mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-12 10:20:32 +00:00
711 lines
23 KiB
C++
711 lines
23 KiB
C++
namespace hr {
|
|
|
|
vector<plain_floorshape*> all_plain_floorshapes;
|
|
vector<escher_floorshape*> all_escher_floorshapes;
|
|
|
|
plain_floorshape
|
|
shFloor,
|
|
shMFloor, shMFloor2, shMFloor3, shMFloor4, shFullFloor,
|
|
shBigTriangle, shTriheptaFloor, shBigHepta;
|
|
|
|
escher_floorshape shStarFloor(1,2),
|
|
shCloudFloor(3, 4),
|
|
shCrossFloor(5, 6, 2, 54),
|
|
shChargedFloor(7, 385, 1, 10),
|
|
shSStarFloor(11, 12),
|
|
shOverFloor(13, 15, 1, 14),
|
|
shTriFloor(17, 18, 0, 385),
|
|
shFeatherFloor(19, 21, 1, 20),
|
|
shBarrowFloor(23, 24, 1, 25),
|
|
shNewFloor(26, 27, 2, 54),
|
|
shTrollFloor(28, 29),
|
|
shButterflyFloor(325, 326, 1, 178),
|
|
shLavaFloor(359, 360, 1, 178),
|
|
shSeabed(334, 335),
|
|
shCloudSeabed(336, 337),
|
|
shCaveSeabed(338, 339, 2, 54),
|
|
shPalaceFloor(45, 46, 0, 385),
|
|
shDemonFloor(51, 50, 1, 178),
|
|
shCaveFloor(52, 53, 2, 54),
|
|
shDesertFloor(55, 56, 0, 4),
|
|
shPowerFloor(57, 58, 0, 12), /* dragon */
|
|
shRoseFloor(174, 175, 1, 173),
|
|
shSwitchFloor(377, 378, 1, 379),
|
|
shTurtleFloor(176, 177, 1, 178),
|
|
shRedRockFloor[3] = {{55, 56}, {55, 56}, {55, 56}}, // 1 - .1 * i
|
|
shDragonFloor(181, 182, 2, 183); /* dragon */
|
|
|
|
hyperpoint adist(ld a, ld x) {
|
|
return spin(a) * xpush(x) * C0;
|
|
}
|
|
|
|
typedef pair<transmatrix, array<transmatrix, 8>> matrixitem;
|
|
|
|
struct mesher {
|
|
eGeometry g;
|
|
int sym;
|
|
ld bspi;
|
|
hyperpoint lcorner, rcorner, mfar[2], vfar[4];
|
|
};
|
|
|
|
mesher msh(eGeometry g, int sym, ld main, ld v0, ld v1, ld bspi, ld scale) {
|
|
main *= scale; v0 *= scale; v1 *= scale;
|
|
mesher m;
|
|
m.sym = sym;
|
|
m.bspi = bspi;
|
|
dynamicval<eGeometry> dg(geometry, g);
|
|
|
|
hyperpoint rot = xpush(v0) * spin(M_PI - M_PI/sym) * xpush(main) * C0;
|
|
hyperpoint bnlfar = xpush(v0) * spin(M_PI) * rspintox(rot) * rspintox(rot) * rspintox(rot) * xpush(hdist0(rot)) * C0;
|
|
hyperpoint bnrfar = xpush(v0) * spin(M_PI) * spintox(rot) * spintox(rot) * spintox(rot) * xpush(hdist0(rot)) * C0;
|
|
|
|
m.lcorner = adist (bspi-M_PI/sym, main);
|
|
m.rcorner = adist (bspi+M_PI/sym, main);
|
|
m.mfar[0] = adist (bspi, v0);
|
|
m.mfar[1] = adist (bspi, v1);
|
|
m.vfar[0] = spin(bspi) * bnlfar;
|
|
m.vfar[2] = spin(bspi) * bnrfar;
|
|
m.vfar[1] = spin(-2*M_PI/sym) * m.vfar[2];
|
|
m.vfar[3] = spin(+2*M_PI/sym) * m.vfar[0];
|
|
|
|
return m;
|
|
}
|
|
|
|
struct matrixlist {
|
|
mesher o, n;
|
|
vector<matrixitem> v;
|
|
};
|
|
|
|
matrixitem genitem(const transmatrix& m1, const transmatrix& m2, int nsym) {
|
|
matrixitem mi;
|
|
mi.first = m1;
|
|
for(int i=0; i<nsym; i++)
|
|
mi.second[i] = spin(2*M_PI*i/nsym) * m2;
|
|
return mi;
|
|
}
|
|
|
|
void addmatrix(matrixlist& matrices, hyperpoint o0, hyperpoint o1, hyperpoint o2, hyperpoint n0, hyperpoint n1, hyperpoint n2, int d, int osym, int nsym) {
|
|
matrices.v.push_back(genitem(inverse(spin(2*M_PI*d/osym)*build_matrix(o0, o1, o2)), spin(2*M_PI*d/nsym)*build_matrix(n0, n1, n2), nsym));
|
|
}
|
|
|
|
matrixlist hex_matrices, hept_matrices;
|
|
|
|
void generate_matrices(matrixlist& matrices, const mesher& o, const mesher& n) {
|
|
matrices.v.clear();
|
|
matrices.o = o;
|
|
matrices.n = n;
|
|
|
|
for(int d=0; d<o.sym; d++) {
|
|
hyperpoint center = hpxy(0,0);
|
|
int d1 = d&1;
|
|
addmatrix(matrices, center, o.lcorner, o.rcorner, center, n.lcorner, n.rcorner, d, o.sym, n.sym);
|
|
addmatrix(matrices, o.mfar[d1], o.lcorner, o.rcorner, n.mfar[d1], n.lcorner, n.rcorner, d, o.sym, n.sym);
|
|
addmatrix(matrices, o.mfar[d1], o.lcorner, o.vfar[d1], n.mfar[d1], n.lcorner, n.vfar[d1], d, o.sym, n.sym);
|
|
addmatrix(matrices, o.mfar[d1], o.rcorner, o.vfar[d1+2], n.mfar[d1], n.rcorner, n.vfar[d1+2], d, o.sym, n.sym);
|
|
}
|
|
}
|
|
|
|
int nsym0;
|
|
|
|
void generate_matrices_scale(ld scale, int noft) {
|
|
mesher ohex = msh(gNormal, 6, 0.329036, 0.566256, 0.620672, 0, 1);
|
|
mesher ohept = msh(gNormal, 7, hexf7, hcrossf7, hcrossf7, M_PI/7, 1);
|
|
if(nonbitrunc) {
|
|
mesher nall = msh(geometry, S7, rhexf, tessf, tessf, -M_PI, scale);
|
|
bool use = geosupport_graveyard() < 2;
|
|
if(use && noft == 1) {
|
|
mesher opure = msh(gNormal, 7, 0.620672, 1.090550, 1.090550, M_PI/7, 1);
|
|
generate_matrices(hept_matrices, opure, nall);
|
|
}
|
|
else if(use && noft == 2) {
|
|
mesher oeuc = msh(gNormal, 6, sqrt(3)/6, .5, .5, 0, 1);
|
|
generate_matrices(hept_matrices, oeuc, nall);
|
|
}
|
|
else if(use && noft == 3) {
|
|
generate_matrices(hept_matrices, ohex, nall);
|
|
}
|
|
else {
|
|
generate_matrices(hex_matrices, ohex, nall);
|
|
generate_matrices(hept_matrices, ohept, nall);
|
|
}
|
|
}
|
|
else {
|
|
generate_matrices(hex_matrices, ohex, msh(geometry, S6, hexvdist, hexhexdist, hcrossf, (S3-3)*M_PI/S3, scale));
|
|
generate_matrices(hept_matrices, ohept, msh(geometry, S7, rhexf, hcrossf, hcrossf, euclid6?0:euclid4?0:M_PI/S7, scale));
|
|
}
|
|
}
|
|
|
|
void bshape2(hpcshape& sh, int p, int shapeid, matrixlist& m) {
|
|
auto& matrices = m.v;
|
|
int osym = m.o.sym;
|
|
int nsym = m.n.sym;
|
|
|
|
int whereis = 0;
|
|
while(polydata[whereis] != NEWSHAPE || polydata[whereis+1] != shapeid) whereis++;
|
|
int rots = polydata[whereis+2]; int sym = polydata[whereis+3];
|
|
whereis += 4;
|
|
int qty = 0;
|
|
while(polydata[whereis + 2*qty] != NEWSHAPE) qty++;
|
|
|
|
vector<hyperpoint> lst;
|
|
for(int i=0; i<qty; i++) {
|
|
dynamicval<eGeometry> dg(geometry, gNormal);
|
|
lst.push_back(hpxy(polydata[whereis+2*i], polydata[whereis+2*i+1]));
|
|
}
|
|
if(sym == 2)
|
|
for(int i=qty-1; i>=0; i--) {
|
|
dynamicval<eGeometry> dg(geometry, gNormal);
|
|
lst.push_back(hpxy(polydata[whereis+2*i], -polydata[whereis+2*i+1]));
|
|
}
|
|
|
|
hyperpoint lstmid = hpxyz(0,0,0);
|
|
using namespace hyperpoint_vec;
|
|
for(auto pp: lst) lstmid += pp;
|
|
transmatrix T = spin(-m.o.bspi);
|
|
while((spin(2*M_PI / rots) * T* lstmid)[0] < (T*lstmid)[0])
|
|
T = spin(2*M_PI / rots) * T;
|
|
while((spin(-2*M_PI / rots) * T* lstmid)[0] < (T*lstmid)[0])
|
|
T = spin(-2*M_PI / rots) * T;
|
|
T = spin(m.o.bspi) * T;
|
|
for(auto &pp: lst) pp = T * pp;
|
|
|
|
if(osym % rots && rots % osym) printf("warning: rotation oddity (shapeid %d, osym=%d rots=%d)\n", shapeid, osym, rots);
|
|
|
|
if(rots > osym && rots % osym == 0) {
|
|
int rep = rots / osym;
|
|
int s = lst.size();
|
|
for(int i=0; i<s*(rep-1); i++)
|
|
lst.push_back(spin(2*M_PI/rots) * lst[i]);
|
|
rots /= rep;
|
|
}
|
|
|
|
bshape(sh, p);
|
|
|
|
for(int r=0; r<nsym; r+=osym/rots) {
|
|
for(hyperpoint h: lst) {
|
|
hyperpoint nh = h;
|
|
int mapped = 0;
|
|
for(auto& m: matrices) {
|
|
hyperpoint z = m.first * h;
|
|
if(z[0] > -1e-5 && z[1] > -1e-5 && z[2] > -1e-5) {
|
|
nh = m.second[r] * z, mapped++;
|
|
}
|
|
}
|
|
if(mapped == 0) printf("warning: not mapped (shapeid %d)\n", shapeid);
|
|
hpcpush(mid(nh, nh));
|
|
}
|
|
}
|
|
|
|
hpcpush(hpc[last->s]);
|
|
}
|
|
|
|
|
|
void bshape_regular(floorshape &fsh, int id, int sides, int shift, ld size) {
|
|
bshape(fsh.b[id], fsh.prio);
|
|
for(int t=0; t<=sides; t++)
|
|
hpcpush(ddi(t*S84 / sides + shift, size) * C0);
|
|
|
|
bshape(fsh.shadow[id], fsh.prio);
|
|
for(int t=0; t<=sides; t++)
|
|
hpcpush(ddi(t*S84 / sides + shift, size * SHADMUL) * C0);
|
|
|
|
for(int k=0; k<SIDEPARS; k++) {
|
|
fsh.side[k].resize(2);
|
|
bshape(fsh.side[k][id], PPR_LAKEWALL);
|
|
hpcpush(ddi(S42/sides, size) * C0);
|
|
hpcpush(ddi(-S42/sides, size) * C0);
|
|
chasmifyPoly(dlow_table[k], dhi_table[k], k);
|
|
}
|
|
}
|
|
|
|
namespace irr { void generate_floorshapes(); }
|
|
|
|
void generate_floorshapes() {
|
|
|
|
if(irr::on) {
|
|
printf("generating irregular floorshapes...\n");
|
|
irr::generate_floorshapes();
|
|
printf("done\n");
|
|
return;
|
|
}
|
|
|
|
if(gp::on) {
|
|
return;
|
|
}
|
|
|
|
for(auto pfsh: all_plain_floorshapes) {
|
|
auto& fsh = *pfsh;
|
|
|
|
ld hexside = fsh.rad0, heptside = fsh.rad1;
|
|
|
|
fsh.b.resize(2);
|
|
fsh.shadow.resize(2);
|
|
for(int k=0; k<SIDEPARS; k++) fsh.side[k].resize(2);
|
|
|
|
int td = ((nonbitrunc || euclid) && !(S7&1)) ? S42+S6 : 0;
|
|
if(&fsh == &shBigHepta) td += S6;
|
|
|
|
int b = 0;
|
|
if(S3 == 4 && !nonbitrunc) b += S14;
|
|
|
|
bshape(fsh.b[0], fsh.prio);
|
|
if(nonbitrunc) {
|
|
if(&fsh == &shTriheptaFloor)
|
|
bshape_regular(fsh, 0, S7/2, 0, hexside);
|
|
else if(&fsh == &shBigTriangle)
|
|
bshape_regular(fsh, 0, S7/2, S12, hexside);
|
|
else
|
|
bshape_regular(fsh, 0, S7, td, heptside);
|
|
}
|
|
else if(&fsh == &shBigTriangle)
|
|
bshape_regular(fsh, 0, S3, b+S14, hexside);
|
|
else if(&fsh == &shTriheptaFloor)
|
|
bshape_regular(fsh, 0, S3, b, hexside);
|
|
else
|
|
bshape_regular(fsh, 0, S6, S7, hexside);
|
|
|
|
bshape_regular(fsh, 1, S7, td, heptside);
|
|
}
|
|
|
|
for(auto pfsh: all_escher_floorshapes) {
|
|
auto& fsh = *pfsh;
|
|
generate_matrices_scale(fsh.scale, fsh.noftype);
|
|
fsh.b.resize(2);
|
|
if(nonbitrunc && geosupport_graveyard() < 2 && fsh.shapeid2) {
|
|
bshape2(fsh.b[0], fsh.prio, fsh.shapeid2, hept_matrices);
|
|
bshape2(fsh.b[1], fsh.prio, fsh.shapeid2, hept_matrices);
|
|
}
|
|
else {
|
|
bshape2(fsh.b[0], fsh.prio, fsh.shapeid0, hex_matrices);
|
|
bshape2(fsh.b[1], fsh.prio, fsh.shapeid1, hept_matrices);
|
|
}
|
|
}
|
|
}
|
|
|
|
hyperpoint mid3(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
|
|
using namespace hyperpoint_vec;
|
|
return mid(h1+h2+h3, h1+h2+h3);
|
|
}
|
|
|
|
hyperpoint mid_at(hyperpoint h1, hyperpoint h2, ld v) {
|
|
using namespace hyperpoint_vec;
|
|
hyperpoint h = h1 * (1-v) + h2 * v;
|
|
return mid(h, h);
|
|
}
|
|
|
|
namespace gp {
|
|
int pshid[3][8][32][32][8];
|
|
int nextid;
|
|
extern gp::local_info draw_li;
|
|
|
|
void clear_plainshapes() {
|
|
for(int m=0; m<3; m++)
|
|
for(int sd=0; sd<8; sd++)
|
|
for(int i=0; i<32; i++)
|
|
for(int j=0; j<32; j++)
|
|
for(int k=0; k<8; k++)
|
|
pshid[m][sd][i][j][k] = -1;
|
|
nextid = 0;
|
|
}
|
|
|
|
hyperpoint nearcorner(cell *c, local_info& li, int i) {
|
|
cellwalker cw(c, i);
|
|
cw += wstep;
|
|
transmatrix cwm = shmup::calc_relative_matrix(cw.c, c, i);
|
|
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
|
|
return cwm * C0;
|
|
}
|
|
|
|
hyperpoint hypercorner(cell *c, local_info& li, int i) {
|
|
cellwalker cw(c, i);
|
|
cw += wstep;
|
|
transmatrix cwm = shmup::calc_relative_matrix(cw.c, c, i);
|
|
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
|
|
auto li1 = get_local_info(cw.c);
|
|
return cwm * get_corner_position(li1, (cw+2).spin);
|
|
}
|
|
|
|
hyperpoint midcorner(cell *c, local_info& li, int i, ld v) {
|
|
auto hcor = hypercorner(c, li, i);
|
|
auto tcor = get_corner_position(li, i, 3);
|
|
return mid_at(tcor, hcor, v);
|
|
}
|
|
|
|
bool just_matrices = false;
|
|
|
|
map<cell*, matrixlist> usedml;
|
|
|
|
void build_plainshape(int& id, gp::local_info& li, cell *c0, int siid, int sidir) {
|
|
if(!just_matrices)
|
|
id = nextid++;
|
|
|
|
bool master = !(li.relative.first||li.relative.second);
|
|
int cor = master ? S7 : SG6;
|
|
if(master) li.last_dir = -1;
|
|
if(debug_geometry)
|
|
printf("last=%d at=%d,%d tot=%d siid=%d sidir=%d cor=%d id=%d\n", li.last_dir, li.relative.first, li.relative.second, li.total_dir, siid, sidir, cor, id);
|
|
|
|
for(auto pfsh: all_escher_floorshapes) {
|
|
auto& fsh = *pfsh;
|
|
generate_matrices_scale(1, fsh.noftype);
|
|
auto& m = (siid && geosupport_graveyard() == 2) ? hex_matrices : hept_matrices;
|
|
|
|
m.n.sym = cor;
|
|
|
|
int i = 0;
|
|
|
|
/* if(siid == 0)
|
|
for(auto& ma: m.v) ma.first = ma.first * pispin; */
|
|
|
|
for(int d=0; d<m.o.sym; d++) {
|
|
hyperpoint center = hpxy(0,0);
|
|
|
|
for(int c=0; c<cor; c++) {
|
|
hyperpoint nlcorner = get_corner_position(li, d+c+sidir+siid+1, 3 / fsh.scale);
|
|
hyperpoint nrcorner = get_corner_position(li, d+c+sidir+siid+2, 3 / fsh.scale);
|
|
|
|
cellwalker cw(c0, c);
|
|
cw += d+sidir+siid+1;
|
|
int hint = cw.spin;
|
|
cw += wstep;
|
|
transmatrix cwm = shmup::calc_relative_matrix(cw.c, c0, hint);
|
|
hyperpoint nfar = cwm*C0;
|
|
auto li1 = get_local_info(cw.c);
|
|
hyperpoint nlfar = cwm * get_corner_position(li1, (cw+2).spin);
|
|
hyperpoint nrfar = cwm * get_corner_position(li1, (cw-1).spin);
|
|
m.v[i].second[c] = build_matrix(center, nlcorner, nrcorner);
|
|
m.v[i+1].second[c] = build_matrix(nfar, nlcorner, nrcorner);
|
|
m.v[i+2].second[c] = build_matrix(nfar, nlcorner, nlfar);
|
|
m.v[i+3].second[c] = build_matrix(nfar, nrcorner, nrfar);
|
|
}
|
|
|
|
i += 4;
|
|
}
|
|
|
|
if(i != isize(m.v)) printf("warning: i=%d sm=%d\n", i, isize(m.v));
|
|
if(just_matrices) return;
|
|
usedml[c0] = m;
|
|
|
|
fsh.b.resize(nextid);
|
|
m.n.sym = cor;
|
|
bshape2(fsh.b[id], fsh.prio, (fsh.shapeid2 && geosupport_graveyard() < 2) ? fsh.shapeid2 : siid?fsh.shapeid0:fsh.shapeid1, m);
|
|
}
|
|
|
|
for(auto pfsh: all_plain_floorshapes) {
|
|
auto& fsh = *pfsh;
|
|
|
|
ld sca = 3 * shFullFloor.rad0 / fsh.rad0;
|
|
|
|
fsh.b.resize(nextid);
|
|
|
|
vector<hyperpoint> cornerlist;
|
|
|
|
if(&fsh == &shTriheptaFloor) {
|
|
if(!siid) {
|
|
for(int i=0; i<cor; i++)
|
|
cornerlist.push_back(midcorner(c0, li, i, .49));
|
|
}
|
|
else {
|
|
for(int i=0; i<cor; i++) {
|
|
int ri = i;
|
|
if((i&1) == ((sidir+siid)&1)) ri--;
|
|
cornerlist.push_back(mid(get_corner_position(li, ri, 3.1), get_corner_position(li, ri+1, 3.1)));
|
|
}
|
|
}
|
|
}
|
|
|
|
else if(&fsh == &shBigTriangle) {
|
|
if(!siid) {
|
|
for(int i=0; i<cor; i++) cornerlist.push_back(hpxy(0,0));
|
|
}
|
|
else {
|
|
for(int i=0; i<cor; i++) {
|
|
int ri = i;
|
|
if((i&1) != ((sidir+siid)&1)) ri--;
|
|
ri = fixdir(ri, c0);
|
|
hyperpoint nc = nearcorner(c0, li, ri);
|
|
cornerlist.push_back(mid_at(hpxy(0,0), nc, .94));
|
|
}
|
|
}
|
|
}
|
|
|
|
else if(&fsh == &shBigHepta) {
|
|
if(!siid) {
|
|
for(int i=0; i<cor; i++) {
|
|
hyperpoint nc = nearcorner(c0, li, i);
|
|
cornerlist.push_back(mid_at(hpxy(0,0), nc, .94));
|
|
}
|
|
}
|
|
else {
|
|
for(int i=0; i<cor; i++) cornerlist.push_back(hpxy(0,0));
|
|
}
|
|
}
|
|
|
|
else {
|
|
for(int j=0; j<cor; j++)
|
|
cornerlist.push_back(get_corner_position(li, j, sca));
|
|
}
|
|
|
|
bshape(fsh.b[id], fsh.prio);
|
|
for(int i=0; i<=cor; i++) hpcpush(cornerlist[i%cor]);
|
|
|
|
fsh.shadow.resize(nextid);
|
|
bshape(fsh.shadow[id], fsh.prio);
|
|
for(int i=0; i<=cor; i++)
|
|
hpcpush(mid_at(hpxy(0,0), cornerlist[i%cor], SHADMUL));
|
|
|
|
cell fc;
|
|
fc.type = cor;
|
|
|
|
// printf("at = %d,%d cor = %d sca = %lf\n", li.relative.first, li.relative.second, cor, sca);
|
|
|
|
for(int k=0; k<SIDEPARS; k++)
|
|
for(int c=0; c<cor; c++) {
|
|
fsh.gpside[k][c].resize(nextid);
|
|
bshape(fsh.gpside[k][c][id], fsh.prio);
|
|
hpcpush(iddspin(&fc, c) * cornerlist[c]);
|
|
hpcpush(iddspin(&fc, c) * cornerlist[(c+1)%cor]);
|
|
chasmifyPoly(dlow_table[k], dhi_table[k], k);
|
|
}
|
|
}
|
|
|
|
finishshape(); last = NULL;
|
|
extra_vertices();
|
|
}
|
|
|
|
int get_plainshape_id(cell *c) {
|
|
int siid, sidir;
|
|
if(geosupport_threecolor() == 2) {
|
|
auto si = patterns::getpatterninfo(c, patterns::PAT_COLORING, 0);
|
|
siid = si.id>>2;
|
|
// if(siid == 2) si.dir++;
|
|
// if(siid != pattern_threecolor(c)) printf("threecolor mismatch\n");
|
|
// if(pattern_threecolor(createMov(c, fixdir(si.dir, c))) != (siid+1)%3) printf("threecolor mismatch direction\n");
|
|
sidir = fixdir(si.dir, c);
|
|
}
|
|
else if(geosupport_graveyard() == 2) {
|
|
siid = !pseudohept(c);
|
|
sidir = !ishex1(c);
|
|
}
|
|
else {
|
|
siid = 0;
|
|
sidir = 0;
|
|
}
|
|
auto& id = pshid[siid][sidir][draw_li.relative.first&31][draw_li.relative.second&31][fix6(draw_li.total_dir)];
|
|
if(id == -1 || just_matrices) build_plainshape(id, draw_li, c, siid, sidir);
|
|
return id;
|
|
}
|
|
}
|
|
|
|
namespace irr {
|
|
|
|
map<int, matrixlist> usedml;
|
|
|
|
void generate_floorshapes() {
|
|
|
|
if(irr::cells.empty()) return;
|
|
|
|
for(auto pfsh: all_escher_floorshapes) {
|
|
auto& fsh = *pfsh;
|
|
generate_matrices_scale(1, fsh.noftype);
|
|
auto& m = hept_matrices;
|
|
|
|
/* if(siid == 0)
|
|
for(auto& ma: m.v) ma.first = ma.first * pispin; */
|
|
|
|
fsh.b.resize(irr::cellcount);
|
|
|
|
for(int id=0; id<irr::cellcount; id++) {
|
|
auto& vs = irr::cells[id];
|
|
|
|
int cor = isize(vs.vertices);
|
|
m.n.sym = cor;
|
|
|
|
int i = 0;
|
|
|
|
for(int d=0; d<m.o.sym; d++) {
|
|
hyperpoint center = hpxy(0,0);
|
|
|
|
for(int c=0; c<cor; c++) {
|
|
hyperpoint nlcorner = vs.vertices[(d+c+1) % cor];
|
|
hyperpoint nrcorner = vs.vertices[(d+c+2) % cor];
|
|
|
|
hyperpoint nfar = vs.jpoints[vs.neid[(d+c+1) % cor]];
|
|
hyperpoint nlfar = nfar;
|
|
hyperpoint nrfar = nfar;
|
|
m.v[i].second[c] = build_matrix(center, nlcorner, nrcorner);
|
|
m.v[i+1].second[c] = build_matrix(nfar, nlcorner, nrcorner);
|
|
m.v[i+2].second[c] = build_matrix(nfar, nlcorner, nlfar);
|
|
m.v[i+3].second[c] = build_matrix(nfar, nrcorner, nrfar);
|
|
}
|
|
|
|
i += 4;
|
|
}
|
|
|
|
usedml[id] = m;
|
|
|
|
m.n.sym = cor;
|
|
bshape2(fsh.b[id], fsh.prio, fsh.shapeid2 ? fsh.shapeid2 : fsh.shapeid1, m);
|
|
}
|
|
}
|
|
|
|
for(auto pfsh: all_plain_floorshapes) {
|
|
auto& fsh = *pfsh;
|
|
|
|
ld sca = fsh.rad0 / shFullFloor.rad0;
|
|
|
|
fsh.b.resize(irr::cellcount);
|
|
fsh.shadow.resize(irr::cellcount);
|
|
|
|
for(int i=0; i<irr::cellcount; i++) {
|
|
auto& vs = irr::cells[i];
|
|
vector<hyperpoint> cornerlist;
|
|
|
|
int cor = isize(vs.vertices);
|
|
for(int j=0; j<cor; j++)
|
|
cornerlist.push_back(rspintox(vs.vertices[j]) * xpush(hdist0(vs.vertices[j]) * sca) * C0);
|
|
|
|
bshape(fsh.b[i], fsh.prio);
|
|
for(int i=0; i<=cor; i++) hpcpush(cornerlist[i%cor]);
|
|
|
|
bshape(fsh.shadow[i], fsh.prio);
|
|
for(int i=0; i<=cor; i++)
|
|
hpcpush(mid_at(hpxy(0,0), cornerlist[i%cor], SHADMUL));
|
|
|
|
cell fc;
|
|
fc.type = cor;
|
|
irr::cellindex[&fc] = i;
|
|
|
|
// printf("at = %d,%d cor = %d sca = %lf\n", li.relative.first, li.relative.second, cor, sca);
|
|
|
|
for(int k=0; k<SIDEPARS; k++)
|
|
for(int c=0; c<cor; c++) {
|
|
fsh.gpside[k][c].resize(irr::cellcount);
|
|
bshape(fsh.gpside[k][c][i], fsh.prio);
|
|
hpcpush(iddspin(&fc, c) * cornerlist[c]);
|
|
hpcpush(iddspin(&fc, c) * cornerlist[(c+1)%cor]);
|
|
chasmifyPoly(dlow_table[k], dhi_table[k], k);
|
|
}
|
|
}
|
|
}
|
|
|
|
finishshape(); last = NULL;
|
|
extra_vertices();
|
|
}
|
|
}
|
|
|
|
qfloorinfo qfi;
|
|
qfloorinfo qfi_dc;
|
|
|
|
int chasmg;
|
|
|
|
void set_no_floor() {
|
|
qfi.fshape = NULL;
|
|
qfi.shape = NULL;
|
|
}
|
|
|
|
void set_floor(floorshape& sh) {
|
|
qfi.fshape = &sh;
|
|
qfi.shape = NULL;
|
|
}
|
|
|
|
void set_floor(hpcshape& sh) {
|
|
qfi.shape = &sh;
|
|
qfi.fshape = NULL;
|
|
qfi.spin = Id;
|
|
}
|
|
|
|
void set_floor(const transmatrix& spin, hpcshape& sh) {
|
|
qfi.shape = &sh;
|
|
qfi.fshape = NULL;
|
|
qfi.spin = spin;
|
|
}
|
|
|
|
void draw_shapevec(cell *c, const transmatrix& V, const vector<hpcshape> &shv, int col, int prio = -1) {
|
|
if(gp::on) {
|
|
int id = gp::get_plainshape_id(c);
|
|
queuepolyat(V, shv[id], col, prio);
|
|
}
|
|
else if(irr::on) {
|
|
int id = irr::cellindex[c];
|
|
if(id < 0 || id >= isize(shv)) {
|
|
return;
|
|
}
|
|
queuepolyat(V, shv[id], col, prio);
|
|
}
|
|
else if((euclid || gp::on) && ishex1(c))
|
|
queuepolyat(V * pispin, shv[0], col, prio);
|
|
else if(!(S7&1) && nonbitrunc) {
|
|
auto si = patterns::getpatterninfo(c, patterns::PAT_COLORING, 0);
|
|
if(si.id == 8) si.dir++;
|
|
transmatrix D = applyPatterndir(c, si);
|
|
queuepolyat(V*D, shv[pseudohept(c)], col, prio);
|
|
}
|
|
else if(geosupport_threecolor() == 2)
|
|
queuepolyat(V, shv[pseudohept(c)], col, prio);
|
|
else
|
|
queuepolyat(V, shv[ctof(c)], col, prio);
|
|
}
|
|
|
|
void draw_floorshape(cell *c, const transmatrix& V, const floorshape &fsh, int col, int prio = -1) {
|
|
draw_shapevec(c, V, fsh.b, col, prio);
|
|
}
|
|
|
|
void draw_qfi(cell *c, const transmatrix& V, int col, int prio = -1, vector<hpcshape> floorshape::* tab = &floorshape::b) {
|
|
if(qfi.shape)
|
|
queuepolyat(V * qfi.spin, *qfi.shape, col, prio);
|
|
else if(!qfi.fshape) ;
|
|
#if CAP_TEXTURE
|
|
else if(qfi.tinf) {
|
|
queuetable(V * qfi.spin, qfi.tinf->vertices, isize(qfi.tinf->vertices), texture::config.mesh_color, texture::config.recolor(col), prio == -1 ? PPR_FLOOR : prio);
|
|
lastptd().u.poly.tinf = qfi.tinf;
|
|
if(gp::on)
|
|
lastptd().u.poly.flags = POLY_INVERSE;
|
|
}
|
|
#endif
|
|
else draw_shapevec(c, V, (qfi.fshape->*tab), col, prio);
|
|
}
|
|
|
|
void viewmat() {
|
|
/*
|
|
int id = 0;
|
|
if(gp::on) {
|
|
gp::just_matrices = true;
|
|
gp::draw_li = gp::get_local_info(cwt.c);
|
|
if(gp::draw_li.last_dir == -1) gp::draw_li.total_dir = 0;
|
|
gp::draw_li.total_dir = fix6(gp::draw_li.total_dir);
|
|
gp::get_plainshape_id(cwt.c);
|
|
gp::just_matrices = false;
|
|
}
|
|
// if(gp::on && !gp::usedml.count(cwt.c)) return;
|
|
// for(auto& v: (pseudohept(cwt.c) ? hept_matrices : hex_matrices).v) {
|
|
// for(auto& v: (gp::on ? gp::usedml[cwt.c] : pseudohept(cwt.c) ? hept_matrices : hex_matrices).v) {
|
|
// hyperpoint h1 = gmatrix[cwt.c] * v.second[0] * hpxyz(1,0,0);
|
|
id = irr::cellindex[cwt.c];
|
|
for(auto& v: irr::usedml[id].v) {
|
|
// for(auto& v: (gp::on ? gp::usedml[cwt.c] : pseudohept(cwt.c) ? hept_matrices : hex_matrices).v) {
|
|
|
|
hyperpoint h1 = gmatrix[cwt.c] * v.second[0] * hpxyz(1,0,0);
|
|
hyperpoint h2 = gmatrix[cwt.c] * v.second[0] * hpxyz(0,1,0);
|
|
hyperpoint h3 = gmatrix[cwt.c] * v.second[0] * hpxyz(0,0,1);
|
|
queueline(h1, h2, 0xFFFFFFFF, 4, PPR_LINE);
|
|
queueline(h2, h3, 0xFFFFFFFF, 4, PPR_LINE);
|
|
queueline(h3, h1, 0xFFFFFFFF, 4, PPR_LINE);
|
|
hyperpoint ch = mid3(h1, h2, h3);
|
|
queuestr(ch, vid.fsize, its(id), 0xFFFFFF);
|
|
if(0) {
|
|
hyperpoint h1 = gmatrix[cwt.c] * inverse(v.first) * hpxyz(1,0,0);
|
|
hyperpoint h2 = gmatrix[cwt.c] * inverse(v.first) * hpxyz(0,1,0);
|
|
hyperpoint h3 = gmatrix[cwt.c] * inverse(v.first) * hpxyz(0,0,1);
|
|
queueline(h1, h2, 0xFF00FF80, 4, PPR_LINE);
|
|
queueline(h2, h3, 0xFF00FF80, 4, PPR_LINE);
|
|
queueline(h3, h1, 0xFF00FF80, 4, PPR_LINE);
|
|
hyperpoint ch = mid3(h1, h2, h3);
|
|
queuestr(ch, vid.fsize, its(id), 0xFFFFFF);
|
|
}
|
|
id++;
|
|
} */
|
|
}
|
|
|
|
}
|