mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-05 05:36:17 +00:00
648 lines
16 KiB
C++
648 lines
16 KiB
C++
// Hyperbolic Rogue -- hyperbolic graphics
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
ld ghx, ghy, ghgx, ghgy;
|
|
hyperpoint ghpm = C0;
|
|
|
|
void ghcheck(hyperpoint &ret, const hyperpoint &H) {
|
|
if(hypot(ret[0]-ghx, ret[1]-ghy) < hypot(ghgx-ghx, ghgy-ghy)) {
|
|
ghpm = H; ghgx = ret[0]; ghgy = ret[1];
|
|
}
|
|
}
|
|
|
|
void camrotate(ld& hx, ld& hy) {
|
|
ld cam = vid.camera_angle * M_PI / 180;
|
|
GLfloat cc = cos(cam);
|
|
GLfloat ss = sin(cam);
|
|
ld ux = hx, uy = hy * cc + ss, uz = cc - ss * hy;
|
|
hx = ux / uz, hy = uy / uz;
|
|
}
|
|
|
|
hyperpoint gethyper(ld x, ld y) {
|
|
|
|
ld hx = (x - vid.xcenter) / vid.radius;
|
|
ld hy = (y - vid.ycenter) / vid.radius;
|
|
|
|
if(pmodel) {
|
|
ghx = hx, ghy = hy;
|
|
return ghpm;
|
|
}
|
|
|
|
if(vid.camera_angle) camrotate(hx, hy);
|
|
|
|
if(euclid)
|
|
return hpxy(hx * (1 + vid.alpha), hy * (1 + vid.alpha));
|
|
|
|
ld hr = hx*hx+hy*hy;
|
|
|
|
if(hr > .9999 && !sphere) return Hypc;
|
|
|
|
// hz*hz-(hx/(hz+alpha))^2 - (hy/(hz+alpha))^2 =
|
|
|
|
// hz*hz-hr*(hz+alpha)^2 == 1
|
|
// hz*hz - hr*hr*hz*Hz
|
|
|
|
|
|
ld A, B, C;
|
|
|
|
ld curv = sphere ? 1 : -1;
|
|
|
|
A = 1+curv*hr;
|
|
B = 2*hr*vid.alpha*-curv;
|
|
C = 1 - curv*hr*vid.alpha*vid.alpha;
|
|
|
|
// Az^2 - Bz = C
|
|
B /= A; C /= A;
|
|
|
|
// z^2 - Bz = C
|
|
// z^2 - Bz + (B^2/4) = C + (B^2/4)
|
|
// z = (B/2) + sqrt(C + B^2/4)
|
|
|
|
ld rootsign = 1;
|
|
if(sphere && vid.alpha > 1) rootsign = -1;
|
|
|
|
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
|
|
|
|
hyperpoint H;
|
|
H[0] = hx * (hz+vid.alpha);
|
|
H[1] = hy * (hz+vid.alpha);
|
|
H[2] = hz;
|
|
|
|
return H;
|
|
}
|
|
|
|
void ballmodel(hyperpoint& ret, double alpha, double d, double zl) {
|
|
hyperpoint H = ypush(geom3::camera) * xpush(d) * ypush(zl) * C0;
|
|
ld tzh = vid.ballproj + H[2];
|
|
ld ax = H[0] / tzh;
|
|
ld ay = H[1] / tzh;
|
|
ld ball = vid.ballangle * M_PI / 180;
|
|
|
|
ld ca = cos(alpha), sa = sin(alpha);
|
|
ld cb = cos(ball), sb = sin(ball);
|
|
|
|
ret[0] = ax * ca;
|
|
ret[1] = ay * cb + ax * sa * sb;
|
|
ret[2] = - ax * sa * cb - ay * sb;
|
|
}
|
|
|
|
void apply_depth(hyperpoint &f, ld z) {
|
|
if(vid.usingGL)
|
|
f[2] = z;
|
|
else {
|
|
z = z * vid.radius;
|
|
ld mul = stereo::scrdist / (stereo::scrdist + z);
|
|
f[0] = f[0] * mul;
|
|
f[1] = f[1] * mul;
|
|
f[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius + stereo::ipd * mul / 2;
|
|
}
|
|
}
|
|
|
|
void applymodel(hyperpoint H, hyperpoint& ret) {
|
|
|
|
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2];
|
|
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
|
|
|
|
if(pmodel == mdUnchanged) {
|
|
for(int i=0; i<3; i++) ret[i] = H[i] / vid.radius;
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdBall) {
|
|
ld zlev = zlevel(H);
|
|
using namespace hyperpoint_vec;
|
|
H = H / zlev;
|
|
|
|
ld zl = geom3::depth-geom3::factor_to_lev(zlev);
|
|
double alpha = atan2(H[1], H[0]);
|
|
double d = hdist0(H);
|
|
|
|
ballmodel(ret, alpha, d, zl);
|
|
ghcheck(ret,H);
|
|
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdHyperboloid) {
|
|
|
|
ld ball = vid.ballangle * M_PI / 180;
|
|
ld cb = cos(ball), sb = sin(ball);
|
|
|
|
ret[0] = H[0] / 3;
|
|
ret[1] = (1 - H[2]) / 3 * cb + H[1] / 3 * sb;
|
|
ret[2] = H[1] / 3 * cb - (1 - H[2]) / 3 * sb;
|
|
|
|
ghcheck(ret,H);
|
|
return;
|
|
}
|
|
|
|
if(pmodel == mdDisk) {
|
|
|
|
if(!vid.camera_angle) {
|
|
ret[0] = H[0] / tz;
|
|
ret[1] = H[1] / tz;
|
|
ret[2] = vid.xres / vid.radius * stereo::eyewidth() / 2 - stereo::ipd / tz / 2;
|
|
}
|
|
else {
|
|
ld tx = H[0];
|
|
ld ty = H[1];
|
|
ld cam = vid.camera_angle * M_PI / 180;
|
|
GLfloat cc = cos(cam);
|
|
GLfloat ss = sin(cam);
|
|
ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty;
|
|
ret[0] = ux / uz;
|
|
ret[1] = uy / uz;
|
|
ret[2] = vid.xres / vid.radius * stereo::eyewidth() / 2 - stereo::ipd / uz / 2;
|
|
}
|
|
return;
|
|
}
|
|
|
|
ld zlev = 1;
|
|
|
|
if(wmspatial || mmspatial) {
|
|
zlev = zlevel(H);
|
|
using namespace hyperpoint_vec;
|
|
H = H / zlev;
|
|
}
|
|
|
|
if(mdEqui()) {
|
|
ld rad = sqrt(H[0] * H[0] + H[1] * H[1]);
|
|
if(rad == 0) rad = 1;
|
|
ld d = hdist0(H);
|
|
|
|
// 4 pi / 2pi = M_PI
|
|
|
|
if(pmodel == 6 && sphere)
|
|
d = sqrt(2*(1 - cos(d))) * M_PI / 2;
|
|
else if(pmodel == 6 && !euclid)
|
|
d = sqrt(2*(cosh(d) - 1)) / 1.5;
|
|
ret[0] = d * H[0] / rad / M_PI;
|
|
ret[1] = d * H[1] / rad / M_PI;
|
|
ret[2] = 0;
|
|
if(zlev != 1 && stereo::active())
|
|
apply_depth(ret, -geom3::factor_to_lev(zlev));
|
|
ghcheck(ret,H);
|
|
|
|
return;
|
|
}
|
|
|
|
tz = H[2]+vid.alpha;
|
|
|
|
if(pmodel == mdPolygonal || pmodel == mdPolynomial) {
|
|
pair<long double, long double> p = polygonal::compute(H[0]/tz, H[1]/tz);
|
|
ret[0] = p.first;
|
|
ret[1] = p.second;
|
|
ret[2] = 0;
|
|
ghcheck(ret,H);
|
|
return;
|
|
}
|
|
|
|
// Poincare to half-plane
|
|
|
|
ld x0, y0;
|
|
x0 = H[0] / tz;
|
|
y0 = H[1] / tz;
|
|
y0 += 1;
|
|
double rad = x0*x0 + y0*y0;
|
|
y0 /= rad;
|
|
x0 /= rad;
|
|
y0 -= .5;
|
|
|
|
if(pmodel == mdHalfplane) {
|
|
ret[0] = x0;
|
|
if(wmspatial || mmspatial) y0 *= zlev;
|
|
ret[1] = 1 - y0;
|
|
ret[2] = 0;
|
|
if(zlev != 1 && stereo::active())
|
|
apply_depth(ret, -y0 * geom3::factor_to_lev(zlev));
|
|
ghcheck(ret,H);
|
|
return;
|
|
}
|
|
|
|
// center
|
|
x0 *= 2; y0 *= 2;
|
|
|
|
// half-plane to band
|
|
double tau = (log((x0+1)*(x0+1) + y0*y0) - log((x0-1)*(x0-1) + y0*y0)) / 2;
|
|
double u=(1-x0*x0-y0*y0);
|
|
u = (1 - x0*x0 - y0*y0 + sqrt(u*u+4*y0*y0));
|
|
double yv = 2*y0 / u;
|
|
double sigma = 2 * atan(yv * zlev) - M_PI/2;
|
|
|
|
x0 = tau; y0 = sigma;
|
|
|
|
/* if(zlev != 1) {
|
|
double alp = (y0 * y0) / (1-y0*y0);
|
|
double gx = alp + sqrt(alp*alp-1);
|
|
double gy = y0 * (gx+1);
|
|
double yr = zlev * gy / (zlev * gx + 1);
|
|
printf("zlev = %10.5lf y0 = %20.10lf yr = %20.10lf\n", double(zlev), (double)y0, yr);
|
|
y0 = yr;
|
|
} */
|
|
|
|
ret[0] = x0/M_PI*2;
|
|
ret[1] = -y0/M_PI*2;
|
|
ret[2] = 0;
|
|
|
|
if(zlev != 1 && stereo::active())
|
|
apply_depth(ret, -geom3::factor_to_lev(zlev) / (1 + yv * yv));
|
|
|
|
ghcheck(ret,H);
|
|
}
|
|
|
|
// game-related graphics
|
|
|
|
transmatrix View; // current rotation, relative to viewctr
|
|
transmatrix cwtV; // player-relative view
|
|
transmatrix sphereflip; // on the sphere, flip
|
|
heptspin viewctr; // heptagon and rotation where the view is centered at
|
|
bool playerfound; // has player been found in the last drawing?
|
|
|
|
#define eurad crossf
|
|
|
|
double q3 = sqrt(double(3));
|
|
|
|
bool outofmap(hyperpoint h) {
|
|
if(euclid)
|
|
return h[2] < .5; // false; // h[0] * h[0] + h[1] * h[1] > 15 * eurad;
|
|
else if(sphere)
|
|
return h[2] < .1 && h[2] > -.1 && h[1] > -.1 && h[1] < .1 && h[0] > -.1 && h[0] < .1;
|
|
else
|
|
return h[2] < .5;
|
|
}
|
|
|
|
hyperpoint mirrorif(const hyperpoint& V, bool b) {
|
|
if(b) return Mirror*V;
|
|
else return V;
|
|
}
|
|
|
|
transmatrix mirrorif(const transmatrix& V, bool b) {
|
|
if(b) return V*Mirror;
|
|
else return V;
|
|
}
|
|
|
|
// -1 if away, 0 if not away
|
|
int away(const transmatrix& V2) {
|
|
return (intval(C0, V2 * xpush0(.1)) > intval(C0, tC0(V2))) ? -1 : 0;
|
|
}
|
|
|
|
/* double zgrad(double f1, double f2, int nom, int den) {
|
|
using namespace geom3;
|
|
ld fo1 = factor_to_lev(f1);
|
|
ld fo2 = factor_to_lev(f2);
|
|
return lev_to_factor(fo1 + (fo2-fo1) * nom / den);
|
|
} */
|
|
|
|
double zgrad0(double l1, double l2, int nom, int den) {
|
|
using namespace geom3;
|
|
return lev_to_factor(l1 + (l2-l1) * nom / den);
|
|
}
|
|
|
|
bool behindsphere(const hyperpoint& h) {
|
|
if(!sphere) return false;
|
|
|
|
if(vid.alpha > 1) {
|
|
if(h[2] > -1/vid.alpha) return true;
|
|
}
|
|
|
|
if(vid.alpha <= 1) {
|
|
if(h[2] < -.8) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ld to01(ld a0, ld a1, ld x) {
|
|
if(x < a0) return 0;
|
|
if(x > a1) return 1;
|
|
return (x-a0) / (a1-a0);
|
|
}
|
|
|
|
ld spherity(const hyperpoint& h) {
|
|
if(!sphere) return 1;
|
|
|
|
if(vid.alpha > 1) {
|
|
return to01(1/vid.alpha, 1, -h[2]);
|
|
}
|
|
|
|
if(vid.alpha <= 1) {
|
|
return to01(-1.5, 1, h[2]);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool behindsphere(const transmatrix& V) {
|
|
return behindsphere(tC0(V));
|
|
}
|
|
|
|
ld spherity(const transmatrix& V) {
|
|
return spherity(tC0(V));
|
|
}
|
|
|
|
bool confusingGeometry() {
|
|
return elliptic || quotient == 1 || torus;
|
|
}
|
|
|
|
transmatrix actualV(const heptspin& hs, const transmatrix& V) {
|
|
return (hs.spin || nonbitrunc) ? V * spin(hs.spin*2*M_PI/S7 + (nonbitrunc ? M_PI:0)) : V;
|
|
}
|
|
|
|
void drawrec(const heptspin& hs, int lev, hstate s, const transmatrix& V) {
|
|
|
|
// shmup::calc_relative_matrix(cwt.c, hs.h);
|
|
|
|
cell *c = hs.h->c7;
|
|
|
|
transmatrix V10;
|
|
const transmatrix& V1 = hs.mirrored ? (V10 = V * Mirror) : V;
|
|
|
|
if(dodrawcell(c)) {
|
|
reclevel = maxreclevel - lev;
|
|
drawcell(c, actualV(hs, V1), 0, hs.mirrored);
|
|
}
|
|
|
|
if(lev <= 0) return;
|
|
|
|
if(!nonbitrunc) for(int d=0; d<S7; d++) {
|
|
int ds = fixrot(hs.spin + d);
|
|
reclevel = maxreclevel - lev + 1;
|
|
// createMov(c, ds);
|
|
if(c->mov[ds] && c->spn(ds) == 0 && dodrawcell(c->mov[ds])) {
|
|
drawcell(c->mov[ds], V1 * hexmove[d], 0, hs.mirrored ^ c->mirror(ds));
|
|
}
|
|
}
|
|
|
|
if(lev <= 1) return;
|
|
|
|
for(int d=0; d<S7; d++) {
|
|
hstate s2 = transition(s, d);
|
|
if(s2 == hsError) continue;
|
|
heptspin hs2 = hsstep(hsspin(hs, d), 0);
|
|
drawrec(hs2, lev-2, s2, V * heptmove[d]);
|
|
}
|
|
|
|
}
|
|
|
|
int mindx=-7, mindy=-7, maxdx=7, maxdy=7;
|
|
|
|
transmatrix eumove(ld x, ld y) {
|
|
transmatrix Mat = Id;
|
|
Mat[2][2] = 1;
|
|
|
|
if(a4) {
|
|
Mat[0][2] += x * eurad;
|
|
Mat[1][2] += y * eurad;
|
|
}
|
|
else {
|
|
Mat[0][2] += (x + y * .5) * eurad;
|
|
// Mat[2][0] += (x + y * .5) * eurad;
|
|
Mat[1][2] += y * q3 /2 * eurad;
|
|
// Mat[2][1] += y * q3 /2 * eurad;
|
|
}
|
|
|
|
ld v = a4 ? 1 : q3;
|
|
|
|
while(Mat[0][2] <= -16384 * eurad) Mat[0][2] += 32768 * eurad;
|
|
while(Mat[0][2] >= 16384 * eurad) Mat[0][2] -= 32768 * eurad;
|
|
while(Mat[1][2] <= -16384 * v * eurad) Mat[1][2] += 32768 * v * eurad;
|
|
while(Mat[1][2] >= 16384 * v * eurad) Mat[1][2] -= 32768 * v * eurad;
|
|
return Mat;
|
|
}
|
|
|
|
transmatrix eumove(int vec) {
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(vec);
|
|
return eumove(x, y);
|
|
}
|
|
|
|
transmatrix eumovedir(int d) {
|
|
if(a4) {
|
|
d = d & 3;
|
|
switch(d) {
|
|
case 0: return eumove(1,0);
|
|
case 1: return eumove(0,1);
|
|
case 2: return eumove(-1,0);
|
|
case 3: return eumove(0,-1);
|
|
}
|
|
}
|
|
else {
|
|
d = fix6(d);
|
|
switch(d) {
|
|
case 0: return eumove(1,0);
|
|
case 1: return eumove(0,1);
|
|
case 2: return eumove(-1,1);
|
|
case 3: return eumove(-1,0);
|
|
case 4: return eumove(0,-1);
|
|
case 5: return eumove(1,-1);
|
|
}
|
|
}
|
|
return eumove(0,0);
|
|
}
|
|
|
|
ld matrixnorm(const transmatrix& Mat) {
|
|
return Mat[0][2] * Mat[0][2] + Mat[1][2] * Mat[1][2];
|
|
}
|
|
|
|
void drawEuclidean() {
|
|
DEBB(DF_GRAPH, (debugfile,"drawEuclidean\n"));
|
|
sphereflip = Id;
|
|
if(!centerover.c) centerover = cwt;
|
|
// printf("centerover = %p player = %p [%d,%d]-[%d,%d]\n", lcenterover, cwt.c,
|
|
// mindx, mindy, maxdx, maxdy);
|
|
int pvec = cellwalker_to_vec(centerover);
|
|
|
|
int minsx = mindx-1, maxsx=maxdx+1, minsy=mindy-1, maxsy=maxdy+1;
|
|
mindx=maxdx=mindy=maxdy=0;
|
|
|
|
transmatrix View0 = View;
|
|
|
|
ld cellrad = vid.radius / (1 + vid.alpha);
|
|
|
|
ld centerd = matrixnorm(View0);
|
|
|
|
for(int dx=minsx; dx<=maxsx; dx++)
|
|
for(int dy=minsy; dy<=maxsy; dy++) {
|
|
torusconfig::torus_cx = dx;
|
|
torusconfig::torus_cy = dy;
|
|
reclevel = eudist(dx, dy);
|
|
cellwalker cw = vec_to_cellwalker(pvec + euclid_getvec(dx, dy));
|
|
transmatrix Mat = eumove(dx,dy);
|
|
|
|
if(!cw.c) continue;
|
|
|
|
Mat = View0 * Mat;
|
|
|
|
if(true) {
|
|
ld locald = matrixnorm(Mat);
|
|
if(locald < centerd) centerd = locald, centerover = cw, View = View0 * eumove(dx, dy);
|
|
}
|
|
|
|
// Mat[0][0] = -1;
|
|
// Mat[1][1] = -1;
|
|
|
|
// Mat[2][0] = x*x/10;
|
|
// Mat[2][1] = y*y/10;
|
|
// Mat = Mat * xpush(x-30) * ypush(y-30);
|
|
|
|
int cx, cy, shift;
|
|
getcoord0(tC0(Mat), cx, cy, shift);
|
|
if(cx >= 0 && cy >= 0 && cx < vid.xres && cy < vid.yres) {
|
|
if(dx < mindx) mindx = dx;
|
|
if(dy < mindy) mindy = dy;
|
|
if(dx > maxdx) maxdx = dx;
|
|
if(dy > maxdy) maxdy = dy;
|
|
}
|
|
if(cx >= -cellrad && cy >= -cellrad && cx < vid.xres+cellrad && cy < vid.yres+cellrad)
|
|
if(dodrawcell(cw.c)) {
|
|
drawcell(cw.c, cw.mirrored ? Mat * Mirror : Mat, cw.spin, cw.mirrored);
|
|
}
|
|
}
|
|
}
|
|
|
|
void spinEdge(ld aspd) {
|
|
if(downspin > aspd) downspin = aspd;
|
|
if(downspin < -aspd) downspin = -aspd;
|
|
View = spin(downspin) * View;
|
|
}
|
|
|
|
void centerpc(ld aspd) {
|
|
if(vid.sspeed >= 4.99) aspd = 1000;
|
|
DEBB(DF_GRAPH, (debugfile,"center pc\n"));
|
|
hyperpoint H = ypush(-vid.yshift) * sphereflip * tC0(cwtV);
|
|
if(H[0] == 0 && H[1] == 0) {
|
|
return; // either already centered or direction unknown
|
|
}
|
|
ld R = hdist0(H); // = sqrt(H[0] * H[0] + H[1] * H[1]);
|
|
if(R < 1e-9) {
|
|
/* if(playerfoundL && playerfoundR) {
|
|
|
|
} */
|
|
spinEdge(aspd);
|
|
fixmatrix(View);
|
|
return;
|
|
}
|
|
|
|
if(euclid) {
|
|
// Euclidean
|
|
aspd *= (2+3*R*R);
|
|
if(aspd > R) aspd = R;
|
|
|
|
View[0][2] -= cwtV[0][2] * aspd / R;
|
|
View[1][2] -= cwtV[1][2] * aspd / R;
|
|
|
|
}
|
|
|
|
else {
|
|
aspd *= (1+R+(shmup::on?1:0));
|
|
|
|
if(R < aspd) {
|
|
View = gpushxto0(H) * View;
|
|
}
|
|
else
|
|
View = rspintox(H) * xpush(-aspd) * spintox(H) * View;
|
|
|
|
fixmatrix(View);
|
|
spinEdge(aspd);
|
|
}
|
|
}
|
|
|
|
void optimizeview() {
|
|
|
|
DEBB(DF_GRAPH, (debugfile,"optimize view\n"));
|
|
int turn = 0;
|
|
ld best = INF;
|
|
|
|
transmatrix TB = Id;
|
|
|
|
for(int i=-1; i<S7; i++) {
|
|
|
|
ld trot = -i * M_PI * 2 / (S7+.0);
|
|
transmatrix T = i < 0 ? Id : spin(trot) * xpush(tessf) * pispin;
|
|
hyperpoint H = View * tC0(T);
|
|
if(H[2] < best) best = H[2], turn = i, TB = T;
|
|
}
|
|
|
|
if(turn >= 0) {
|
|
View = View * TB;
|
|
fixmatrix(View);
|
|
viewctr = hsspin(viewctr, turn);
|
|
viewctr = hsstep(viewctr, 0);
|
|
}
|
|
}
|
|
|
|
void addball(ld a, ld b, ld c) {
|
|
hyperpoint h;
|
|
ballmodel(h, a, b, c);
|
|
for(int i=0; i<3; i++) h[i] *= vid.radius;
|
|
curvepoint(h);
|
|
}
|
|
|
|
void ballgeometry() {
|
|
queuereset(vid.usingGL ? mdDisk : mdUnchanged, PPR_CIRCLE);
|
|
for(int i=0; i<60; i++)
|
|
addball(i * M_PI/30, 10, 0);
|
|
for(double d=10; d>=-10; d-=.2)
|
|
addball(0, d, 0);
|
|
for(double d=-10; d<=10; d+=.2)
|
|
addball(0, d, geom3::depth);
|
|
addball(0, 0, -geom3::camera);
|
|
addball(0, 0, geom3::depth);
|
|
addball(0, 0, -geom3::camera);
|
|
addball(0, -10, 0);
|
|
addball(0, 0, -geom3::camera);
|
|
queuecurve(darkena(0xFF, 0, 0x80), 0, PPR_CIRCLE);
|
|
queuereset(pmodel, PPR_CIRCLE);
|
|
}
|
|
|
|
void resetview() {
|
|
DEBB(DF_GRAPH, (debugfile,"reset view\n"));
|
|
View = Id;
|
|
// EUCLIDEAN
|
|
if(!euclid)
|
|
viewctr.h = cwt.c->master,
|
|
viewctr.spin = cwt.spin;
|
|
else centerover = cwt;
|
|
cwtV = Id;
|
|
// SDL_LockSurface(s);
|
|
// SDL_UnlockSurface(s);
|
|
}
|
|
|
|
|
|
void panning(hyperpoint hf, hyperpoint ht) {
|
|
View =
|
|
rgpushxto0(hf) * rgpushxto0(gpushxto0(hf) * ht) * gpushxto0(hf) * View;
|
|
playermoved = false;
|
|
}
|
|
|
|
void fullcenter() {
|
|
if(playerfound && false) centerpc(INF);
|
|
else {
|
|
bfs();
|
|
resetview();
|
|
drawthemap();
|
|
centerpc(INF);
|
|
}
|
|
playermoved = true;
|
|
}
|
|
|
|
transmatrix screenpos(ld x, ld y) {
|
|
transmatrix V = Id;
|
|
V[0][2] += (x - vid.xcenter) / vid.radius * (1+vid.alpha);
|
|
V[1][2] += (y - vid.ycenter) / vid.radius * (1+vid.alpha);
|
|
return V;
|
|
}
|
|
|
|
transmatrix atscreenpos(ld x, ld y, ld size) {
|
|
transmatrix V = Id;
|
|
|
|
V[0][2] += (x - vid.xcenter);
|
|
V[1][2] += (y - vid.ycenter);
|
|
V[0][0] = size * 2 * hcrossf / crossf;
|
|
V[1][1] = size * 2 * hcrossf / crossf;
|
|
V[2][2] = stereo::scrdist;
|
|
|
|
return V;
|
|
}
|
|
|