1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-11 18:00:34 +00:00
hyperrogue/rogueviz/noniso-honeycombs.cpp
2024-06-22 11:17:42 +02:00

225 lines
7.2 KiB
C++

#include "rogueviz.h"
namespace rogueviz {
namespace honey {
bool alone = true;
bool in_special = false;
#if CAP_RVSLIDES
using ccolor::data;
#define CCO [] (cell *c, data& cco) -> color_t
int jhole = 0;
int jblock = 0;
data jmap("rainbow by distance", ccolor::always_available,
CCO {
if(c == currentmap->gamestart()) return ccolor::plain(c);
int d = c->master->distance;
if(geometry == gNil) d = c->master->zebraval;
if(euc::in()) d = euc::get_ispacemap()[c->master][0];
if(d % 2 == 0 || d < -5 || d > 5) return hrand(100) < jblock ? 0xFFFFFFFF : ccolor::plain(c);
return hrand(100) < jhole ? ccolor::plain(c) : cco.ctab[(d+5)/2];
},
{0x100FFFF, 0x100FF00, 0x1FFFF00, 0x1FF8000, 0x1FF0000, 0x1FF00FF}
);
data jmap2("rainbow by distance II", ccolor::always_available,
CCO {
if(c == currentmap->gamestart()) return ccolor::plain(c);
int d = c->master->distance;
if(geometry == gNil) d = c->master->zebraval;
if(euc::in()) d = euc::get_ispacemap()[c->master][0];
if((d&3) != 2) return hrand(100) < jblock ? 0xFFFFFFFF : ccolor::plain(c);
return hrand(100) < jhole ? ccolor::plain(c) : cco.ctab[(d+10)/4];
},
{0x100FFFF, 0x100FF00, 0x1FFFF00, 0x1FF8000, 0x1FF0000, 0x1FF00FF}
);
data random_pseudohept("random_pseudohept", ccolor::always_available,
CCO {
color_t r = hrand(0xFFFFFF + 1);
if(hrand(100) < ccolor::rwalls && pseudohept(c) && c != cwt.at) r |= 0x1000000;
return r;
}, {});
auto geoslide(eGeometry g, ccolor::data *canvas, int _jhole, int _jblock) {
using namespace tour;
return [=] (presmode mode) {
setWhiteCanvas(mode, [&] {
set_geometry(g);
if(g == gSphere) {
set_geometry(gProduct);
}
if(g == gNormal) {
set_geometry(gTwistedProduct);
}
tour::slide_backup<ld>(sightranges[gProduct], 12);
tour::slide_backup<ld>(sightranges[gNil], 7);
tour::slide_backup<ld>(sightranges[gSol], 7);
tour::slide_backup<ld>(sightranges[gSpace435], 7);
vid.texture_step = 4;
tour::slide_backup(jhole, _jhole);
tour::slide_backup(jblock, _jblock);
tour::slide_backup(ccolor::rwalls, _jhole);
tour::slide_backup(ccolor::which, canvas);
tour::slide_backup(vid.linewidth, vid.linewidth / 10);
if(jblock < 0) {
pmodel = mdDisk;
sightranges[gSol] = 4;
}
});
rogueviz::pres::non_game_slide_scroll(mode);
if(mode == pmStop && jblock < 0)
pmodel = mdGeodesic;
slidecommand = "switch raycaster";
if(in_special && among(mode, pmGeometrySpecial, pmStop)) {
in_special = false;
gamestack::pop();
ccolor::which = canvas;
vid.grid = false;
fat_edges = false;
sightranges[gSpace435] = 7;
}
else if(mode == pmGeometrySpecial && !in_special) {
in_special = true;
gamestack::push();
ccolor::set_plain(0);
vid.grid = true;
stdgridcolor = 0xFFFF00FF;
fat_edges = true;
start_game();
sightranges[gSpace435] = 3;
}
if(mode == pmKey && jblock < 0) {
sightranges[gSol] = 11 - sightranges[gSol];
addMessage("Changed the sight range to ", sightranges[gSol]);
}
else if(mode == pmKey) {
if(sl2) {
addMessage("Raycaster not implemented here.");
}
#if CAP_RAY
else if(ray::want_use != 2) {
ray::want_use = 2;
ray::max_cells = 4096;
addMessage("Using a raycaster.");
}
#endif
else {
#if CAP_RAY
ray::want_use = 0;
#endif
addMessage("Using primitives.");
}
}
};
}
#endif
string cap = "honeycombs/";
#if CAP_RVSLIDES
void honey(string s, vector<tour::slide>& v) {
if(s != "noniso") return;
using namespace tour;
v.emplace_back(
slide{cap+"Tessellations in 3D geometries", 999, LEGAL::NONE | QUICKSKIP,
"This series of slides presents the honeycombs we use. "
"You can compare the output of primitive-based and raycaster-based rendering by pressing '5'.",
[] (presmode mode) {}
});
v.emplace_back(
slide{cap+"Hyperbolic space", 999, LEGAL::SPECIAL,
"Traditional visualizations of non-Euclidean honeycombs "
"show the edges of all cells. In our visualizations, we fill some of the cells. "
"The disadvantage of the traditional visualization is visible here, on the example of {4,3,5} hyperbolic honeycomb: "
"our Euclidean brains tend to interpret this visualization incorrectly. (Press '2' to get the traditional visualization.)",
geoslide(gSpace435, &ccolor::random, 50, 0)
});
v.emplace_back(
slide{cap+"S2xE", 999, LEGAL::NONE,
"This is the S2xE geometry.",
geoslide(gSphere, &ccolor::random, 10, 0)
});
v.emplace_back(
slide{cap+"Solv: random", 999, LEGAL::NONE,
"Random blocks in Solv geometry.",
geoslide(gSol, &ccolor::random, 20, 0)
});
v.emplace_back(
slide{cap+"Solv: Poincaré ball", 999, LEGAL::NONE,
"Surfaces of constant 'z' in Solv geometry, displayed in Poincaré ball-like model. "
"Press '5' to change the sight range (this slide is not optimized, so it will be slow).",
geoslide(gSol, &jmap, 0, -1)
});
v.emplace_back(
slide{cap+"Solv: horotori", 999, LEGAL::NONE,
"Solv geometry. Colored torus-like surfaces are surfaces of constant 'z'. "
"Press '5' to enable the raycaster",
geoslide(gSol, &jmap, 50, 0)
});
v.emplace_back(
slide{cap+"Solv: difficult region", 999, LEGAL::NONE,
"This slide focuses on the area in Solv geometry which is difficult to render using primitives. "
"Press '5' to enable the raycaster.",
geoslide(gSol, &jmap2, 0, 10)
});
v.emplace_back(
slide{cap+"Nil geometry", 999, LEGAL::NONE,
"Nil geometry. Colored surfaces are surfaces of constant 'x'. "
"Press '5' to enable the raycaster",
geoslide(gNil, &jmap, 10, 10)
});
v.emplace_back(
slide{cap+"SL(2,R) geometry", 999, LEGAL::NONE,
"SL(2,R) geometry.",
geoslide(gNormal, &random_pseudohept, 90, 0)
});
}
#endif
#if CAP_RVSLIDES
vector<tour::slide> noniso_slides;
tour::slide *gen_noniso_demo() {
noniso_slides.clear();
using namespace tour;
noniso_slides.emplace_back(
slide{"Non-isotropic geometry demo", 999, LEGAL::NONE | QUICKSKIP | QUICKGEO,
"This is a presentation of non-isotropic geometries.",
[] (presmode mode) {
slide_url(mode, 'p', "paper about non-isotropic geometries", "https://arxiv.org/abs/2002.09533");
setCanvas(mode, &ccolor::random, [] {
set_geometry(gCubeTiling);
});
}
});
callhooks(pres::hooks_build_rvtour, "noniso", noniso_slides);
pres::add_end(noniso_slides);
return &noniso_slides[0];
}
#endif
auto hooks = addHook_rvslides(163, honey)
+ addHook_slideshows(120, [] (tour::ss::slideshow_callback cb) {
if(noniso_slides.empty())
gen_noniso_demo();
cb(XLAT("non-isotropic geometries"), &noniso_slides[0], 'n');
});
} }