1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-24 16:07:07 +00:00
hyperrogue/arbitrile.cpp
2020-04-16 20:59:34 +02:00

544 lines
16 KiB
C++

// Hyperbolic Rogue -- Arbitrary Tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file arbitrile.cpp
* \brief Arbitrary tilings
*
* Arbitrary tilings, defined in .tes files.
*/
#include "hyper.h"
namespace hr {
EX namespace arb {
#if HDR
struct shape {
int id;
int flags;
vector<hyperpoint> vertices;
vector<ld> angles;
vector<ld> edges;
vector<tuple<int, int, int>> connections;
int size() const { return isize(vertices); }
void build_from_angles_edges();
vector<pair<int, int> > sublines;
};
struct arbi_tiling {
int order;
bool have_line, have_ph;
vector<shape> shapes;
string name;
string comment;
geometryinfo1& get_geometry();
eGeometryClass get_class() { return get_geometry().kind; }
ld scale();
};
#endif
EX arbi_tiling current;
/** id of vertex in the arbitrary tiling */
EX short& id_of(heptagon *h) { return h->zebraval; }
void shape::build_from_angles_edges() {
transmatrix at = Id;
vertices.clear();
int n = isize(angles);
hyperpoint ctr = Hypc;
for(int i=0; i<n; i++) {
println(hlog, "at = ", at);
vertices.push_back(tC0(at));
ctr += tC0(at);
at = at * xpush(edges[i]) * spin(angles[i]);
}
if(!eqmatrix(at, Id)) throw hr_parse_exception("polygon error");
if(sqhypot_d(3, ctr) < 1e-2) {
// this may happen for some spherical tilings
// try to move towards the center
println(hlog, "special case encountered");
for(int i=0; i<n; i++) {
ctr += at * xpush(edges[i]) * spin((angles[i]+M_PI)/2) * xpush0(.01);
at = at * xpush(edges[i]) * spin(angles[i]);
}
println(hlog, "ctr = ", ctr);
}
ctr = normalize(ctr);
for(auto& v: vertices) v = gpushxto0(ctr) * v;
}
bool correct_index(int index, int size) { return index >= 0 && index < size; }
template<class T> bool correct_index(int index, const T& v) { return correct_index(index, isize(v)); }
template<class T> void verify_index(int index, const T& v, exp_parser& ep) { if(!correct_index(index, v)) throw hr_parse_exception("bad index: " + its(index) + " at " + ep.where()); }
string unnamed = "unnamed";
EX void load(const string& fname) {
fhstream f(fname, "rt");
string s;
while(true) {
int c = fgetc(f.f);
if(c < 0) break;
s += c;
}
auto& c = current;
c.order++;
c.shapes.clear();
c.name = unnamed;
c.comment = "";
exp_parser ep;
ep.s = s;
ld angleunit = 1, distunit = 1, angleofs = 0;
auto addflag = [&] (int f) {
int ai;
if(ep.next() == ')') ai = isize(c.shapes)-1;
else ai = ep.iparse();
verify_index(ai, c.shapes, ep);
c.shapes[ai].flags |= f;
ep.force_eat(")");
};
while(true) {
ep.extra_params["distunit"] = distunit;
ep.extra_params["angleunit"] = angleunit;
ep.extra_params["angleofs"] = angleofs;
ep.skip_white();
if(ep.next() == 0) break;
if(ep.eat("#")) {
bool doubled = ep.eat("#");
while(ep.eat(" ")) ;
string s = "";
while(ep.next() >= 32) s += ep.next(), ep.at++;
if(doubled) {
if(c.name == unnamed) c.name = s;
else {
c.comment += s;
c.comment += "\n";
}
}
}
else if(ep.eat("e2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qBOUNDED, false);
}
else if(ep.eat("h2.")) {
ginf[gArbitrary].g = giHyperb2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qBOUNDED, false);
}
else if(ep.eat("s2.")) {
ginf[gArbitrary].g = giSphere2;
ginf[gArbitrary].sides = 5;
set_flag(ginf[gArbitrary].flags, qBOUNDED, false);
}
else if(ep.eat("angleunit(")) angleunit = real(ep.parsepar());
else if(ep.eat("angleofs(")) angleofs = real(ep.parsepar());
else if(ep.eat("distunit(")) distunit = real(ep.parsepar());
else if(ep.eat("line(")) {
addflag(arcm::sfLINE);
c.have_line = true;
}
else if(ep.eat("grave(")) {
addflag(arcm::sfPH);
c.have_ph = true;
}
else if(ep.eat("let(")) {
string tok = ep.next_token();
ep.force_eat("=");
ep.extra_params[tok] =ep.parsepar();
}
else if(ep.eat("unittile(")) {
c.shapes.emplace_back();
auto& cc = c.shapes.back();
cc.id = isize(c.shapes) - 1;
cc.flags = 0;
while(ep.next() != ')') {
ld angle = ep.rparse(0);
cc.edges.push_back(distunit);
cc.angles.push_back(angle * angleunit + angleofs);
if(ep.eat(",")) continue;
else if(ep.eat(")")) break;
else throw hr_parse_exception("expecting , or )");
}
try {
cc.build_from_angles_edges();
}
catch(hr_parse_exception& ex) {
throw hr_parse_exception(ex.s + ep.where());
}
cc.connections.resize(cc.size());
for(int i=0; i<isize(cc.connections); i++)
cc.connections[i] = make_tuple(cc.id, i, false);
}
else if(ep.eat("tile(")) {
c.shapes.emplace_back();
auto& cc = c.shapes.back();
cc.id = isize(c.shapes) - 1;
cc.flags = 0;
while(ep.next() != ')') {
ld dist = ep.rparse(0);
ep.force_eat(",");
ld angle = ep.rparse(0);
cc.edges.push_back(dist * distunit);
cc.angles.push_back(angle * angleunit + angleofs);
if(ep.eat(",")) continue;
else if(ep.eat(")")) break;
else throw hr_parse_exception("expecting , or )");
}
try {
cc.build_from_angles_edges();
}
catch(hr_parse_exception& ex) {
throw hr_parse_exception(ex.s + ep.where());
}
cc.connections.resize(cc.size());
for(int i=0; i<isize(cc.connections); i++)
cc.connections[i] = make_tuple(cc.id, i, false);
}
else if(ep.eat("conway(\"")) {
string s = "";
while(true) {
int m = 0;
if(ep.eat("(")) m = 0;
else if(ep.eat("[")) m = 1;
else if(ep.eat("\"")) break;
else throw hr_parse_exception("cannot parse Conway notation, " + ep.where());
int ai = 0;
int as = ep.iparse();
while(ep.eat("'")) ai++;
if(ep.eat("@")) ai = ep.iparse();
int bi = 0, bs = 0;
if(ep.eat(")") || ep.eat("]")) bs = as, bi = ai;
else {
bs = ep.iparse();
while(ep.eat("'")) bi++;
if(ep.eat("@")) bi = ep.iparse();
}
if(ep.eat(")") || ep.eat("]")) {}
c.shapes[ai].connections[as] = make_tuple(bi, bs, m);
c.shapes[bi].connections[bs] = make_tuple(ai, as, m);
}
ep.force_eat(")");
}
else if(ep.eat("c(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bi = ep.iparse(); verify_index(bi, c.shapes, ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[bi], ep); ep.force_eat(",");
int m = ep.iparse(); ep.force_eat(")");
c.shapes[ai].connections[as] = make_tuple(bi, bs, m);
c.shapes[bi].connections[bs] = make_tuple(ai, as, m);
}
else if(ep.eat("subline(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[ai], ep); ep.force_eat(")");
c.shapes[ai].sublines.emplace_back(as, bs);
}
else if(ep.eat("sublines(")) {
ld d = ep.rparse() * distunit;
ld eps = 1e-4;
if(ep.eat(",")) eps = ep.rparse() * distunit;
ep.force_eat(")");
for(auto& sh: c.shapes) {
for(int i=0; i<isize(sh.vertices); i++)
for(int j=0; j<isize(sh.vertices); j++)
if(j != i+1 && i != j+1 && !(i==0 && j == isize(sh.vertices)-1) && !(j==0 && i == isize(sh.vertices)-1) && i != j) {
ld dist = hdist(sh.vertices[i], sh.vertices[j]);
if(abs(dist - d) < eps) {
sh.sublines.emplace_back(i, j);
println(hlog, "add subline ", i, "-", j);
}
}
}
}
else throw hr_parse_exception("expecting command, " + ep.where());
}
}
geometryinfo1& arbi_tiling::get_geometry() {
return ginf[gEuclid].g;
}
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
EX map<heptagon*, pair<heptagon*, transmatrix>> arbi_matrix;
EX hrmap *current_altmap;
heptagon *build_child(heptspin p, pair<int, int> adj);
struct hrmap_arbi : hrmap {
heptagon *origin;
heptagon *getOrigin() override { return origin; }
hrmap_arbi() {
dynamicval<hrmap*> curmap(currentmap, this);
origin = tailored_alloc<heptagon> (current.shapes[0].size());
origin->s = hsOrigin;
origin->emeraldval = 0;
origin->zebraval = 0;
origin->fiftyval = 0;
origin->fieldval = 0;
origin->rval0 = origin->rval1 = 0;
origin->cdata = NULL;
origin->alt = NULL;
origin->c7 = newCell(origin->type, origin);
origin->distance = 0;
heptagon *alt = NULL;
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
alt = tailored_alloc<heptagon> (S7);
alt->s = hsOrigin;
alt->emeraldval = 0;
alt->zebraval = 0;
alt->distance = 0;
alt->c7 = NULL;
alt->alt = alt;
alt->cdata = NULL;
current_altmap = newAltMap(alt);
}
transmatrix T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * Id;
arbi_matrix[origin] = make_pair(alt, T);
altmap[alt].emplace_back(origin, T);
cgi.base_distlimit = 0;
celllister cl(origin->c7, 1000, 200, NULL);
ginf[geometry].distlimit[0] = cgi.base_distlimit = cl.dists.back();
if(sphere) cgi.base_distlimit = SEE_ALL;
}
~hrmap_arbi() {
/*
if(hyperbolic) for(auto& p: arbi_matrix) if(p.second.first->cdata) {
delete p.second.first->cdata;
p.second.first->cdata = NULL;
}
*/
clearfrom(origin);
altmap.clear();
arbi_matrix.clear();
if(current_altmap) {
dynamicval<eGeometry> g(geometry, gNormal);
delete current_altmap;
current_altmap = NULL;
}
}
void verify() override { }
transmatrix adj(heptagon *h, int dl) override {
auto& c = current;
int t = id_of(h);
auto& sh = c.shapes[t];
int dr = gmod(dl+1, sh.size());
auto& co = sh.connections[dl];
int xt = get<0>(co);
int xdl = get<1>(co);
int m = get<2>(co);
if(h->c.move(dl)) xdl = h->c.spin(dl);
auto& xsh = c.shapes[xt];
int xdr = gmod(xdl+1, xsh.size());
hyperpoint vl = sh.vertices[dl];
hyperpoint vr = sh.vertices[dr];
hyperpoint vm = mid(vl, vr);
transmatrix rm = gpushxto0(vm);
hyperpoint xvl = xsh.vertices[xdl];
hyperpoint xvr = xsh.vertices[xdr];
hyperpoint xvm = mid(xvl, xvr);
transmatrix xrm = gpushxto0(xvm);
transmatrix Res = rgpushxto0(vm) * rspintox(rm*vr);
if(m) Res = Res * MirrorX;
Res = Res * spintox(xrm*xvl) * xrm;
if(m) swap(vl, vr);
if(hdist(vl, Res*xvr) + hdist(vr, Res*xvl) > .1) {
println(hlog, "s1 = ", kz(spintox(rm*vr)), " s2 = ", kz(rspintox(xrm*xvr)));
println(hlog, tie(t, dl), " = ", kz(Res));
println(hlog, hdist(vl, Res * xvr), " # ", hdist(vr, Res * xvl));
exit(3);
}
return Res;
}
heptagon *create_step(heptagon *h, int d) override {
int t = id_of(h);
const auto& p = arbi_matrix[h];
heptagon *alt = p.first;
auto& sh = current.shapes[t];
auto& co = sh.connections[d];
int xt = get<0>(co);
int e = get<1>(co);
int m = get<2>(co);
auto& xsh = current.shapes[xt];
transmatrix T = p.second * adj(h, d);
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
dynamicval<hrmap*> cm(currentmap, current_altmap);
// transmatrix U = T;
current_altmap->virtualRebase(alt, T);
// U = U * inverse(T);
}
fixmatrix(T);
if(euclid) {
/* hash the rough coordinates as heptagon* alt */
size_t s = size_t(T[0][LDIM]+.261) * 124101 + size_t(T[1][LDIM]+.261) * 82143;
alt = (heptagon*) s;
}
for(auto& p2: altmap[alt]) if(id_of(p2.first) == xt && hdist(tC0(p2.second), tC0(T)) < 1e-2) {
for(int oth=0; oth < p2.first->type; oth++) {
ld err = hdist(p2.second * xsh.vertices[oth], T * xsh.vertices[e]);
if(err < 1e-2) {
static ld max_err = 0;
if(err > max_err) {
println(hlog, "err = ", err);
max_err = err;
}
h->c.connect(d, p2.first, oth%p2.first->type, m);
return p2.first;
}
}
}
auto h1 = tailored_alloc<heptagon> (current.shapes[xt].size());
h1->distance = h->distance + 1;
h1->zebraval = xt;
h1->c7 = newCell(h1->type, h1);
h1->alt = nullptr;
h1->cdata = nullptr;
h1->emeraldval = h->emeraldval ^ m;
h->c.connect(d, h1, e, m);
arbi_matrix[h1] = make_pair(alt, T);
altmap[alt].emplace_back(h1, T);
return h1;
}
void draw() override {
dq::visited.clear();
dq::enqueue(centerover->master, cview());
while(!dq::drawqueue.empty()) {
auto& p = dq::drawqueue.front();
heptagon *h = get<0>(p);
transmatrix V = get<1>(p);
dynamicval<ld> b(band_shift, get<2>(p));
dq::drawqueue.pop();
if(do_draw(h->c7, V)) drawcell(h->c7, V);
else continue;
for(int i=0; i<h->type; i++) {
transmatrix V1 = V * adj(h, i);
bandfixer bf(V1);
dq::enqueue(h->move(i), V1);
}
}
}
transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
transmatrix adj(cell *c, int dir) override { return adj(c->master, dir); }
ld spin_angle(cell *c, int d) override { return SPIN_NOT_AVAILABLE; }
};
EX hrmap *new_map() { return new hrmap_arbi; }
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-arbi")) {
PHASEFROM(2);
stop_game();
shift();
set_geometry(gArbitrary);
try {
load(args());
}
catch(hr_parse_exception& ex) {
println(hlog, "failed: ", ex.s);
exit(3);
}
ginf[gArbitrary].tiling_name = current.name;
}
else return 1;
return 0;
}
auto hook = addHook(hooks_args, 100, readArgs);
#endif
EX bool in() { return geometry == gArbitrary; }
EX string tes = "tessellations/marjorie-rice.tes";
EX bool linespattern(cell *c) {
return current.shapes[id_of(c->master)].flags & arcm::sfLINE;
}
EX bool pseudohept(cell *c) {
return current.shapes[id_of(c->master)].flags & arcm::sfPH;
}
EX void choose() {
dialog::openFileDialog(tes, XLAT("open a tiling"), ".tes",
[] () {
stop_game();
set_geometry(gArbitrary);
try {
load(tes);
ginf[gArbitrary].tiling_name = current.name;
}
catch(hr_parse_exception& ex) {
println(hlog, "failed: ", ex.s);
set_geometry(gNormal);
start_game();
addMessage("failed: " + ex.s);
}
start_game();
return true;
});
}
EX }
}