1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-04 21:26:17 +00:00
hyperrogue/rogueviz/nil-compass.cpp
2022-07-12 14:46:31 +02:00

152 lines
3.7 KiB
C++

#include "rogueviz.h"
/** \brief Snowball visualization
*
* This visualization puts small objects ('snowballs') randomly throughout the space.
* It provides a way to visualize the geometry without any tessellation.
*
* Should work for tessellations where every tile is congruent.
*
* The snow_lambda parameter gives the expected number of snowballs per cell.
* (The number in every region has Poisson distribution with mean proportional to its area.)
*
* Freezes for tessellations with ideal vertices
*
*
*
**/
namespace rogueviz {
namespace nilcompass {
hyperpoint to_rot(hyperpoint h) {
if(nil) h[2] -= h[0] * h[1] / 2;
return h;
}
hyperpoint to_heis(hyperpoint h) {
if(nil) h[2] += h[0] * h[1] / 2;
if(sphere || hyperbolic) h = normalize(h);
if(sphere || hyperbolic) h[0] /= 2, h[1] /= 2, h[2] /= 2;
return h;
}
struct shape {
color_t col;
int i;
int is;
hpcshape sh;
};
vector<shape> shapes;
bool known;
int zeroticks;
void reset() {
known = false;
shapes.clear();
}
bool draw_compass(cell *c, const shiftmatrix& V) {
if(!known) {
known = true;
for(int i=0; i<3; i++) for(int is=-1; is<2; is+=2)
for(int js=-1; js<2; js+=2)
for(int ks=-1; ks<2; ks+=2)
{
int j = (i+1) % 3;
int k = (j+1) % 3;
color_t col = 0xFFFFFFFF;
part(col, i+1) = 0xA0;
if(js*ks==1) {
part(col, i+1) = 0x30; // col = gradient(col, 0xFF, 0, 0.8, 1);
}
if(is == -1) part(col, j+1) = part(col, i+1);
shapes.emplace_back(shape{col, i, is, hpcshape()});
auto& sh = shapes.back().sh;
cgi.bshape(sh, PPR::LINE);
hyperpoint p1 = C0 + ctangent(i, is * .4);
hyperpoint p2 = C0 + ctangent(j, js * .15);
hyperpoint p3 = C0 + ctangent(k, ks * .15);
for(int i=0; i<10; i++) cgi.hpcpush(to_heis(lerp(p1, p2, i/10.)));
for(int i=0; i<10; i++) cgi.hpcpush(to_heis(lerp(p2, p3, i/10.)));
for(int i=0; i<10; i++) cgi.hpcpush(to_heis(lerp(p3, p1, i/10.)));
cgi.hpcpush(to_heis(p1));
cgi.finishshape();
}
cgi.extra_vertices();
}
poly_outline = 0;
for(const auto& s: shapes) {
ld t = 36 + (ticks - zeroticks) / 1000.;
auto remap = [&] (int _i, int _is) {
auto col = s.col;
if(s.i == _i && s.is == _is) return col;
int c = part(col, 1) + part(col, 2) + part(col, 3);
c += 1; c /= 12;
color_t col1 = s.col;
part(col1, 1) = part(col1, 2) = part(col1, 3) = c;
return gradient(s.col, col1, 0, 0.9, 1);
};
vector<pair<ld, color_t>> clist = {
{36, s.col},
{42.5, s.col},
{42.7, remap(1, -1)},
{43.9, remap(1, -1)},
{44.1, remap(0, +1)},
{44.9, remap(0, +1)},
{45.1, remap(1, +1)},
{46.0, remap(1, +1)},
{46.2, remap(0, -1)},
{47.2, remap(0, -1)},
{47.4, remap(2, -1)},
{48.1, remap(2, -1)},
{48.3, remap(2, +1)},
{49.1, remap(2, +1)},
{49.3, s.col},
{99, s.col}
};
int step = 0;
while(t > clist[step+1].first) step++;
auto smoothen = [&] (ld x) { return x * x * (3 - 2*x); };
auto t1 = ilerp(clist[step].first, clist[step+1].first, t);
auto col1 = gradient(clist[step].second, clist[step+1].second, 0, smoothen(t1), 1);
queuepoly(V, s.sh, col1);
}
return false;
}
auto hchook = arg::add3("-nil-compass", [] { rv_hook(hooks_drawcell, 100, draw_compass); });
}
}
// 36.00 -> START
// 42.6 -> NORTH
// 44.0 -> EAST
// 45.0 -> SOUTH
// 46.1 -> WEST
// 47.3 -> UP
// 48.2 -> DOWN
// 49.2 -> ...
// 53.00 -> END