mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-10-31 19:36:16 +00:00
1207 lines
34 KiB
C++
1207 lines
34 KiB
C++
// Hyperbolic Rogue -- Euclidean geometry, including 2D, 3D, and quotient spaces
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
namespace hr {
|
|
|
|
// 2D Euclidean space
|
|
|
|
// --- euclidean geometry ---
|
|
|
|
// NOTE: patterns assume that pair_to_vec(0,1) % 3 == 2!
|
|
// Thus, pair_to_vec(0,1) must not be e.g. a power of four
|
|
|
|
int cell_to_vec(cell *c);
|
|
|
|
int pair_to_vec(int x, int y) {
|
|
return x + (y << 15);
|
|
}
|
|
|
|
pair<int, int> vec_to_pair(int vec) {
|
|
int x = vec & ((1<<15)-1);
|
|
int y = (vec >> 15);
|
|
if(x >= (1<<14)) x -= (1<<15), y++;
|
|
return {x, y};
|
|
}
|
|
|
|
namespace torusconfig {
|
|
// the configuration of the torus topology.
|
|
// torus cells are indexed [0..qty),
|
|
// where the cell to the right from i is indexed i+dx,
|
|
// and the cell to the down-right is numbered i+dy
|
|
|
|
// Changed with command line option: -tpar <qty>,<dx>,<dy>
|
|
// Ideally, qty, dx, and dy should have the same "modulo 3"
|
|
// values as the default -- otherwise the three-color
|
|
// pattern breaks. Also, they should have no common
|
|
// prime divisor.
|
|
int def_qty = 127*3, dx = 1, def_dy = -11*2;
|
|
int qty = def_qty, dy = def_dy;
|
|
|
|
int sdx = 12, sdy = 12;
|
|
|
|
// new values to change
|
|
int newqty, newdy, newsdx, newsdy;
|
|
int torus_cx, torus_cy;
|
|
|
|
vector<torusmode_info> tmodes = {
|
|
{"single row (hex)", TF_SINGLE | TF_HEX},
|
|
{"single row (squares)", TF_SINGLE | TF_SQUARE},
|
|
{"parallelogram (hex)", TF_SIMPLE | TF_HEX},
|
|
{"rectangle (squares)", TF_SIMPLE | TF_SQUARE},
|
|
{"rectangle (hex)", TF_WEIRD | TF_HEX},
|
|
{"Klein bottle (squares)", TF_SIMPLE | TF_KLEIN | TF_SQUARE},
|
|
{"Klein bottle (hex)", TF_WEIRD | TF_KLEIN | TF_HEX},
|
|
{"cylinder (squares)", TF_SIMPLE | TF_CYL },
|
|
{"cylinder (hex)", TF_SIMPLE | TF_CYL | TF_HEX},
|
|
{"Möbius band (squares)", TF_SIMPLE | TF_CYL | TF_KLEIN},
|
|
{"Möbius band (hex)", TF_SIMPLE | TF_CYL | TF_HEX | TF_KLEIN},
|
|
};
|
|
|
|
eTorusMode torus_mode, newmode;
|
|
flagtype tmflags() { return tmodes[torus_mode].flags; }
|
|
|
|
int getqty() {
|
|
if(tmflags() & TF_SINGLE)
|
|
return qty;
|
|
else
|
|
return sdx * sdy;
|
|
}
|
|
|
|
int getvec(int x, int y) {
|
|
if(tmflags() & TF_SINGLE)
|
|
return x * dx + y * dy;
|
|
else if(tmflags() & TF_SIMPLE)
|
|
return pair_to_vec(x, y);
|
|
else
|
|
return pair_to_vec(-y - 2 * x, 3 * y);
|
|
}
|
|
|
|
int id_to_vec(int id, bool mirrored = false) {
|
|
if(tmflags() & TF_SINGLE)
|
|
return id;
|
|
else {
|
|
int dx = id % sdx;
|
|
int dy = id / sdx;
|
|
if(mirrored)
|
|
dy = -dy, dx += sdx;
|
|
if(tmflags() & TF_SIMPLE)
|
|
return pair_to_vec(dx, dy);
|
|
else
|
|
return pair_to_vec(- 2 * dx - (dy & 1), 3 * dy);
|
|
}
|
|
}
|
|
|
|
pair<int, bool> vec_to_id_mirror(int vec) {
|
|
if(tmflags() & TF_SINGLE) {
|
|
return {gmod(vec, qty), false};
|
|
}
|
|
else {
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(vec);
|
|
bool mirror = false;
|
|
if(tmflags() & TF_KLEIN) {
|
|
if(tmflags() & TF_WEIRD) {
|
|
x = gmod(x, 4 * sdx);
|
|
mirror = x > 0 && x <= 2 * sdx;
|
|
}
|
|
else {
|
|
x = gmod(x, 2 * sdx);
|
|
mirror = x >= sdx;
|
|
}
|
|
if(mirror) y = -y;
|
|
}
|
|
if(tmflags() & TF_WEIRD) {
|
|
y /= 3; x = (x + (y&1)) / -2;
|
|
}
|
|
x = gmod(x, sdx), y = gmod(y, sdy);
|
|
return {y * sdx + x, mirror};
|
|
}
|
|
}
|
|
|
|
int vec_to_id(int vec) {
|
|
return vec_to_id_mirror(vec).first;
|
|
}
|
|
|
|
void torus_test() {
|
|
printf("Testing torus vec_to_pair/pair_to_vec...\n");
|
|
for(int x=-10; x<=10; x++)
|
|
for(int y=-10; y<=10; y++) {
|
|
auto p = vec_to_pair(pair_to_vec(x, y));
|
|
if(p.first != x || p.second != y)
|
|
printf("Failed for (%d,%d) -> [%d] -> (%d,%d)\n", x, y, pair_to_vec(x,y), p.first, p.second);
|
|
}
|
|
printf("Testing id_to_vec / vec_to_id...\n");
|
|
for(int i=0; i < getqty(); i++)
|
|
for(int m=0; m< (torus_mode == tmKlein ? 2 : 1); m++)
|
|
if(vec_to_id_mirror(id_to_vec(i, m)) != pair<int,bool> (i,m))
|
|
printf("Failed for id %d.%d [%d] (%d.%d)\n", i, m, id_to_vec(i,m), vec_to_id(id_to_vec(i,m)), vec_to_id_mirror(id_to_vec(i,m)).second);
|
|
}
|
|
|
|
int tester = addHook(hooks_tests, 0, torus_test);
|
|
|
|
void activate() {
|
|
auto& gi(ginf[gTorus]);
|
|
|
|
if(tmflags() & TF_HEX)
|
|
gi.vertex = 3, gi.sides = 6, gi.tiling_name = "{6,3}";
|
|
else
|
|
gi.vertex = 4, gi.sides = 4, gi.tiling_name = "{4,4}";
|
|
|
|
flagtype& flags = gi.flags;
|
|
|
|
set_flag(flags, qNONORIENTABLE, tmflags() & TF_KLEIN);
|
|
set_flag(flags, qBOUNDED, !(tmflags() & TF_CYL));
|
|
|
|
int i = 0;
|
|
if(tmflags() & TF_KLEIN) i++;
|
|
if(tmflags() & TF_CYL) i+=2;
|
|
|
|
const char *quonames[4] = {"torus", "Klein bottle", "cylinder", "Möbius band"};
|
|
gi.quotient_name = quonames[i];
|
|
}
|
|
|
|
int dscalar(gp::loc e1, gp::loc e2) {
|
|
return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0);
|
|
}
|
|
|
|
int dcross(gp::loc e1, gp::loc e2) {
|
|
return e1.first * e2.second - e1.second*e2.first;
|
|
}
|
|
|
|
gp::loc sdxy() { return gp::loc(sdx, sdy); }
|
|
|
|
int mobius_dir_basic() {
|
|
int dscalars[6];
|
|
for(int a=0; a<SG6; a++)
|
|
dscalars[a] = dscalar(gp::eudir(a), sdxy());
|
|
for(int a=0; a<SG6; a++)
|
|
for(int b=0; b<SG6; b++)
|
|
if(a != b && dscalars[a] == dscalars[b]) {
|
|
return (a + b) % SG6;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool mobius_symmetric(bool square, int dx, int dy) {
|
|
dynamicval<eGeometry> g(geometry, square ? gEuclidSquare : gEuclid);
|
|
dynamicval<int> gx(sdx, dx);
|
|
dynamicval<int> gy(sdy, dy);
|
|
return mobius_dir_basic() != -1;
|
|
}
|
|
|
|
void mobius_flip(int&x, int& y) {
|
|
|
|
int d = mobius_dir_basic();
|
|
int a, b;
|
|
if(d == 0) a = 1, b = SG6-1;
|
|
else a = 0, b = d;
|
|
auto p1 = gp::eudir(a);
|
|
auto p2 = gp::eudir(b);
|
|
|
|
// x = sdx * s + px * t
|
|
// y = sdy * s + py * t
|
|
// py * x = py * sdx * s + px * py * t
|
|
// px * y = px * sdy * s + px + py * t
|
|
// py * x - px * y = py * sdx * s - px * sdy * s
|
|
// s = (py * x - px * y) / (py * sdx - px * sdy)
|
|
|
|
int det = p1.second * sdx - p1.first * sdy;
|
|
int smul = p1.second * x - p1.first * y;
|
|
int tmul = sdx * y - sdy * x;
|
|
|
|
x = (tmul * p2.first + smul * sdx) / det;
|
|
y = (tmul * p2.second + smul * sdy) / det;
|
|
|
|
// println(hlog, make_pair(ox,oy), " [", d, "] ", make_pair(x,y), " p1 = ", p1, " p2 = ", p2, " det = ", det, " smul = ", smul, " tmul = ", tmul);
|
|
}
|
|
|
|
int mobius_dir(cell *c) {
|
|
if(c->type == 8) return mobius_dir_basic() * 2;
|
|
else return mobius_dir_basic();
|
|
}
|
|
|
|
bool be_canonical(int& x, int& y) {
|
|
using namespace torusconfig;
|
|
|
|
int periods = gdiv(dscalar(gp::loc(x,y), sdxy()), dscalar(sdxy(), sdxy()));
|
|
|
|
y -= sdy * periods;
|
|
x -= sdx * periods;
|
|
|
|
bool b = false;
|
|
|
|
if(nonorientable && (periods & 1)) {
|
|
mobius_flip(x, y);
|
|
b = true;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
int cyldist(int id1, int id2) {
|
|
|
|
int x1, y1, x2, y2;
|
|
tie(x1, y1) = vec_to_pair(id1);
|
|
tie(x2, y2) = vec_to_pair(id2);
|
|
be_canonical(x1, y1);
|
|
be_canonical(x2, y2);
|
|
|
|
int dist = 1000000000;
|
|
|
|
for(int a1=-1; a1<=1; a1++)
|
|
for(int a2=-1; a2<=1; a2++) {
|
|
int ax1 = x1 + sdx * a1;
|
|
int ay1 = y1 + sdy * a1;
|
|
if(nonorientable && a1) mobius_flip(ax1, ay1);
|
|
int ax2 = x2 + sdx * a2;
|
|
int ay2 = y2 + sdy * a2;
|
|
if(nonorientable && a2) mobius_flip(ax2, ay2);
|
|
dist = min(dist, eudist(ax1 - ax2, ay1 - ay2));
|
|
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
}
|
|
|
|
int euclid_getvec(int dx, int dy) {
|
|
if(euwrap) return torusconfig::getvec(dx, dy);
|
|
else return pair_to_vec(dx, dy);
|
|
}
|
|
|
|
template<class T> void build_euclidean_moves(cell *c, int vec, const T& builder) {
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(vec);
|
|
c->type = a4 ? (PURE || ((x^y^1) & 1) ? 4 : 8) : 6;
|
|
|
|
if(c->type == 4) {
|
|
int m = PURE ? 1 : 2;
|
|
builder(euclid_getvec(+1,+0), 0, 2 * m);
|
|
builder(euclid_getvec(+0,+1), 1, 3 * m);
|
|
builder(euclid_getvec(-1,+0), 2, 0 * m);
|
|
builder(euclid_getvec(+0,-1), 3, 1 * m);
|
|
}
|
|
else if(c->type == 8) {
|
|
builder(euclid_getvec(+1,+0), 0, 2);
|
|
builder(euclid_getvec(+1,+1), 1, 5);
|
|
builder(euclid_getvec(+0,+1), 2, 3);
|
|
builder(euclid_getvec(-1,+1), 3, 7);
|
|
builder(euclid_getvec(-1,+0), 4, 0);
|
|
builder(euclid_getvec(-1,-1), 5, 1);
|
|
builder(euclid_getvec(+0,-1), 6, 1);
|
|
builder(euclid_getvec(+1,-1), 7, 3);
|
|
}
|
|
else /* 6 */ {
|
|
builder(euclid_getvec(+1,+0), 0, 3);
|
|
builder(euclid_getvec(+0,+1), 1, 4);
|
|
builder(euclid_getvec(-1,+1), 2, 5);
|
|
builder(euclid_getvec(-1,+0), 3, 0);
|
|
builder(euclid_getvec(+0,-1), 4, 1);
|
|
builder(euclid_getvec(+1,-1), 5, 2);
|
|
}
|
|
}
|
|
|
|
struct hrmap_euclid_any : hrmap {
|
|
void draw() override;
|
|
};
|
|
|
|
struct hrmap_torus : hrmap_euclid_any {
|
|
|
|
vector<cell*> all;
|
|
vector<int> dists;
|
|
|
|
virtual vector<cell*>& allcells() { return all; }
|
|
|
|
cell *gamestart() {
|
|
return all[0];
|
|
}
|
|
|
|
hrmap_torus() {
|
|
using namespace torusconfig;
|
|
int q = getqty();
|
|
all.resize(q);
|
|
for(int i=0; i<q; i++) {
|
|
all[i] = newCell(8, encodeId(i));
|
|
}
|
|
for(int i=0; i<q; i++) {
|
|
int iv = id_to_vec(i);
|
|
build_euclidean_moves(all[i], iv, [&] (int delta, int d, int d2) {
|
|
auto im = vec_to_id_mirror(iv + delta);
|
|
all[i]->move(d) = all[im.first];
|
|
all[i]->c.setspin(d, im.second, false);
|
|
});
|
|
}
|
|
for(cell *c: all) for(int d=0; d<c->type; d++) {
|
|
cell *c2 = c->move(d);
|
|
for(int d2=0; d2<c2->type; d2++)
|
|
if(c2->move(d2) == c)
|
|
c->c.setspin(d, d2, c->c.spin(d));
|
|
}
|
|
celllister cl(gamestart(), 100, 100000000, NULL);
|
|
dists.resize(q);
|
|
for(int i=0; i<isize(cl.lst); i++)
|
|
dists[decodeId(cl.lst[i]->master)] = cl.dists[i];
|
|
}
|
|
|
|
~hrmap_torus() {
|
|
for(cell *c: all) tailored_delete(c);
|
|
}
|
|
|
|
transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) {
|
|
transmatrix t = Id;
|
|
// if(whateveri) printf("[%p,%d] ", c2, celldistance(c2, c1));
|
|
int d = celldistance(c2, c1);
|
|
while(d) {
|
|
forCellIdEx(cc, i, c1) {
|
|
int d1 = celldistance(cc, c2);
|
|
if(d1 < d) {
|
|
t = t * cellrelmatrix(c1, i);
|
|
c1 = cc;
|
|
d = d1;
|
|
goto again;
|
|
}
|
|
}
|
|
printf("ERROR not reached\n");
|
|
break;
|
|
again: ;
|
|
}
|
|
return t;
|
|
}
|
|
};
|
|
|
|
hrmap_torus *torusmap() {
|
|
return dynamic_cast<hrmap_torus*> (currentmap);
|
|
}
|
|
|
|
/* cell *getTorusId(int id) {
|
|
hrmap_torus *cur = torusmap();
|
|
if(!cur) return NULL;
|
|
return cur->all[id];
|
|
} */
|
|
|
|
struct hrmap_euclidean : hrmap_euclid_any {
|
|
|
|
cell *gamestart() {
|
|
return *(euclideanAtCreate(0).first);
|
|
}
|
|
|
|
struct euclideanSlab {
|
|
cell* a[256][256];
|
|
euclideanSlab() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
a[y][x] = NULL;
|
|
}
|
|
~euclideanSlab() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
if(a[y][x]) tailored_delete(a[y][x]);
|
|
}
|
|
};
|
|
|
|
static const int slabs = max_vec / 256;
|
|
|
|
euclideanSlab* euclidean[slabs][slabs];
|
|
|
|
hrmap_euclidean() {
|
|
for(int y=0; y<slabs; y++) for(int x=0; x<slabs; x++)
|
|
euclidean[y][x] = NULL;
|
|
}
|
|
|
|
euc_pointer at(int vec) {
|
|
auto p = vec_to_pair(vec);
|
|
int x = p.first, y = p.second;
|
|
bool mobius = false;
|
|
if(euwrap)
|
|
mobius = torusconfig::be_canonical(x, y);
|
|
euclideanSlab*& slab = euclidean[(y>>8)&(slabs-1)][(x>>8)&(slabs-1)];
|
|
if(!slab) slab = new hrmap_euclidean::euclideanSlab;
|
|
return make_pair(&(slab->a[y&255][x&255]), mobius);
|
|
}
|
|
|
|
map<int, struct cdata> eucdata;
|
|
|
|
~hrmap_euclidean() {
|
|
for(int y=0; y<slabs; y++) for(int x=0; x<slabs; x++)
|
|
if(euclidean[y][x]) {
|
|
tailored_delete(euclidean[y][x]);
|
|
euclidean[y][x] = NULL;
|
|
}
|
|
eucdata.clear();
|
|
}
|
|
|
|
transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) {
|
|
return eumove(cell_to_vec(c2) - cell_to_vec(c1));
|
|
}
|
|
};
|
|
|
|
cellwalker vec_to_cellwalker(int vec) {
|
|
if(!fulltorus) {
|
|
auto p = euclideanAtCreate(vec);
|
|
if(p.second)
|
|
return cellwalker(*p.first, torusconfig::mobius_dir(*p.first), true);
|
|
else
|
|
return cellwalker(*p.first, 0, false);
|
|
}
|
|
else {
|
|
hrmap_torus *cur = torusmap();
|
|
if(!cur) return cellwalker(NULL, 0);
|
|
auto p = torusconfig::vec_to_id_mirror(vec);
|
|
return cellwalker(cur->all[p.first], 0, p.second);
|
|
}
|
|
}
|
|
|
|
int cellwalker_to_vec(cellwalker cw) {
|
|
int id = decodeId(cw.at->master);
|
|
if(!fulltorus) {
|
|
if(nonorientable) {
|
|
auto ep = euclideanAt(id);
|
|
if(ep.second != cw.mirrored) {
|
|
int x, y;
|
|
tie(x, y) = vec_to_pair(id);
|
|
x += torusconfig::sdx;
|
|
y += torusconfig::sdy;
|
|
torusconfig::mobius_flip(x, y);
|
|
return pair_to_vec(x, y);
|
|
}
|
|
}
|
|
return id;
|
|
}
|
|
return torusconfig::id_to_vec(id, cw.mirrored);
|
|
}
|
|
|
|
int cell_to_vec(cell *c) {
|
|
int id = decodeId(c->master);
|
|
if(!fulltorus) return id;
|
|
return torusconfig::id_to_vec(id, false);
|
|
}
|
|
|
|
pair<int, int> cell_to_pair(cell *c) {
|
|
return vec_to_pair(cell_to_vec(c));
|
|
}
|
|
|
|
union heptacoder {
|
|
heptagon *h;
|
|
int id;
|
|
};
|
|
|
|
int decodeId(heptagon* h) {
|
|
heptacoder u;
|
|
u.h = h; return u.id;
|
|
}
|
|
|
|
heptagon* encodeId(int id) {
|
|
heptacoder u;
|
|
u.id = id;
|
|
return u.h;
|
|
}
|
|
|
|
// 3D Euclidean space
|
|
|
|
#if MAXMDIM == 4
|
|
|
|
namespace euclid3 {
|
|
|
|
typedef long long coord;
|
|
static const long long COORDMAX = (1<<16);
|
|
typedef array<coord, 3> axes;
|
|
typedef array<array<int, 3>, 3> intmatrix;
|
|
|
|
|
|
static const axes main_axes = make_array<coord>(1, COORDMAX, COORDMAX * COORDMAX );
|
|
|
|
array<int, 3> getcoord(coord x) {
|
|
array<int, 3> res;
|
|
for(int k=0; k<3; k++) {
|
|
int next = x % COORDMAX;
|
|
if(next>COORDMAX/2) next -= COORDMAX;
|
|
if(next<-COORDMAX/2) next += COORDMAX;
|
|
res[k] = next;
|
|
x -= next;
|
|
x /= COORDMAX;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
vector<coord> get_shifttable() {
|
|
static const coord D0 = main_axes[0];
|
|
static const coord D1 = main_axes[1];
|
|
static const coord D2 = main_axes[2];
|
|
vector<coord> shifttable;
|
|
switch(geometry) {
|
|
case gCubeTiling:
|
|
shifttable = { +D0, +D1, +D2 };
|
|
break;
|
|
|
|
case gRhombic3:
|
|
shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 };
|
|
break;
|
|
|
|
case gBitrunc3:
|
|
shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 };
|
|
break;
|
|
|
|
default:
|
|
printf("euclid3::get_shifttable() called in geometry that is not euclid3");
|
|
exit(1);
|
|
}
|
|
|
|
// reverse everything
|
|
int s = isize(shifttable);
|
|
for(int i=0; i<s; i++) shifttable.push_back(-shifttable[i]);
|
|
return shifttable;
|
|
}
|
|
|
|
coord canonicalize(coord x);
|
|
void build_torus3();
|
|
coord twist(coord x, transmatrix& M);
|
|
extern int twisted;
|
|
extern intmatrix T0;
|
|
|
|
struct hrmap_euclid3 : hrmap {
|
|
vector<coord> shifttable;
|
|
vector<transmatrix> tmatrix;
|
|
map<coord, heptagon*> spacemap;
|
|
map<heptagon*, coord> ispacemap;
|
|
cell *camelot_center;
|
|
|
|
vector<cell*> toruscells;
|
|
vector<cell*>& allcells() override {
|
|
if(bounded) {
|
|
if(isize(toruscells) == 0) {
|
|
celllister cl(getOrigin()->c7, 1000, 1000000, NULL);
|
|
toruscells = cl.lst;
|
|
}
|
|
return toruscells;
|
|
}
|
|
return hrmap::allcells();
|
|
}
|
|
|
|
hrmap_euclid3() {
|
|
shifttable = get_shifttable();
|
|
tmatrix.resize(S7);
|
|
for(int i=0; i<S7; i++) tmatrix[i] = Id;
|
|
for(int i=0; i<S7; i++) for(int j=0; j<3; j++)
|
|
tmatrix[i][j][DIM] = getcoord(shifttable[i])[j];
|
|
camelot_center = NULL;
|
|
build_torus3();
|
|
}
|
|
|
|
heptagon *getOrigin() override {
|
|
return get_at(0);
|
|
}
|
|
|
|
heptagon *get_at(coord at) {
|
|
if(spacemap.count(at))
|
|
return spacemap[at];
|
|
else {
|
|
auto h = tailored_alloc<heptagon> (S7);
|
|
h->c7 = newCell(S7, h);
|
|
h->distance = 0;
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
auto co = getcoord(at);
|
|
if(S7 != 14)
|
|
h->zebraval = gmod(co[0] + co[1] * 2 + co[2] * 4, 5);
|
|
else
|
|
h->zebraval = co[0] & 1;
|
|
spacemap[at] = h;
|
|
ispacemap[h] = at;
|
|
return h;
|
|
}
|
|
}
|
|
|
|
heptagon *build(heptagon *parent, int d, coord at) {
|
|
auto h = get_at(at);
|
|
int d1 = (d+S7/2)%S7;
|
|
if(twisted) {
|
|
coord a = ispacemap[parent];
|
|
coord b = ispacemap[h];
|
|
for(int i=0; i<S7; i++)
|
|
if(canonicalize(b + shifttable[i]) == a)
|
|
d1 = i;
|
|
}
|
|
h->c.connect(d1, parent, d, false);
|
|
return h;
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
return build(parent, d, canonicalize(ispacemap[parent] + shifttable[d]));
|
|
}
|
|
|
|
transmatrix get_move(cell *c, int i) {
|
|
if(!twisted) return tmatrix[i];
|
|
transmatrix res = tmatrix[i];
|
|
coord id = ispacemap[c->master];
|
|
id += shifttable[i];
|
|
twist(id, res);
|
|
return res;
|
|
}
|
|
|
|
void draw() override {
|
|
dq::visited_by_matrix.clear();
|
|
dq::enqueue_by_matrix(viewctr.at, cview());
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = get<0>(p);
|
|
transmatrix V = get<1>(p);
|
|
dynamicval<ld> b(band_shift, get<2>(p));
|
|
bandfixer bf(V);
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V, 0, false);
|
|
|
|
for(int i=0; i<S7; i++)
|
|
dq::enqueue_by_matrix(h->move(i), V * get_move(h->c7, i));
|
|
}
|
|
}
|
|
|
|
transmatrix warppush(coord dif) {
|
|
auto v = getcoord(dif);
|
|
for(int i: {0, 1})
|
|
if(T0[i][i])
|
|
v[i] = gmod(v[i] + T0[i][i] / 2, T0[i][i]) - T0[i][i] / 2;
|
|
return eupush3(v[0], v[1], v[2]);
|
|
}
|
|
|
|
transmatrix relative_matrix(heptagon *h2, heptagon *h1) override {
|
|
if(twisted) {
|
|
coord c1 = ispacemap[h1];
|
|
coord c2 = ispacemap[h2];
|
|
transmatrix T = warppush(c2 - c1);
|
|
for(int d: {-1, 1}) {
|
|
transmatrix I = Id;
|
|
coord cs = c1;
|
|
for(int s=0; s<3; s++) {
|
|
cs += d * T0[2][2] * main_axes[2];
|
|
I = I * eupush3(0, 0, d * T0[2][2]);
|
|
cs = twist(cs, I);
|
|
transmatrix T1 = I * warppush(c2 - cs);
|
|
if(hdist0(tC0(T1)) < hdist0(tC0(T)))
|
|
T = T1;
|
|
}
|
|
}
|
|
return T;
|
|
}
|
|
auto d = ispacemap[h2] - ispacemap[h1];
|
|
d = canonicalize(d);
|
|
auto v = getcoord(d);
|
|
return eupush3(v[0], v[1], v[2]);
|
|
}
|
|
|
|
vector<hyperpoint> get_vertices(cell* c) override {
|
|
vector<hyperpoint> res;
|
|
if(S7 < 14)
|
|
for(ld a: {-.5,.5}) for(ld b: {-.5,.5}) for(ld c: {-.5, .5}) res.push_back(hpxy3(a,b,c));
|
|
if(S7 == 12) {
|
|
res.push_back(hpxy3(1,0,0));
|
|
res.push_back(hpxy3(-1,0,0));
|
|
res.push_back(hpxy3(0,1,0));
|
|
res.push_back(hpxy3(0,-1,0));
|
|
res.push_back(hpxy3(0,0,1));
|
|
res.push_back(hpxy3(0,0,-1));
|
|
}
|
|
if(S7 == 14) {
|
|
for(ld a: {-1.,-.5,0.,.5,1.})
|
|
for(ld b: {-1.,-.5,0.,.5,1.})
|
|
for(ld c: {-1.,-.5,0.,.5,1.})
|
|
if(a == 0 || b == 0 || c == 0)
|
|
if(a == .5 || a == -.5 || b == .5 || b == -.5 || c == .5 || c == -.5)
|
|
if(a == 1 || a == -1 || b == 1 || b == -1 || c == 1 || c == -1)
|
|
res.push_back(hpxy3(a,b,c));
|
|
}
|
|
return res;
|
|
}
|
|
};
|
|
|
|
hrmap_euclid3* cubemap() {
|
|
return ((hrmap_euclid3*) currentmap);
|
|
}
|
|
|
|
hrmap* new_map() {
|
|
return new hrmap_euclid3;
|
|
}
|
|
|
|
transmatrix move_matrix(cell *c, int i) {
|
|
return cubemap()->get_move(c, i);
|
|
}
|
|
|
|
bool pseudohept(cell *c) {
|
|
coord co = cubemap()->ispacemap[c->master];
|
|
auto v = getcoord(co);
|
|
if(S7 == 12) {
|
|
for(int i=0; i<3; i++) if((v[i] & 1)) return false;
|
|
}
|
|
else {
|
|
for(int i=0; i<3; i++) if(!(v[i] & 1)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int dist_alt(cell *c) {
|
|
if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c);
|
|
coord co = cubemap()->ispacemap[c->master];
|
|
auto v = getcoord(co);
|
|
if(S7 == 6) return v[2];
|
|
else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2;
|
|
else return v[2]/2;
|
|
}
|
|
|
|
bool get_emerald(cell *c) {
|
|
auto v = getcoord(cubemap()->ispacemap[c->master]);
|
|
int s0 = 0, s1 = 0;
|
|
for(int i=0; i<3; i++) {
|
|
v[i] = gmod(v[i], 6);
|
|
int d = min(v[i], 6-v[i]);;
|
|
s0 += min(v[i], 6-v[i]);
|
|
s1 += 3-d;
|
|
}
|
|
if(s0 == s1) println(hlog, "equality");
|
|
return s0 > s1;
|
|
}
|
|
|
|
bool cellvalid(coord co) {
|
|
auto v = getcoord(co);
|
|
if(S7 == 6) return true;
|
|
if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0;
|
|
if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2;
|
|
return false;
|
|
}
|
|
|
|
int celldistance(coord co) {
|
|
auto v = getcoord(co);
|
|
if(S7 == 6)
|
|
return abs(v[0]) + abs(v[1]) + abs(v[2]);
|
|
else {
|
|
for(int i=0; i<3; i++) v[i] = abs(v[i]);
|
|
sort(v.begin(), v.end());
|
|
int dist = 0;
|
|
if(S7 == 12) {
|
|
int d = v[1] - v[0]; v[1] -= d; v[2] -= d;
|
|
dist += d;
|
|
int m = min((v[2] - v[0]), v[0]);
|
|
dist += 2 * m;
|
|
v[0] -= m; v[1] -= m; v[2] -= m * 2;
|
|
if(v[0])
|
|
dist += (v[0] + v[1] + v[2]) / 2;
|
|
else
|
|
dist += v[2];
|
|
}
|
|
else {
|
|
dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2;
|
|
}
|
|
return dist;
|
|
}
|
|
}
|
|
|
|
int celldistance(cell *c1, cell *c2) {
|
|
auto cm = cubemap();
|
|
return celldistance(cm->ispacemap[c1->master] - cm->ispacemap[c2->master]);
|
|
}
|
|
|
|
void set_land(cell *c) {
|
|
setland(c, specialland);
|
|
auto m = cubemap();
|
|
auto co = getcoord(m->ispacemap[c->master]);
|
|
|
|
int dv = 1;
|
|
if(geometry != gCubeTiling) dv = 2;
|
|
|
|
int hash = 0;
|
|
for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4;
|
|
|
|
set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash);
|
|
}
|
|
|
|
int dist_relative(cell *c) {
|
|
auto m = cubemap();
|
|
auto& cc = m->camelot_center;
|
|
int r = roundTableRadius(NULL);
|
|
cell *start = m->gamestart();
|
|
if(!cc) {
|
|
cc = start;
|
|
while(euclid3::celldistance(cc, start) < r + 5)
|
|
cc = cc->cmove(hrand(cc->type));
|
|
}
|
|
|
|
return euclid3::celldistance(cc, c) - r;
|
|
}
|
|
|
|
/* quotient spaces */
|
|
|
|
intmatrix make_intmatrix(axes a) {
|
|
intmatrix T;
|
|
T[0] = getcoord(a[0]);
|
|
T[1] = getcoord(a[1]);
|
|
T[2] = getcoord(a[2]);
|
|
return T;
|
|
}
|
|
|
|
int determinant(const intmatrix T) {
|
|
int det = 0;
|
|
for(int i=0; i<3; i++)
|
|
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
|
|
for(int i=0; i<3; i++)
|
|
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
|
|
return det;
|
|
}
|
|
|
|
intmatrix scaled_inverse(const intmatrix T) {
|
|
intmatrix T2;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++)
|
|
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]);
|
|
return T2;
|
|
}
|
|
|
|
axes user_axes;
|
|
axes optimal_axes;
|
|
axes regular_axes;
|
|
|
|
intmatrix T, T2, T0, T_edit;
|
|
int det;
|
|
int coords;
|
|
int twisted, twisted0, twisted_edit;
|
|
|
|
void clear_torus3() {
|
|
for(int i=0; i<3; i++) user_axes[i] = 0;
|
|
}
|
|
|
|
unordered_map<coord, int> canonical_hash;
|
|
vector<coord> canonical_seq;
|
|
int canonical_index;
|
|
|
|
coord compute_cat(coord co) {
|
|
auto coo = getcoord(co);
|
|
coord cat = 0;
|
|
for(int i=0; i<3; i++) {
|
|
int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2];
|
|
if(i < coords) val = gmod(val, det);
|
|
cat += val * main_axes[i];
|
|
}
|
|
return cat;
|
|
};
|
|
|
|
|
|
void add_canonical(coord val) {
|
|
auto cat = compute_cat(val);
|
|
if(canonical_hash.count(cat)) return;
|
|
canonical_hash[cat] = isize(canonical_seq);
|
|
canonical_seq.push_back(val);
|
|
}
|
|
|
|
void build_torus3() {
|
|
|
|
for(int i=0; i<3; i++) {
|
|
user_axes[i] = 0;
|
|
for(int j=0; j<3; j++) user_axes[i] += main_axes[j] * T0[i][j];
|
|
}
|
|
|
|
optimal_axes = user_axes;
|
|
|
|
again:
|
|
for(int i=0; i<3; i++) if(optimal_axes[i] < 0) optimal_axes[i] = -optimal_axes[i];
|
|
if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]);
|
|
if(optimal_axes[1] < optimal_axes[2]) swap(optimal_axes[1], optimal_axes[2]);
|
|
if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]);
|
|
for(int i=0; i<3; i++) {
|
|
int i1 = (i+1) % 3;
|
|
int i2 = (i+2) % 3;
|
|
for(int a=-10; a<=10; a++)
|
|
for(int b=-10; b<=10; b++) {
|
|
coord cand = optimal_axes[i] + optimal_axes[i1] * a + optimal_axes[i2] * b;
|
|
if(celldistance(cand) < celldistance(optimal_axes[i])) {
|
|
optimal_axes[i] = cand;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
|
|
regular_axes = optimal_axes;
|
|
coords = 0;
|
|
for(int i=0; i<3; i++) if(optimal_axes[i]) coords++;
|
|
|
|
int attempt = 0;
|
|
next_attempt:
|
|
for(int i=coords; i<3; i++)
|
|
regular_axes[i] = main_axes[(attempt+i)%3];
|
|
|
|
T = make_intmatrix(regular_axes);
|
|
det = determinant(T);
|
|
if(det == 0) {
|
|
attempt++;
|
|
if(attempt == 3) {
|
|
println(hlog, "weird singular!\n");
|
|
exit(1);
|
|
}
|
|
goto next_attempt;
|
|
}
|
|
|
|
if(det < 0) det = -det;
|
|
|
|
T2 = scaled_inverse(T);
|
|
canonical_hash.clear();
|
|
canonical_seq.clear();
|
|
canonical_index = 0;
|
|
add_canonical(0);
|
|
|
|
twisted = twisted0;
|
|
if(geometry != gCubeTiling && ((T0[0][0]+T0[2][2]) & 1)) twisted &=~ 1;
|
|
if(geometry != gCubeTiling && ((T0[1][1]+T0[2][2]) & 1)) twisted &=~ 2;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
if(i != j && T0[i][j]) twisted = 0;
|
|
if(T0[2][2] == 0) twisted = 0;
|
|
if(T0[0][0] != T0[1][1]) twisted &= 3;
|
|
|
|
for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3}) {
|
|
set_flag(ginf[g].flags, qANYQ, coords);
|
|
set_flag(ginf[g].flags, qBOUNDED, coords == 3);
|
|
bool nonori = false;
|
|
if(twisted&1) nonori = !nonori;
|
|
if(twisted&2) nonori = !nonori;
|
|
if(twisted&4) nonori = !nonori;
|
|
set_flag(ginf[g].flags, qNONORIENTABLE, nonori);
|
|
}
|
|
}
|
|
|
|
void swap01(transmatrix& M) {
|
|
for(int i=0; i<4; i++) swap(M[i][0], M[i][1]);
|
|
}
|
|
|
|
coord twist(coord x, transmatrix& M) {
|
|
auto coo = getcoord(x);
|
|
while(coo[2] >= T0[2][2]) {
|
|
coo[2] -= T0[2][2];
|
|
if(twisted & 1) coo[0] *= -1, M = M * MirrorX;
|
|
if(twisted & 2) coo[1] *= -1, M = M * MirrorY;
|
|
if(twisted & 4) swap(coo[0], coo[1]), swap01(M);
|
|
}
|
|
while(coo[2] < 0) {
|
|
coo[2] += T0[2][2];
|
|
if(twisted & 4) swap(coo[0], coo[1]), swap01(M);
|
|
if(twisted & 1) coo[0] *= -1, M = M * MirrorX;
|
|
if(twisted & 2) coo[1] *= -1, M = M * MirrorY;
|
|
}
|
|
for(int i: {0,1})
|
|
if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]);
|
|
return coo[0] * main_axes[0] + coo[1] * main_axes[1] + coo[2] * main_axes[2];
|
|
}
|
|
|
|
coord canonicalize(coord x) {
|
|
if(twisted) {
|
|
transmatrix M = Id;
|
|
return twist(x, M);
|
|
}
|
|
if(coords == 0) return x;
|
|
if(coords == 1) {
|
|
while(celldistance(x + optimal_axes[0]) <= celldistance(x)) x += optimal_axes[0];
|
|
while(celldistance(x - optimal_axes[0]) < celldistance(x)) x -= optimal_axes[0];
|
|
return x;
|
|
}
|
|
auto cat = compute_cat(x);
|
|
auto& st = cubemap()->shifttable;
|
|
while(!canonical_hash.count(cat)) {
|
|
if(canonical_index == isize(canonical_seq)) throw hr_exception();
|
|
auto v = canonical_seq[canonical_index++];
|
|
for(auto s: st) add_canonical(v + s);
|
|
}
|
|
return canonical_seq[canonical_hash[cat]];
|
|
}
|
|
|
|
void prepare_torus3() {
|
|
T_edit = T0;
|
|
twisted_edit = twisted0;
|
|
}
|
|
|
|
void show_torus3() {
|
|
cmode = sm::SIDE | sm::MAYDARK;
|
|
gamescreen(1);
|
|
dialog::init(XLAT("3D Euclidean spaces"));
|
|
for(int y=0; y<4; y++)
|
|
dialog::addBreak(100);
|
|
|
|
dialog::addBreak(50);
|
|
|
|
bool nondiag = false;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++)
|
|
if(T_edit[i][j] && i != j) nondiag = true;
|
|
|
|
if(nondiag) {
|
|
dialog::addInfo(XLAT("twisting implemented only for diagonal matrices"));
|
|
dialog::addBreak(200);
|
|
}
|
|
else if(T_edit[2][2] == 0) {
|
|
dialog::addInfo(XLAT("nothing to twist"));
|
|
dialog::addInfo(XLAT("change the bottom left corner"));
|
|
dialog::addBreak(100);
|
|
}
|
|
else {
|
|
if(geometry == gCubeTiling || (T_edit[0][0]+T_edit[2][2]) % 2 == 0)
|
|
dialog::addBoolItem(XLAT("flip X coordinate"), twisted_edit & 1, 'x');
|
|
else
|
|
dialog::addBoolItem(XLAT("flipping X impossible"), twisted_edit & 1, 'x');
|
|
dialog::add_action([] { twisted_edit ^= 1; });
|
|
|
|
if(geometry == gCubeTiling || (T_edit[1][1]+T_edit[2][2]) % 2 == 0)
|
|
dialog::addBoolItem(XLAT("flip Y coordinate"), twisted_edit & 2, 'y');
|
|
else
|
|
dialog::addBoolItem(XLAT("flipping Y impossible"), twisted_edit & 2, 'y');
|
|
dialog::add_action([] { twisted_edit ^= 2; });
|
|
|
|
if(T_edit[0][0] == T_edit[1][1])
|
|
dialog::addBoolItem(XLAT("swap X and Y"), twisted_edit & 4, 'z');
|
|
else
|
|
dialog::addBoolItem(XLAT("swapping impossible"), twisted_edit & 4, 'z');
|
|
dialog::add_action([] { twisted_edit ^= 4; });
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
|
|
char xch = 'p';
|
|
for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3}) {
|
|
dialog::addItem(XLAT(ginf[g].menu_displayed_name), xch++);
|
|
dialog::add_action([g] {
|
|
stop_game();
|
|
set_geometry(g);
|
|
T0 = T_edit;
|
|
twisted0 = twisted_edit;
|
|
start_game();
|
|
});
|
|
}
|
|
dialog::addBreak(50);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
|
|
int i = -1;
|
|
for(auto& v: dialog::items) if(v.type == dialog::diBreak) {
|
|
if(i >= 0 && i < 3) {
|
|
for(int j=0; j<3; j++) {
|
|
char ch = 'a' + i * 3 + j;
|
|
if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-1), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8))
|
|
getcstat = ch;
|
|
dialog::add_key_action(ch, [=] {
|
|
dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT(
|
|
"This matrix lets you play on the quotient spaces of three-dimensional. "
|
|
"Euclidean space. Every column specifies a translation vector which "
|
|
"takes you back to the starting point. For example, if you put "
|
|
"set 2, 6, 0 on the diagonal, you get back to the starting point "
|
|
"if you move 2 steps in the X direction, 6 steps in the Y direction "
|
|
"(the quotient space is infinite in the Z direction).\n\n"
|
|
"You can also introduce twists for diagonal matrices: after going "
|
|
"the given number of steps in the Z direction, the space is also "
|
|
"mirrored or rotated. (More general 'twisted' spaces are currently "
|
|
"not implemented.)"
|
|
)
|
|
);
|
|
});
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
int euArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-t3")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) {
|
|
shift(); T0[i][j] = argi();
|
|
}
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twist3")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) T0[i][j] = 0;
|
|
|
|
for(int i=0; i<3; i++) {
|
|
shift(); T0[i][i] = argi();
|
|
}
|
|
shift(); twisted0 = argi();
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twisttest")) {
|
|
start_game();
|
|
celllister cl(cwt.at, 10000, 10000, NULL);
|
|
for(cell *c: cl.lst) {
|
|
for(int i=0; i<S7; i++)
|
|
for(int j=0; j<S7; j++)
|
|
for(int k=0; k<S7; k++)
|
|
for(int l=0; l<S7; l++)
|
|
if(c->move(i) && c->move(k) && c->move(i)->move(j) == c->move(k)->move(l) && c->move(i)->move(j)) {
|
|
transmatrix T1 = move_matrix(c, i) * move_matrix(c->move(i), j);
|
|
transmatrix T2 = move_matrix(c, k) * move_matrix(c->move(k), l);
|
|
if(!eqmatrix(T1, T2)) {
|
|
println(hlog, c, " @ ", getcoord(cubemap()->ispacemap[c->master]), " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto euhook = addHook(hooks_args, 100, euArgs);
|
|
}
|
|
|
|
#endif
|
|
|
|
ld matrixnorm(const transmatrix& Mat) {
|
|
return Mat[0][DIM] * Mat[0][DIM] + Mat[1][DIM] * Mat[1][DIM] + Mat[2][DIM] * Mat[2][DIM];
|
|
}
|
|
|
|
void hrmap_euclid_any::draw() {
|
|
DEBB(DF_GRAPH, ("drawEuclidean\n"));
|
|
sphereflip = Id;
|
|
if(!centerover.at) centerover = cwt;
|
|
// printf("centerover = %p player = %p [%d,%d]-[%d,%d]\n", lcenterover, cwt.c,
|
|
// mindx, mindy, maxdx, maxdy);
|
|
int pvec = cellwalker_to_vec(centerover);
|
|
|
|
typedef pair<int, int> euspot;
|
|
|
|
const euspot zero = {0,0};
|
|
|
|
set<euspot> visited = {zero};
|
|
vector<euspot> dfs = {zero};
|
|
|
|
ld centerd = matrixnorm(View);
|
|
auto View0 = cview();
|
|
|
|
for(int i=0; i<isize(dfs); i++) {
|
|
int dx, dy;
|
|
tie(dx, dy) = dfs[i];
|
|
|
|
cellwalker cw = vec_to_cellwalker(pvec + euclid_getvec(dx, dy));
|
|
if(!cw.at) continue;
|
|
transmatrix Mat = View0 * eumove(dx, dy);
|
|
torusconfig::torus_cx = dx;
|
|
torusconfig::torus_cy = dy;
|
|
|
|
if(true) {
|
|
ld locald = matrixnorm(Mat);
|
|
if(locald < centerd) centerd = locald, centerover = cw, View = inverse(actual_view_transform) * Mat;
|
|
}
|
|
|
|
if(do_draw(cw.at, Mat)) {
|
|
drawcell(cw.at, cw.mirrored ? Mat * spin(-2*M_PI*cw.spin / cw.at->type) * Mirror : Mat, cw.spin, cw.mirrored);
|
|
for(int x=-1; x<=+1; x++)
|
|
for(int y=-1; y<=+1; y++) {
|
|
euspot p(dx+x, dy+y);
|
|
if(!visited.count(p)) visited.insert(p), dfs.push_back(p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|