mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-23 15:36:59 +00:00
239 lines
6.6 KiB
C++
239 lines
6.6 KiB
C++
// Hyperbolic Rogue
|
|
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// heptagon here refers to underlying heptagonal tesselation
|
|
// (which you can see by changing the conditions in graph.cpp)
|
|
|
|
#define MIRR(x) x.mirrored
|
|
|
|
// automaton state
|
|
enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC };
|
|
|
|
#define MODFIXER 23520
|
|
|
|
int fixrot(int a) { return (a+MODFIXER)% S7; }
|
|
int fix42(int a) { return (a+MODFIXER)% S42; }
|
|
|
|
struct heptagon;
|
|
|
|
struct cell;
|
|
cell *newCell(int type, heptagon *master);
|
|
|
|
// spintable functions
|
|
|
|
int tspin(uint32_t& t, int d) {
|
|
return (t >> (d<<2)) & 7;
|
|
}
|
|
|
|
int tmirror(uint32_t& t, int d) {
|
|
return (t >> ((d<<2)+3)) & 1;
|
|
}
|
|
|
|
void tsetspin(uint32_t& t, int d, int spin) {
|
|
t &= ~(15 << (d<<2));
|
|
t |= spin << (d<<2);
|
|
}
|
|
|
|
struct heptagon {
|
|
// automaton state
|
|
hstate s : 6;
|
|
int dm4: 2;
|
|
// we are spin[i]-th neighbor of move[i]
|
|
uint32_t spintable;
|
|
int spin(int d) { return tspin(spintable, d); }
|
|
int mirror(int d) { return tmirror(spintable, d); }
|
|
void setspin(int d, int sp) { tsetspin(spintable, d, sp); }
|
|
// neighbors; move[0] always goes towards origin,
|
|
// and then we go clockwise
|
|
heptagon* move[MAX_EDGE];
|
|
// distance from the origin
|
|
short distance;
|
|
// emerald/wineyard generator
|
|
short emeraldval;
|
|
// fifty generator
|
|
short fiftyval;
|
|
// zebra generator (1B actually)
|
|
short zebraval;
|
|
// field id
|
|
int fieldval;
|
|
// evolution data
|
|
short rval0, rval1;
|
|
struct cdata *cdata;
|
|
// central cell
|
|
cell *c7;
|
|
// associated generator of alternate structure, for Camelot and horocycles
|
|
heptagon *alt;
|
|
// functions
|
|
heptagon*& modmove(int i) { return move[fixrot(i)]; }
|
|
unsigned char gspin(int i) { return spin(fixrot(i)); }
|
|
};
|
|
|
|
// the automaton is used to generate each heptagon in an unique way
|
|
// (you can see the tree obtained by changing the conditions in graph.cpp)
|
|
// from the origin we can go further in any direction, and from other heptagons
|
|
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
|
|
// and sometimes in direction 5
|
|
|
|
hstate transition(hstate s, int dir) {
|
|
if(sphere) {
|
|
if(S7 == 4) {
|
|
if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1;
|
|
}
|
|
if(S7 == 3) {
|
|
if(s == hsOrigin) return hsB1;
|
|
}
|
|
if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1;
|
|
if(s == hsA0 && dir == 2) return hsB0;
|
|
if(s == hsA1 && dir == 2) return hsB1;
|
|
if(s == hsB0 && dir == S7-2) return hsC;
|
|
return hsError;
|
|
}
|
|
else {
|
|
if(s == hsOrigin) return hsA;
|
|
if(s == hsA && dir >= 3 && dir <= S7-3) return hsA;
|
|
if(s == hsA && dir == S7-2) return hsB;
|
|
if(s == hsB && dir == S7-3) return hsB;
|
|
if(s == hsB && dir == 3) return hsA;
|
|
if(s == hsB && AT8 && dir == 4) return hsA;
|
|
}
|
|
return hsError;
|
|
}
|
|
|
|
// create h->move[d] if not created yet
|
|
heptagon *createStep(heptagon *h, int d);
|
|
|
|
/*
|
|
int indent = 0;
|
|
|
|
struct indenter {
|
|
indenter() { indent += 2; }
|
|
~indenter() { indent -= 2; }
|
|
};
|
|
|
|
template<class... T> auto iprintf(T... t) { for(int i=0; i<indent; i++) putchar(' '); return printf(t...); }
|
|
*/
|
|
|
|
// create a new heptagon
|
|
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0) {
|
|
heptagon *h = new heptagon;
|
|
h->alt = NULL;
|
|
h->s = s;
|
|
for(int i=0; i<MAX_EDGE; i++) h->move[i] = NULL;
|
|
h->spintable = 0;
|
|
h->move[pard] = parent; tsetspin(h->spintable, pard, d);
|
|
parent->move[d] = h; tsetspin(parent->spintable, d, pard);
|
|
if(parent->c7) {
|
|
h->c7 = newCell(S7, h);
|
|
h->rval0 = h->rval1 = 0; h->cdata = NULL;
|
|
if(!AT8) {
|
|
h->emeraldval = emerald_heptagon(parent->emeraldval, d);
|
|
h->zebraval = zebra_heptagon(parent->zebraval, d);
|
|
h->fieldval = fp43.connections[fieldpattern::btspin(parent->fieldval, d)];
|
|
if(parent->s == hsOrigin)
|
|
h->fiftyval = fiftytable[0][d];
|
|
else
|
|
h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d);
|
|
}
|
|
}
|
|
else {
|
|
h->c7 = NULL;
|
|
h->emeraldval = 0;
|
|
h->fiftyval = 0;
|
|
}
|
|
//generateEmeraldval(parent);
|
|
//generateEmeraldval(h);
|
|
if(pard == 0) {
|
|
h->dm4 = parent->dm4+1;
|
|
if(purehepta) h->distance = parent->distance + 1;
|
|
else if(parent->s == hsOrigin) h->distance = 2;
|
|
else if(h->spin(0) == 5)
|
|
h->distance = parent->distance + 1;
|
|
else if(h->spin(0) == 4 && h->move[0]->s == hsB)
|
|
h->distance = createStep(h->move[0], (h->spin(0)+2)%7)->distance + 3;
|
|
else h->distance = parent->distance + 2;
|
|
}
|
|
else {
|
|
h->distance = parent->distance - (purehepta?1:2);
|
|
h->dm4 = parent->dm4-1;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
|
|
rot = fixrot(rot);
|
|
createStep(from, rot);
|
|
h->move[d] = from->move[rot];
|
|
h->setspin(d, fixrot(from->spin(rot) + spin));
|
|
h->move[d]->move[fixrot(from->spin(rot) + spin)] = h;
|
|
h->move[d]->setspin(fixrot(from->spin(rot) + spin), d);
|
|
//generateEmeraldval(h->move[d]); generateEmeraldval(h);
|
|
}
|
|
|
|
extern int hrand(int);
|
|
|
|
heptagon *createStep(heptagon *h, int d) {
|
|
d = fixrot(d);
|
|
if(!h->move[0] && h->s != hsOrigin) {
|
|
buildHeptagon(h, 0, hsA, 3 + hrand(2));
|
|
}
|
|
if(h->move[d]) return h->move[d];
|
|
if(h->s == hsOrigin) {
|
|
buildHeptagon(h, d, hsA);
|
|
}
|
|
else if(d == 1) {
|
|
addSpin(h, d, h->move[0], h->spin(0)-1, -1);
|
|
}
|
|
else if(d == S7-1) {
|
|
addSpin(h, d, h->move[0], h->spin(0)+1, +1);
|
|
}
|
|
else if(d == 2) {
|
|
createStep(h->move[0], h->spin(0)-1);
|
|
addSpin(h, d, h->move[0]->modmove(h->spin(0)-1), S7-2 + h->move[0]->gspin(h->spin(0)-1), -1);
|
|
}
|
|
else if(d == S7-2 && h->s == hsB) {
|
|
createStep(h->move[0], h->spin(0)+1);
|
|
addSpin(h, d, h->move[0]->modmove(h->spin(0)+1), 2 + h->move[0]->gspin(h->spin(0)+1), +1);
|
|
}
|
|
else
|
|
buildHeptagon(h, d, (d == S7-2 || (h->s == hsB && d == S7-3)) ? hsB : hsA);
|
|
return h->move[d];
|
|
}
|
|
|
|
// a structure used to walk on the heptagonal tesselation
|
|
// (remembers not only the heptagon, but also direction)
|
|
struct heptspin {
|
|
heptagon *h;
|
|
int spin;
|
|
bool mirrored;
|
|
heptspin() { mirrored = false; }
|
|
};
|
|
|
|
heptspin hsstep(const heptspin &hs, int spin) {
|
|
createStep(hs.h, hs.spin);
|
|
heptspin res;
|
|
res.h = hs.h->move[hs.spin];
|
|
res.mirrored = hs.mirrored ^ hs.h->mirror(hs.spin);
|
|
res.spin = fixrot(hs.h->spin(hs.spin) + (MIRR(res)?-spin:spin));
|
|
return res;
|
|
}
|
|
|
|
heptspin hsspin(const heptspin &hs, int val) {
|
|
heptspin res;
|
|
res.h = hs.h;
|
|
res.spin = fixrot(hs.spin + (MIRR(hs)?-val:val));
|
|
res.mirrored = hs.mirrored;
|
|
return res;
|
|
}
|
|
|
|
// display the coordinates of the heptagon
|
|
void backtrace(heptagon *pos) {
|
|
if(pos->s == hsOrigin) return;
|
|
backtrace(pos->move[0]);
|
|
printf(" %d", pos->spin(0));
|
|
}
|
|
|
|
void hsshow(const heptspin& t) {
|
|
printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin);
|
|
}
|
|
|