mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-31 20:40:33 +00:00
300 lines
8.4 KiB
C++
300 lines
8.4 KiB
C++
#include "../hyper.h"
|
|
|
|
// Impossible Triangle visualization
|
|
|
|
// used in: https://www.youtube.com/watch?v=YmFDd49WsrY
|
|
|
|
// settings:
|
|
// ./mymake -O3 rogueviz/triangle
|
|
// ./hyper -geo Nil -canvas x -tstep 8 -nilperiod 3 3 3
|
|
|
|
// also used in: https://youtu.be/RPL4-Ydviug
|
|
|
|
// ./hyper -geo Nil -nilwidth .9 -canvas x -tstep 1 -nilperiod 1 10 1 -triset 32 31 992
|
|
|
|
namespace hr {
|
|
|
|
// each color group (i.e., each face direction) is a different hpcshape
|
|
hpcshape ptriangle[6];
|
|
|
|
EX hyperpoint lerp(hyperpoint a0, hyperpoint a1, ld x) {
|
|
return a0 + (a1-a0) * x;
|
|
}
|
|
|
|
hyperpoint operator+(hyperpoint x) { return x; }
|
|
|
|
// do not change this
|
|
int shape = 1;
|
|
|
|
// how many cubes to subdivide edges to
|
|
int how = 8;
|
|
|
|
// how many cubes to draw (should be smaller than how because they are not really cubes and thus they get into each other)
|
|
int how1 = how - 1;
|
|
|
|
// precision: number of substeps to simulate (best if divisible by how and how1)
|
|
int isteps = 4 * 1024;
|
|
|
|
/* make the impossible triangle shape */
|
|
void make_shape() {
|
|
|
|
static bool done = false;
|
|
if(done) return;
|
|
done = true;
|
|
|
|
// four main axes of the regular tetrahedron, rotated so that ds[3] points to (0,0,1)
|
|
|
|
ld rest = sqrt(8/9.);
|
|
ld rex = sqrt(1 - 1/9. - pow(rest/2., 2));
|
|
|
|
hyperpoint ds[4];
|
|
|
|
ds[0] = point3(rex, -rest/2, -1/3.);
|
|
ds[1] = point3(0, rest, -1/3.);
|
|
ds[2] = point3(-rex, -rest/2, -1/3.);
|
|
ds[3] = point3(0, 0, +1);
|
|
|
|
hyperpoint start = point31(0, 0, 0);
|
|
|
|
double lastz;
|
|
|
|
double lasta;
|
|
|
|
double ca;
|
|
|
|
// compute how to scale this in Nil so that everything fits
|
|
|
|
for(ld a = 1e-5;; a+=1e-5) {
|
|
hyperpoint at = start;
|
|
for(int d=0; d<3; d++) {
|
|
for(int i=0; i<isteps; i++) {
|
|
at = nisot::translate(at) * (start + ds[d] * a);
|
|
}
|
|
}
|
|
|
|
println(hlog, "at = ", at, " for a = ", a, " sq = ", at[2] / a / a);
|
|
if(at[2] > 0) {
|
|
ld z = at[2];
|
|
ca = lerp(lasta, a, ilerp(lastz, z, 0));
|
|
break;
|
|
}
|
|
lastz = at[2]; lasta =a;
|
|
}
|
|
|
|
println(hlog, "ca = ", ca);
|
|
|
|
ld scale = .2;
|
|
|
|
// compute the shift between the cubes
|
|
|
|
array<hyperpoint, 4> uds;
|
|
for(int d=0; d<3; d++) {
|
|
hyperpoint at = start;
|
|
for(int i=0; i<isteps/how; i++) {
|
|
at = nisot::translate(at) * (start + ds[d] * ca);
|
|
}
|
|
uds[d] = (at - start) / 2.;
|
|
}
|
|
|
|
println(hlog, "uds = ", uds);
|
|
|
|
for(int a=0; a<3; a++) println(hlog, sqhypot_d(3, inverse_exp(start + ds[a] * ca, iTable, false)));
|
|
|
|
for(int a=0; a<3; a++) println(hlog, sqhypot_d(3, inverse_exp(uds[a], iTable, false)));
|
|
|
|
// compute cube vertices
|
|
|
|
hyperpoint verts[8];
|
|
for(int a=0; a<8; a++) {
|
|
verts[a] = start;
|
|
for(int k=0; k<3; k++)
|
|
verts[a] += (a&(1<<k)) ? uds[k] : -uds[k];
|
|
}
|
|
|
|
// since Nil does not really have cubes, we need to move the vertices a bit so that it looks nicer
|
|
|
|
// ugliness of the current vertices
|
|
|
|
auto errf = [&] {
|
|
ld res = 0;
|
|
for(int s=0; s<8; s++)
|
|
for(int t=0; t<3; t++) {
|
|
if((s & (1<<t)) == 0) {
|
|
int s1 = s | (1<<t);
|
|
ld dix = sqhypot_d(3, inverse(nisot::translate(nisot::translate(start + 2*uds[t]) * verts[s])) * verts[s1]);
|
|
// println(hlog, tie(s, t), "di = ", dix);
|
|
res += dix * dix;
|
|
}
|
|
}
|
|
return res;
|
|
};
|
|
|
|
// minimize the ugliness
|
|
|
|
ld curerr = errf();
|
|
println(hlog, "curerr = ", curerr);
|
|
int att = 0;
|
|
if(1) while(true) {
|
|
int id = rand() % 8;
|
|
int j = rand() % 3;
|
|
ld eps = (rand() % 100 - rand() % 100) / 100000.;
|
|
verts[id][j] += eps;
|
|
ld nerr = errf();
|
|
if(nerr < curerr) {
|
|
curerr = nerr;
|
|
println(hlog, "curerr = ", curerr, " # ", att);
|
|
att = 0;
|
|
}
|
|
else {
|
|
verts[id][j] -= eps;
|
|
}
|
|
att++;
|
|
if(att > 50000) break;
|
|
}
|
|
|
|
for(int s=0; s<8; s++)
|
|
for(int t=0; t<3; t++) {
|
|
if((s & (1<<t)) == 0) {
|
|
int s1 = s | (1<<t);
|
|
ld dix = sqhypot_d(3, inverse(nisot::translate(nisot::translate(start + 2*uds[t]) * verts[s])) * verts[s1]);
|
|
println(hlog, tie(s, t), "di = ", dix);
|
|
}
|
|
}
|
|
|
|
scale = 1.;
|
|
|
|
// build all the faces
|
|
|
|
for(int si=0; si<6; si++) {
|
|
cgi.bshape(ptriangle[si], PPR::WALL);
|
|
hyperpoint at = start;
|
|
|
|
for(int d=0; d<3; d++) {
|
|
|
|
int d1 = (d+1) % 3;
|
|
int d2 = (d+2) % 3;
|
|
|
|
hyperpoint path[isteps+1];
|
|
for(int i=0; i<isteps; i++) {
|
|
path[i] = at;
|
|
at = nisot::translate(at) * (start + ds[d] * ca);
|
|
}
|
|
path[isteps] = at;
|
|
|
|
auto &u = uds[d];
|
|
auto &v = uds[d1];
|
|
auto &w = uds[d2];
|
|
|
|
auto textured_square = [&] (auto f) {
|
|
texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 + iy/2, .5 + ix/2 - iy/2); });
|
|
texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 - iy/2, .5 - ix/2 + iy/2); });
|
|
texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 - iy/2, .5 - ix/2 - iy/2); });
|
|
texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 + iy/2, .5 + ix/2 + iy/2); });
|
|
};
|
|
|
|
auto sidewall = [&] (hyperpoint wide, hyperpoint shift) {
|
|
textured_square( [&] (ld ix, ld iy) {
|
|
hyperpoint online = path[int(ix * isteps + .1)];
|
|
hyperpoint shf = lerp(u, -u, ix) + lerp(-wide, wide, iy) + shift;
|
|
shf *= scale;
|
|
cgi.hpcpush(nisot::translate(online) * (start + shf));
|
|
});
|
|
};
|
|
|
|
auto sidesquare = [&] (hyperpoint wx, hyperpoint wy, hyperpoint shift, ld p) {
|
|
textured_square( [&] (ld ix, ld iy) {
|
|
hyperpoint online = path[int(p * isteps + .1)];
|
|
hyperpoint shf = lerp(wx, -wx, ix) + lerp(wy, -wy, iy) + shift;
|
|
shf *= scale;
|
|
cgi.hpcpush(nisot::translate(online) * (start + shf));
|
|
});
|
|
};
|
|
|
|
auto sidesquare1 = [&] (hyperpoint a00, hyperpoint a01, hyperpoint a10, hyperpoint a11, ld p) {
|
|
hyperpoint online = path[int(p * isteps + .1)];
|
|
textured_square( [&] (ld ix, ld iy) {
|
|
hyperpoint shf = lerp(lerp(a00, a01, ix), lerp(a10, a11, ix), iy);
|
|
shf *= scale;
|
|
cgi.hpcpush(nisot::translate(online) * (shf));
|
|
});
|
|
};
|
|
|
|
if(shape == 0) {
|
|
if(si == d2*2) sidewall(v, w);
|
|
if(si == d1*2) sidewall(w, v);
|
|
if(si == d2*2+1) sidewall(v, -w);
|
|
if(si == d1*2+1) sidewall(w, -v);
|
|
|
|
if(si == d2*2) sidesquare(u, v, w, 0);
|
|
if(si == d1*2) sidesquare(w, u, v, 0);
|
|
if(si == d1*2+1) sidesquare(u, w, -v, 0);
|
|
if(si == d*2+1) sidesquare(w, v, -u, 0);
|
|
}
|
|
|
|
if(shape == 1) for(int a=0; a<how1; a++) {
|
|
ld c = a * 1. / how1;
|
|
|
|
/*
|
|
if(si == d*2) sidesquare(v, w, u, c);
|
|
if(si == d*2+1) sidesquare(w, v, -u, c);
|
|
if(si == d1*2) sidesquare(w, u, v, c);
|
|
if(si == d1*2+1) sidesquare(u, w, -v, c);
|
|
if(si == d2*2) sidesquare(u, v, w, c);
|
|
if(si == d2*2+1) sidesquare(v, u, -w, c);
|
|
*/
|
|
|
|
if(si == 0) sidesquare1(verts[0], verts[2], verts[4], verts[6], c);
|
|
if(si == 1) sidesquare1(verts[1], verts[3], verts[5], verts[7], c);
|
|
if(si == 2) sidesquare1(verts[0], verts[1], verts[4], verts[5], c);
|
|
if(si == 3) sidesquare1(verts[2], verts[3], verts[6], verts[7], c);
|
|
if(si == 4) sidesquare1(verts[0], verts[1], verts[2], verts[3], c);
|
|
if(si == 5) sidesquare1(verts[4], verts[5], verts[6], verts[7], c);
|
|
|
|
}
|
|
}
|
|
|
|
cgi.last->flags |= POLY_TRIANGLES;
|
|
cgi.last->tinf = &floor_texture_vertices[0];
|
|
cgi.last->texture_offset = 0;
|
|
cgi.finishshape();
|
|
cgi.extra_vertices();
|
|
}
|
|
}
|
|
|
|
// Magic Cube (aka Rubik Cube) colors
|
|
|
|
color_t magiccolors[6] = { 0xFFFF00FF, 0xFFFFFFFF, 0x0000FFFF, 0x00FF00FF, 0xFF0000FF, 0xFF8000FF};
|
|
|
|
bool draw_ptriangle(cell *c, const transmatrix& V) {
|
|
make_shape();
|
|
|
|
if(c == cwt.at) {
|
|
for(int side=0; side<6; side++) {
|
|
auto &s = queuepoly(V, ptriangle[side], magiccolors[side]);
|
|
ensure_vertex_number(*s.tinf, s.cnt);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle)
|
|
|
|
+ addHook(hooks_args, 100, [] {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-triset")) {
|
|
shift(); how = argi();
|
|
shift(); how1 = argi();
|
|
shift(); isteps = argi();
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
});
|
|
|
|
|
|
|
|
}
|