hyperrogue/heptagon.cpp

281 lines
8.4 KiB
C++

// Hyperbolic Rogue
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
// heptagon here refers to underlying heptagonal tesselation
// (which you can see by changing the conditions in graph.cpp)
namespace hr {
#define MIRR(x) x.mirrored
int heptacount = 0;
struct cell;
cell *newCell(int type, heptagon *master);
// spintable functions
// the automaton is used to generate each heptagon in an unique way
// (you can see the tree obtained by changing the conditions in graph.cpp)
// from the origin we can go further in any direction, and from other heptagons
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
// and sometimes in direction 5
hstate transition(hstate s, int dir) {
if(sphere) {
if(S7 == 4) {
if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1;
}
if(S7 == 3) {
if(s == hsOrigin) return hsB1;
}
if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1;
if(s == hsA0 && dir == 2) return hsB0;
if(s == hsA1 && dir == 2) return hsB1;
if(s == hsB0 && dir == S7-2) return hsC;
return hsError;
}
else if(S6 == 8) {
if(s == hsOrigin) return hsA;
if(s == hsA && (dir >= 2 && dir < S7-1)) return hsA;
if(s == hsA && (dir == S7-1)) return hsB;
if(s == hsB && (dir >= 2 && dir < S7-2)) return hsA;
if(s == hsB && (dir == S7-2)) return hsB;
}
else {
if(s == hsOrigin) return hsA;
if(s == hsA && dir >= 3 && dir <= S7-3) return hsA;
if(s == hsA && dir == S7-2) return hsB;
if(s == hsB && dir >= 3 && dir <= S7-4) return hsA;
if(s == hsB && dir == S7-3) return hsB;
}
return hsError;
}
/*
int indent = 0;
struct indenter {
indenter() { indent += 2; }
~indenter() { indent -= 2; }
};
template<class... T> auto iprintf(T... t) { for(int i=0; i<indent; i++) putchar(' '); return printf(t...); }
*/
#define COMPUTE -1000000
// create a new heptagon
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0, int fixdistance = COMPUTE) {
heptagon *h = new heptagon;
h->alt = NULL;
h->s = s;
for(int i=0; i<MAX_EDGE; i++) h->move[i] = NULL;
h->spintable = 0;
h->move[pard] = parent; tsetspin(h->spintable, pard, d);
parent->move[d] = h; tsetspin(parent->spintable, d, pard);
if(parent->c7) {
h->c7 = newCell(S7, h);
h->rval0 = h->rval1 = 0; h->cdata = NULL;
h->emeraldval = emerald_heptagon(parent->emeraldval, d);
h->zebraval = zebra_heptagon(parent->zebraval, d);
h->fieldval = currfp.connections[fieldpattern::btspin(parent->fieldval, d)];
if(a38)
h->fiftyval = fifty_38(parent->fiftyval, d);
else if(parent->s == hsOrigin)
h->fiftyval = firstfiftyval(d);
else
h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d);
}
else {
h->c7 = NULL;
h->emeraldval = 0;
h->fiftyval = 0;
h->cdata = NULL;
}
//generateEmeraldval(parent);
//generateEmeraldval(h);
if(pard == 0) {
h->dm4 = parent->dm4+1;
if(fixdistance != COMPUTE) h->distance = fixdistance;
else if(S3 == 4 && !nonbitrunc) {
h->distance = parent->distance + 2;
if(h->spin(0) == 2 || (h->spin(0) == 3 && S7 <= 5))
h->distance = min<short>(h->distance, createStep(h->move[0], 0)->distance + 3);
if(h->spin(0) == 2 && h->move[0]) {
int d = h->spin(0);
int d1 = (d+S7-1)%S7;
heptagon* h1 = createStep(h->move[0], d1);
if(h1->distance <= h->move[0]->distance)
h->distance = h->move[0]->distance+1;
}
if((h->s == hsB && h->move[0]->s == hsB) || h->move[0]->s == hsA) {
int d = h->spin(0);
heptagon* h1 = createStep(h->move[0], (d+1)%S7);
if(h1->distance <= h->move[0]->distance)
h->distance = h->move[0]->distance+1;
}
if(h->spin(0) == S7-1 && h->move[0]->distance != 0)
h->distance = min(
h->move[0]->move[0]->distance + 2,
createStep(h, S7-1)->distance + 1
);
}
else if(parent->s == hsOrigin) h->distance = parent->distance + gp::dist_2();
else if(h->spin(0) == S7-2) {
if(!gp::on)
h->distance = parent->distance + gp::dist_1();
else {
int d0 = parent->distance;
int d1 = createStep(parent, S7-1)->distance;
int dm = createStep(parent, 0)->distance;
h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1)));
}
}
else if(h->spin(0) == S7-3 && h->move[0]->s == hsB) {
if(!gp::on) {
h->distance = createStep(h->move[0], (h->spin(0)+2)%S7)->distance + gp::dist_3();
}
else {
int d0 = parent->distance;
int d1 = createStep(parent, S7-2)->distance;
int dm = createStep(parent, S7-1)->distance;
h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1)));
}
}
else h->distance = parent->distance + gp::dist_2();
}
else {
h->distance = parent->distance - gp::dist_2();
if(S3 == 4 && S7 == 5) {
if(h->s == hsOrigin) {
printf("had to cheat!\n");
h->distance = parent->distance - 2;
}
else {
h->distance = parent->distance - 1;
buildHeptagon(h, 2, hsA, 0, h->distance + 2);
buildHeptagon(h, 4, hsB, 0, h->distance);
}
}
h->dm4 = parent->dm4-1;
}
return h;
}
void connectHeptagons(heptagon *h1, int d1, heptagon *h2, int d2) {
h1->move[d1] = h2;
h1->setspin(d1, d2);
h2->move[d2] = h1;
h2->setspin(d2, d1);
}
int recsteps;
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
rot = fixrot(rot);
createStep(from, rot);
int fr = fixrot(from->spin(rot) + spin);
connectHeptagons(h, d, from->move[rot], fr);
/* h->move[d] = from->move[rot];
h->setspin(d, fr);
h->move[d]->move[fr] = h;
h->move[d]->setspin(fr, d); */
//generateEmeraldval(h->move[d]); generateEmeraldval(h);
}
extern int hrand(int);
// a structure used to walk on the heptagonal tesselation
// (remembers not only the heptagon, but also direction)
heptspin& operator += (heptspin& hs, int spin) {
hs.spin = fixrot(hs.spin + (MIRR(hs)?-spin:spin));
return hs;
}
heptspin operator + (const heptspin& hs, wstep_t) {
createStep(hs.h, hs.spin);
heptspin res;
res.h = hs.h->move[hs.spin];
res.mirrored = hs.mirrored ^ hs.h->mirror(hs.spin);
res.spin = hs.h->spin(hs.spin);
return res;
}
heptspin operator + (heptspin h, int spin) { return h += spin; }
heptspin operator - (heptspin h, int spin) { return h += -spin; }
heptspin& operator += (heptspin& h, wstep_t) { h = h + wstep; return h; }
heptagon *createStep(heptagon *h, int d) {
d = fixrot(d);
if(!h->move[0] && h->s != hsOrigin) {
// cheating:
int pard=0;
if(S3 == 3)
pard = 3 + hrand(2);
else if(S3 == 4 && S7 == 5)
pard = 3; // to do: randomize
else if(S3 == 4)
pard = 3;
buildHeptagon(h, 0, h->distance < -10000 ? hsOrigin : hsA, pard);
}
if(h->move[d]) return h->move[d];
if(h->s == hsOrigin) {
buildHeptagon(h, d, hsA);
}
else if(S3 == 4) {
if(d == 1) {
heptspin hs;
hs.h = h;
hs.spin = 0;
hs.mirrored = false;
hs = hs + wstep - 1 + wstep - 1 + wstep - 1;
connectHeptagons(h, d, hs.h, hs.spin);
}
else if(h->s == hsB && d == S7-1) {
heptspin hs;
hs.h = h;
hs.spin = 0;
hs.mirrored = false;
hs = hs + wstep + 1 + wstep + 1 + wstep + 1;
connectHeptagons(h, d, hs.h, hs.spin);
}
else
buildHeptagon(h, d, transition(h->s, d));
}
else if(d == 1) {
addSpin(h, d, h->move[0], h->spin(0)-1, -1);
}
else if(d == S7-1) {
addSpin(h, d, h->move[0], h->spin(0)+1, +1);
}
else if(d == 2) {
createStep(h->move[0], h->spin(0)-1);
addSpin(h, d, h->move[0]->modmove(h->spin(0)-1), S7-2 + h->move[0]->gspin(h->spin(0)-1), -1);
}
else if(d == S7-2 && h->s == hsB) {
createStep(h->move[0], h->spin(0)+1);
addSpin(h, d, h->move[0]->modmove(h->spin(0)+1), 2 + h->move[0]->gspin(h->spin(0)+1), +1);
}
else
buildHeptagon(h, d, (d == S7-2 || (h->s == hsB && d == S7-3)) ? hsB : hsA);
return h->move[d];
}
// display the coordinates of the heptagon
void backtrace(heptagon *pos) {
if(pos->s == hsOrigin) return;
backtrace(pos->move[0]);
printf(" %d", pos->spin(0));
}
void hsshow(const heptspin& t) {
printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin);
}
// create h->move[d] if not created yet
heptagon *createStep(heptagon *h, int d);
}