1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-27 14:37:16 +00:00
hyperrogue/rogueviz/nilrider/timestamp.cpp

507 lines
15 KiB
C++

namespace nilrider {
ld timestamp::energy_in_squares() { return vel * vel / (2 * gravity); }
/** convert rotationally symmetric to internal model */
EX hyperpoint sym_to_used(hyperpoint H) {
if(nil) nilv::convert_ref(H, nilv::nmSym, nilv::model_used);
return H;
}
void timestamp::draw_unilcycle(const shiftmatrix& V) {
const int points = 60 / (1 + reduce_quality);
const int spoke_each = 5;
hyperpoint whpoint[points+1];
transmatrix Ta = cspin(0, 1, -heading_angle);
transmatrix Tb = cspin(0, 2, -slope);
hyperpoint base = Ta * Tb * point31(0, 0, whrad);
for(int a=0; a<points; a++) {
ld beta = TAU * a / points + circpos;
whpoint[a] = base + Ta * point3(whrad*sin(beta),0,whrad*cos(beta));
}
whpoint[points] = whpoint[0];
hyperpoint hub[2];
const ld hublen = whrad / 2;
for(int a=0; a<2; a++) {
hub[a] = base + Ta * point3(0, hublen*(a?1:-1), 0);
}
for(int a=0; a<points; a+=spoke_each) for(int b=0; b<2; b++) {
curvepoint(hub[b]);
for(int b=0; b<=spoke_each; b++)
curvepoint(whpoint[a+b]);
curvepoint(hub[b]);
if(a&1)
queuecurve(V * rgpushxto0(where), 0xFFFFFFFF, 0xFFFF40FF, PPR::WALL);
else
queuecurve(V * rgpushxto0(where), 0xFFFFFFFF, 0xFF4040FF, PPR::WALL);
}
if(1) {
curvepoint(base + Ta * point3(hublen, 0, whrad+hublen));
curvepoint(base + Ta * point3(-hublen, -hublen, whrad+hublen));
curvepoint(base + Ta * point3(-hublen, +hublen, whrad+hublen));
curvepoint(base + Ta * point3(hublen, 0, whrad+hublen));
queuecurve(V * rgpushxto0(where), 0xFF, 0x303030FF, PPR::WALL);
for(auto& y: {hublen, -hublen}) {
curvepoint(base + Ta * point3(hublen * .1, -y, 0));
curvepoint(base + Ta * point3(hublen * -.1, -y, 0));
curvepoint(base + Ta * point3(hublen * -.1, 0, whrad + hublen / 2));
curvepoint(base + Ta * point3(hublen * .1, 0, whrad + hublen / 2));
curvepoint(base + Ta * point3(hublen * .1, -y, 0));
queuecurve(V * rgpushxto0(where), 0xFF, 0x303030FF, PPR::WALL);
curvepoint(base + Ta * point3(hublen * -.1, 0, whrad + hublen / 2));
curvepoint(base + Ta * point3(hublen * .1, 0, whrad + hublen / 2));
curvepoint(base + Ta * point3(hublen * .1, 0, whrad + hublen));
curvepoint(base + Ta * point3(hublen * -.1, 0, whrad + hublen));
curvepoint(base + Ta * point3(hublen * -.1, 0, whrad + hublen / 2));
queuecurve(V * rgpushxto0(where), 0xFF, 0x303030FF, PPR::WALL);
}
}
}
bool tick_debug = false;
bool timestamp::out_of_surface(level *lev) {
auto xy = lev->get_xy_i(where);
char ch = lev->mapchar(xy);
return ch == '!';
}
bool timestamp::collect(level *lev) {
auto xy = on_surface->get_xy_i(where);
char ch = on_surface->mapchar(xy);
if(ch == 'r') return false;
if(ch == '*') {
for(int i=0; i<isize(lev->triangles); i++) {
auto& t = lev->triangles[i];
if(t.which != on_surface) continue;
if(t.x == xy.first && t.y == xy.second) collected_triangles |= (1<<i);
}
}
int gid = 0;
for(auto& g: lev->goals) {
bool gfailed = failed & Flag(gid);
bool gsuccess = goals & Flag(gid);
if(gfailed || gsuccess) continue;
checkerparam cp {this, lev, reversals};
auto res = g.check(cp);
if(res == grFailed) {
failed |= Flag(gid);
}
else if(res == grSuccess) {
goals |= Flag(gid);
lev->current_score[gid] = timer;
if(planning_mode || !loaded_or_planned) {
auto &res = lev->records[planning_mode][gid];
if(res == 0 || timer < res) {
res = timer;
println(hlog, "saved -- success on goal ", gid, " in time ", timer);
save();
}
}
}
gid++;
}
return true;
}
/* convert heading to integral units, to make saved replays consistent */
constexpr ld h_units = 360 * 60 * 60;
constexpr ld h_mul = h_units / TAU;
/* set to flyvel[2] in the case of crash from below */
constexpr ld CRASHED_FROM_BELOW = -147;
int heading_to_int(ld a) {
a = a * h_mul;
int ai = floor(a + .5);
ai = gmod(ai, h_units);
return ai;
}
ld int_to_heading(ld a) {
return a / h_mul;
}
void timestamp::be_consistent() {
heading_angle = int_to_heading(heading_to_int(heading_angle));
}
bool timestamp::tick(level *lev, ld time_left) {
if(flyvel[2] == CRASHED_FROM_BELOW) return false;
if(on_surface && !collect(lev)) return false;
const ld eps = slope_eps;
if(on_surface) {
hyperpoint wnext = where;
wnext[0] += cos(heading_angle) * eps;
wnext[1] += sin(heading_angle) * eps;
wnext[2] = on_surface->surface(wnext);
wnext = gpushxto0(where) * wnext;
slope = atan(wnext[2] / eps);
if(out_of_surface(lev)) {
on_surface = nullptr;
sstime = timer; chg_slope = gfx_slope;
flyvel = wnext * vel / hypot_d(3, wnext);
flyvel[3] = 0;
}
}
timer += time_left;
if(on_surface) {
auto ovel = vel;
vel -= sin(slope) * gravity * time_left;
if(vel < 0) {
vel = 0;
if(ovel == 0) return false;
}
auto mvel = (vel + ovel) / 2;
where[0] += cos(heading_angle) * mvel * cos(slope) * time_left;
where[1] += sin(heading_angle) * mvel * cos(slope) * time_left;
where[2] = on_surface->surface(where);
circvel = mvel / whrad;
}
else {
auto owhere = where;
auto oflyvel = flyvel;
flyvel = rgpushxto0(where) * flyvel;
flyvel[2] -= gravity * time_left / 2;
// todo rewrite geodesic_step to take gravity into account into RK4 correctly
flyvel *= time_left;
nisot::geodesic_step(where, flyvel);
flyvel /= time_left;
flyvel[2] -= gravity * time_left / 2;
auto mflyvel = (flyvel + oflyvel) / 2;
auto new_heading_angle = atan2(mflyvel[1], mflyvel[0]);
if(timer >= last_tramp + 0.5) heading_angle = new_heading_angle;
else {
while(new_heading_angle < heading_angle - M_PI) new_heading_angle += TAU;
while(new_heading_angle > heading_angle + M_PI) new_heading_angle -= TAU;
heading_angle = lerp(heading_angle, new_heading_angle, ilerp(timer - time_left, last_tramp + 0.5, timer));
}
flyvel = gpushxto0(where) * flyvel;
mflyvel = gpushxto0(where) * mflyvel;
slope = atan(mflyvel[2] / hypot_d(2, mflyvel));
vel = hypot_d(3, flyvel);
if(check_crashes_rec(lev, owhere, oflyvel, time_left)) return false;
}
circpos += circvel * time_left;
return true;
}
bool timestamp::check_crashes(level* lev, hyperpoint owhere, hyperpoint oflyvel, ld time_left) {
ld oz = lev->surface(owhere);
ld z = lev->surface(where);
if(owhere[2] < oz && where[2] >= z) {
auto xy = lev->get_xy_i(where);
char ch = lev->mapchar(xy);
if(ch != '!') { flyvel[2] = CRASHED_FROM_BELOW; return true; }
}
if(owhere[2] > oz && where[2] <= z) {
auto xy = lev->get_xy_i(where);
char ch = lev->mapchar(xy);
if(ch == '!') return false;
string s0 = ""; s0 += ch;
ld part = binsearch(0, 1, [&] (ld p) {
hyperpoint h = lerp(owhere, where, p);
return h[2] < lev->surface(h);
});
timer -= time_left * (1 - part);
where = lerp(owhere, where, part);
flyvel = lerp(oflyvel, flyvel, part);
/* tangent vectors */
hyperpoint dx = gpushxto0(where) * lev->surface_point(rgpushxto0(where) * point31(slope_eps, 0, 0));
hyperpoint dy = gpushxto0(where) * lev->surface_point(rgpushxto0(where) * point31(0, slope_eps, 0));
hyperpoint dz = point30(0, 0, slope_eps);
/* orthonormalize */
dx = dx / hypot_d(3, dx);
dy = dy - dot_d(3, dx, dy) * dy;
dy = dy / hypot_d(3, dy);
dz = dz - dot_d(3, dx, dz) * dx;
dz = dz - dot_d(3, dy, dz) * dy;
dz = dz / hypot_d(3, dz); dz[3] = 0;
if(ch == 'T') {
/* reflect off the trampoline */
flyvel = flyvel - dot_d(3, flyvel, dz) * dz * 2;
where[2] = lev->surface(where) + 1e-4;
last_tramp = timer;
tramp_head = heading_angle;
}
else if(ch == 'V') {
/* convert velocity on velocity converter */
vel = hypot_d(3, flyvel);
on_surface = lev;
}
else {
/* waste some energy */
flyvel = flyvel - dot_d(3, flyvel, dz) * dz;
vel = hypot_d(3, flyvel);
on_surface = lev;
}
if(part == 1) return false;
return !tick(lev, time_left * (1 - part));
}
return false;
}
bool timestamp::check_crashes_rec(level* l, hyperpoint owhere, hyperpoint oflyvel, ld time_left) {
if(check_crashes(l, owhere, oflyvel, time_left)) return true;
for(auto s: l->sublevels) if(check_crashes(s, owhere, oflyvel, time_left)) return true;
return false;
}
void timestamp::centerview(level *lev) {
// static bool once = false; if(once) return; once = true;
if(vrhr::active()) {
transmatrix Ta = cspin(0, 1, -heading_angle);
transmatrix Tb = cspin(0, 2, -slope);
hyperpoint base = Ta * Tb * point31(0, 0, whrad);
hyperpoint refpoint = rgpushxto0(where) * rgpushxto0(base) * point31(0, 0, whrad*3);
centerover = cwt.at; playermoved = false;
View = cspin(0, 2, heading_angle-90*degree) * cspin(1, 2, -90*degree) * gpushxto0(refpoint);
return;
}
auto w = where;
w[2] += 0.2 * lev->scale;
hyperpoint front = rgpushxto0(w) * sym_to_used(hyperpoint(1e-3 * cos(heading_angle), 1e-3*sin(heading_angle), 0, 1));
hyperpoint up = w; up[2] += 1e-3;
set_view(w, front, up);
transmatrix T = View;
if(last_draw <= sstime) min_gfx_slope = gfx_slope;
gfx_slope = min_gfx_slope;
if(on_surface) gfx_slope = binsearch(-90*degree, min(slope, min_gfx_slope), [&] (ld slope) {
View = T;
rotate_view(cspin(1, 2, slope));
for(int i=0; i<8; i++) {
shift_view(ztangent(whdist * lev->scale / 8.));
hyperpoint p = inverse(View) * C0;
ld room = p[2] - on_surface->surface(p);
if(room < .1 * lev->scale) return true;
for(hyperpoint h: {point3(0,0,0), point3(.001,0,0), point3(-.001,0,0), point3(0,-0.001,0), point3(0,0.001,0)})
if(lev->mapchar(p+h) == 'r') return true;
}
return false;
}, 10);
if(timer < sstime + 1) {
ld t = timer - sstime;
gfx_slope = lerp(chg_slope, gfx_slope, t * t * (3 - 2*t));
}
last_draw = timer;
View = T;
rotate_view(cspin(1, 2, gfx_slope));
shift_view(ztangent(whdist * lev->scale));
centerover = cwt.at;
playermoved = false;
}
string format_timer(ld t) {
return hr::format("%d:%02d.%02d", int(t / 60), int(t) % 60, int(frac(t) * 100));
}
void timestamp::draw_instruments(level* l) {
dynamicval<eGeometry> g(geometry, gEuclid);
dynamicval<eModel> pm(pmodel, mdDisk);
dynamicval<bool> ga(vid.always3, false);
dynamicval<color_t> ou(poly_outline);
dynamicval<geometryinfo1> gi(ginf[gEuclid].g, giEuclid2);
initquickqueue();
check_cgi(); cgi.require_shapes();
ld rad = 40;
ld cx = rad * 2;
ld cy = rad * 2;
auto sId = shiftless(Id);
ld pix = 1 / (2 * cgi.hcrossf / cgi.crossf);
// clinometer
cx += rad * 1.2;
for(int i=-90; i<=90; i++)
curvepoint(atscreenpos(cx+cos(i * degree)*rad, cy-sin(i*degree)*rad, 1) * C0);
curvepoint(atscreenpos(cx, cy+rad, 1) * C0);
queuecurve(sId, 0x000000FF, 0xFFFFFF80, PPR::ZERO);
curvepoint(hpxy(0, 0));
curvepoint(hpxy(rad, 0));
/* curvepoint(hpxy(rad/4, 0));
curvepoint(hpxy(0, rad));
curvepoint(hpxy(-rad/4, 0));
curvepoint(hpxy(rad/4, 0)); */
queuecurve(sId * atscreenpos(cx, cy, pix) * spin(min_gfx_slope), 0x40, 0x40, PPR::ZERO);
curvepoint(hpxy(rad/4, 0));
curvepoint(hpxy(0, rad));
curvepoint(hpxy(-rad/4, 0));
curvepoint(hpxy(rad/4, 0));
queuecurve(sId * atscreenpos(cx, cy, pix) * spin(90._deg + slope), 0xFF, 0x40C040FF, PPR::ZERO);
// compass
cx -= rad * 1.2;
for(int i=0; i<360; i++)
curvepoint(atscreenpos(cx-cos(i * degree)*rad, cy-sin(i*degree)*rad, 1) * C0);
queuecurve(sId, 0x000000FF, 0xFFFFFF80, PPR::ZERO);
for(int d: {1}) {
// d == +1: direction arrow
// d == -1: compass
curvepoint(hpxy(rad/4, 0));
curvepoint(hpxy(0, rad));
curvepoint(hpxy(-rad/4, 0));
queuecurve(sId * atscreenpos(cx, cy, pix) * spin(d * (90*degree + heading_angle)), 0xFF, d > 0 ? 0x0000FFFF : 0xFF0000FF, PPR::ZERO);
curvepoint(hpxy(rad/4, 0));
curvepoint(hpxy(0, -rad));
curvepoint(hpxy(-rad/4, 0));
curvepoint(hpxy(rad/4, 0));
queuecurve(sId * atscreenpos(cx, cy, pix) * spin(d * (90*degree + heading_angle)), 0xFF, 0xFFFFFFFF, PPR::ZERO);
}
// speed meter
cx += rad * 3.4;
for(int i=0; i<360; i++)
curvepoint(atscreenpos(cx-cos(i * degree)*rad, cy-sin(i*degree)*rad, 1) * C0);
queuecurve(sId, 0x000000FF, 0xFFFFFF80, PPR::ZERO);
auto e_to_angle = [] (ld energy) {
return 135*degree - 3 * atan(energy/10);
};
vector<ld> short_lines = {2, 3, 4, 6, 7, 8, 9, 30, 40, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};
for(auto h: short_lines) {
auto a = e_to_angle(h);
curvepoint(hpxy(-sin(a)*rad*.95, -cos(a)*rad*.95));
curvepoint(hpxy(-sin(a)*rad*.85, -cos(a)*rad*.85));
queuecurve(sId * atscreenpos(cx, cy, pix), 0xFF, 0, PPR::ZERO);
}
vector<ld> long_lines = {0, 1, 5, 10, 20, 50};
for(auto h: long_lines) {
auto a = e_to_angle(h);
curvepoint(hpxy(-sin(a)*rad*.95, -cos(a)*rad*.95));
curvepoint(hpxy(-sin(a)*rad*.75, -cos(a)*rad*.75));
queuecurve(sId * atscreenpos(cx, cy, pix), 0xFF, 0, PPR::ZERO);
displaystr(cx -sin(a)*rad*.65, cy -cos(a)*rad*.65, 0, 8, its(h), 0, 8);
}
curvepoint(hpxy(rad/4, 0));
curvepoint(hpxy(0, -rad));
curvepoint(hpxy(-rad/4, 0));
curvepoint(hpxy(rad/4, 0));
queuecurve(sId * atscreenpos(cx, cy, pix) * spin(e_to_angle(energy_in_squares())), 0xFF, 0xFF8080FF, PPR::ZERO);
cx += rad;
int tid = 0;
for(int i=0; i<isize(l->triangles); i++) {
bool have = collected_triangles & Flag(i);
color_t f = l->triangles[i].colors[6];
if(have) {
poly_outline = 0xFF;
}
else {
poly_outline = f;
f = 0x40;
}
queuepoly(sId * atscreenpos(cx+rad/2, cy+(tid&1?1:-1)*rad/3, pix * rad * 1.2) * spin(90*degree), cgi.shTriangle, f);
tid++;
if(tid == 2) { tid = 0; cx += rad/1.4; }
}
if(tid) cx += rad/1.4;
cx += 5;
int gid = 0;
for(auto& g: l->goals) {
bool gfailed = failed & Flag(gid);
bool gsuccess = goals & Flag(gid);
shiftmatrix T = sId * atscreenpos(cx+rad/2, cy+(gid-1)*rad/1.2, pix * rad * 1.2);
poly_outline = 0xFF; color_t f = darkena(g.color, 0, 0xFF);
if(gsuccess) {
queuepoly(T * spin(90*degree), cgi.shGrail, f);
displaystr(cx+rad, cy+(gid-1)*rad/1.2, 0, vid.fsize*.75, format_timer(l->current_score[gid]), 0, 0);
}
else {
poly_outline = f; f = 0x40;
queuepoly(T * spin(90*degree), cgi.shGrail, f);
if(gfailed) { poly_outline = 0xFF; queuepoly(T, cgi.shPirateX, 0xC00000FF); }
}
gid++;
}
quickqueue();
glflush();
displaystr(vid.xres - vid.fsize, vid.fsize*2, 0, vid.fsize * 2, format_timer(timer), 0, 16);
string s;
if(loaded_or_planned) s = "R";
else if(reversals) s = hr::format("+%d", reversals);
else return;
displaystr(vid.xres - vid.fsize, vid.fsize*4, 0, vid.fsize, s, 0, 16);
}
}