1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-01 13:00:57 +00:00
hyperrogue/rogueviz/hypocycloid.cpp

169 lines
6.0 KiB
C++

// compile with mymake rogueviz/hypocycloid
// for https://twitter.com/ZenoRogue/status/1358464890978127875 :
// -hypocyc -shot-1000 -noscr -canvas i -noplayer -geo 1 circ1=1 circ2=2 show=.05 lw=20 -zoom .9 -animvideo 360 cycloid-2-euc.mp4
// for https://twitter.com/ZenoRogue/status/1358464962088337410 :
// -hypocyc -shot-1000 -noscr -canvas i -noplayer -geo 0 "circ1=0../0..4../0..|4../0..0../0" "circ2=0../0..8../0..|8../0..0../0" show=.05 lw=3 loops=10 -zoom .9 -animvideo 3600 cycloid-2-hyp.mp4
// for https://twitter.com/ZenoRogue/status/1358465029876690948 :
// -hypocyc -shot-1000 -noscr -canvas i -noplayer -geo 0 "circ1=0../0..8../0..|8../0..0../0" "circ2=0../0..32../0..|32../0..0../0" prec=3600 show=.05 lw=3 loops=10 -zoom .9 -animvideo 3600 cycloid-4-hyp.mp4
// for https://twitter.com/ZenoRogue/status/1358506225990828033 :
// -hypocyc -shot-1000 -noscr -canvas i -noplayer -geo 2 "circ1=0../0...5../0..|.5../0..0../0" "circ2=0../0..1../0..|1../0..0../0" show=.05 lw=3 loops=10 -zoom .9 -animvideo 1200 cycloid-2-sph.mp4
// for https://twitter.com/ZenoRogue/status/1358505146553159682 :
// -hypocyc -shot-1000 -noscr -canvas i -noplayer -geo 0 circ1=1 circ2=2 show=.1 lw=5 -zoom .9 "ratio=2../0..8../0..|8../0..2../0" prec=3600 -animvideo 3600 half-radius.mp4
#include "../hyper.h"
namespace hr {
namespace hypocyc {
/* what to roll on: 0 = circle, 1 = horocycle, 2 = straight line, 3 = equidistant */
int shape = 0;
ld circ1 = 0.5; /* circumference of the small circle (actually, circumference divided by 2pi) */
ld circ2 = 1; /* circumference of the large circle (actually, circumference divided by 2pi); for shape=3, this determines the radius */
ld show = 0.02; /* radius of the blue circle which shows the moving point */
ld lw = 3; /* linewidth multiplier */
ld loops = 1; /* with loops=k, the circle goes around k times during the full animation; the unit is the rotation of the large circle for shape=0 and the rotation of the small circle for shape>0 */
ld ratio = 0; /* if set to non-zero, circ1 and circ2 are assigned so that the ratio of radii is ratio */
ld xdist = 0; /* by how much shift the image */
int prec = 360; /* precision */
ld cshift = 0; /* cshift=0 means that we start at the center point, cshift=.5 means it is in the middle of the route */
ld draw_loops = 1; /* how many loops to draw */
void circ_frame() {
ld t = (frac((1. * ticks) / anims::period) - cshift) * prec * loops;
if(ratio) {
ld min = 0;
ld max = 10;
for(int it=0; it<100; it++) {
ld x = (min + max) / 2;
ld f = sin_auto(2*x) - ratio * sin_auto(x);
if((f > 0) ^ sphere) max = x;
else min = x;
}
circ1 = sin_auto(min);
circ2 = sin_auto(2*min);
}
ld rad1 = asin_auto(circ1);
ld rad2 = asin_auto(circ2);
dynamicval<ld> d(circ2);
if(circ2 > 1) {
/* circumference between 1 and 2 means the other hemisphere */
circ2 = 2 - circ2;
rad2 = M_PI - asin_auto(circ2);
}
vid.linewidth *= lw;
shiftmatrix at = ggmatrix(cwt.at) * xpush(xdist);
ld kdegree = TAU / prec;
ld cs = TAU * cshift;
if(shape) {
auto shapefun = [&] (ld x) {
if(shape == 1)
return parabolic1(x);
if(shape == 2)
return ypush(x);
if(shape == 3)
return xpush(-rad2) * ypush(x / cosh(rad2)) * xpush(rad2);
return Id;
};
for(int i=0; i<=prec*draw_loops; i++) {
ld t = i*kdegree-cs*draw_loops;
curvepoint(shapefun(circ1*t) * C0);
}
queuecurve(at, 0xFF0000FF, 0x200000FF, PPR::LINE);
for(int i=0; i<=prec; i++)
curvepoint(shapefun(circ1*t*kdegree) * xpush(rad1) * spin(i*kdegree) * xpush(rad1) * C0);
queuecurve(at, 0x00FF00FF, 0x002000FF, PPR::LINE);
for(int q=0; q<360; q+=36) queueline(
at * shapefun(circ1*t*kdegree) * xpush(rad1) * C0,
at * shapefun(circ1*t*kdegree) * xpush(rad1) * spin(q*degree-t*kdegree) * xpush(rad1) * C0,
0xFFD500FF, 4);
for(int i=0; i<=prec; i++)
curvepoint(shapefun(circ1*t*kdegree) * xpush(rad1) * spin(M_PI-t*kdegree) * xpush(rad1) * spin(i*kdegree) * xpush(show) * C0);
queuecurve(at, 0xFFFFFFFF, 0xFFFF, PPR::LINE);
for(int i=0; i<=prec*draw_loops; i++) {
ld t = i*kdegree-cs*draw_loops;
curvepoint(shapefun(circ1*t) * xpush(rad1) * spin(M_PI-t) * xpush(rad1) * C0);
}
queuecurve(at, 0xFFFFFFFF, 0, PPR::LINE);
}
else {
if(1) {
for(int i=0; i<=prec; i++)
curvepoint(spin(i*kdegree) * xpush(rad2) * C0);
queuecurve(at, 0xFF0000FF, 0x200000FF, PPR::LINE);
}
for(int i=0; i<=prec; i++)
curvepoint(spin(t*kdegree) * xpush(rad2-rad1) * spin(i*kdegree) * xpush(rad1) * C0);
queuecurve(at, 0x00FF00FF, 0x002000FF, PPR::LINE);
for(int q=0; q<360; q+=36) queueline(
at * spin(t*kdegree) * xpush(rad2-rad1) * C0,
at * spin(t*kdegree) * xpush(rad2-rad1) * spin(q*degree-t*kdegree*circ2/circ1) * xpush(rad1) * C0,
0xFFD500FF, 4);
for(int i=0; i<=prec*draw_loops; i++) {
ld t = i*kdegree-cs*draw_loops;
curvepoint(spin(t) * xpush(rad2-rad1) * spin(-t*circ2/circ1) * xpush(rad1) * C0);
}
queuecurve(at, 0xFFFFFFFF, 0, PPR::LINE);
for(int i=0; i<=prec; i++)
curvepoint(spin(t*kdegree) * xpush(rad2-rad1) * spin(-t*kdegree*circ2/circ1) * xpush(rad1) * spin(i*kdegree) * xpush(show) * C0);
queuecurve(at, 0xFFFFFFFF, 0xFFFF, PPR::LINE);
}
vid.linewidth /= lw;
}
void enable() {
addHook(hooks_frame, 100, circ_frame);
}
auto shot_hooks = arg::add2("-hypocyc", enable)
+ addHook(hooks_configfile, 100, [] {
param_f(circ1, "circ1");
param_f(circ2, "circ2");
param_f(show, "show");
param_f(loops, "loops");
param_f(ratio, "ratio");
param_i(prec, "prec");
param_f(xdist, "xdist");
param_f(lw, "lw");
param_f(cshift, "cshift");
param_i(shape, "shape");
param_f(draw_loops, "draw_loops");
});
}
}