
|
|
pmodel = mdPerspective;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
});
|
|
|
|
}
|
|
|
|
}
|