mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-12 10:20:32 +00:00
1550 lines
42 KiB
C++
1550 lines
42 KiB
C++
// Hyperbolic Rogue -- cells
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// cells the game is played on
|
|
|
|
namespace hr {
|
|
|
|
int fix6(int a) { return (a+MODFIXER)%S6; }
|
|
int fix7(int a) { return (a+MODFIXER)%S7; }
|
|
|
|
int dirdiff(int dd, int t) {
|
|
dd %= t;
|
|
if(dd<0) dd += t;
|
|
if(t-dd < dd) dd = t-dd;
|
|
return dd;
|
|
}
|
|
|
|
int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; }
|
|
|
|
int cellcount = 0;
|
|
|
|
void initcell(cell *c); // from game.cpp
|
|
|
|
cell *newCell(int type, heptagon *master) {
|
|
cell *c = tailored_alloc<cell> (type);
|
|
c->type = type;
|
|
c->master = master;
|
|
initcell(c);
|
|
return c;
|
|
}
|
|
|
|
struct cdata {
|
|
int val[4];
|
|
int bits;
|
|
};
|
|
|
|
// -- hrmap ---
|
|
|
|
hrmap *currentmap;
|
|
vector<hrmap*> allmaps;
|
|
|
|
// --- auxiliary hyperbolic map for horocycles ---
|
|
struct hrmap_alternate : hrmap {
|
|
heptagon *origin;
|
|
hrmap_alternate(heptagon *o) { origin = o; }
|
|
~hrmap_alternate() { clearfrom(origin); }
|
|
};
|
|
|
|
hrmap *newAltMap(heptagon *o) { return new hrmap_alternate(o); }
|
|
// --- hyperbolic geometry ---
|
|
|
|
hrmap_hyperbolic::hrmap_hyperbolic() {
|
|
// printf("Creating hyperbolic map: %p\n", this);
|
|
origin = tailored_alloc<heptagon> (S7);
|
|
heptagon& h = *origin;
|
|
h.s = hsOrigin;
|
|
h.emeraldval = a46 ? 0 : 98;
|
|
h.zebraval = 40;
|
|
h.fiftyval = 0;
|
|
h.fieldval = 0;
|
|
h.rval0 = h.rval1 = 0;
|
|
h.cdata = NULL;
|
|
h.alt = NULL;
|
|
h.distance = 0;
|
|
mvar = variation;
|
|
if(binarytiling) {
|
|
#if DEBUG_BINARY_TILING
|
|
binary::xcode.clear();
|
|
binary::rxcode.clear();
|
|
binary::xcode[&h] = (1 << 16);
|
|
binary::rxcode[1<<16] = &h;
|
|
#endif
|
|
h.zebraval = 0,
|
|
h.c7 = newCell(6, origin);
|
|
}
|
|
else if(IRREGULAR)
|
|
irr::link_start(origin);
|
|
else
|
|
h.c7 = newCell(S7, origin);
|
|
}
|
|
|
|
// --- spherical geometry ---
|
|
|
|
int spherecells() {
|
|
if(S7 == 5) return (elliptic?6:12);
|
|
if(S7 == 4) return (elliptic?3:6);
|
|
if(S7 == 3) return 4;
|
|
if(S7 == 2) return (elliptic?1:2);
|
|
if(S7 == 1) return 1;
|
|
return 12;
|
|
}
|
|
|
|
vector<int> siblings;
|
|
|
|
struct hrmap_spherical : hrmap {
|
|
heptagon *dodecahedron[12];
|
|
eVariation mvar;
|
|
|
|
hrmap_spherical() {
|
|
mvar = variation;
|
|
for(int i=0; i<spherecells(); i++) {
|
|
heptagon& h = *(dodecahedron[i] = new heptagon);
|
|
h.s = hsOrigin;
|
|
h.emeraldval = i;
|
|
h.zebraval = i;
|
|
h.fiftyval = i;
|
|
h.rval0 = h.rval1 = 0;
|
|
h.alt = NULL;
|
|
h.cdata = NULL;
|
|
h.c.fullclear();
|
|
h.fieldval = i;
|
|
if(!IRREGULAR) h.c7 = newCell(S7, &h);
|
|
}
|
|
if(S7 == 5)
|
|
siblings = {1, 0, 10, 4, 3, 8, 9, 11, 5, 6, 2, 7};
|
|
else
|
|
siblings = {1, 0, 3, 2, 5, 4};
|
|
|
|
if(S7 == 4 && elliptic) {
|
|
for(int i=0; i<3; i++) {
|
|
int i1 = (i+1)%3;
|
|
int i2 = (i+2)%3;
|
|
dodecahedron[i]->move(0) = dodecahedron[i1];
|
|
dodecahedron[i]->c.setspin(0, 1, false);
|
|
dodecahedron[i]->move(1) = dodecahedron[i2];
|
|
dodecahedron[i]->c.setspin(1, 0, false);
|
|
dodecahedron[i]->move(2) = dodecahedron[i1];
|
|
dodecahedron[i]->c.setspin(2, 3, true);
|
|
dodecahedron[i]->move(3) = dodecahedron[i2];
|
|
dodecahedron[i]->c.setspin(3, 2, true);
|
|
}
|
|
}
|
|
else for(int i=0; i<S7; i++) {
|
|
dodecahedron[0]->move(i) = dodecahedron[i+1];
|
|
dodecahedron[0]->c.setspin(i, 0, false);
|
|
dodecahedron[i+1]->move(0) = dodecahedron[0];
|
|
dodecahedron[i+1]->c.setspin(0, i, false);
|
|
|
|
dodecahedron[i+1]->move(1) = dodecahedron[(i+S7-1)%S7+1];
|
|
dodecahedron[i+1]->c.setspin(1, S7-1, false);
|
|
dodecahedron[i+1]->move(S7-1) = dodecahedron[(i+1)%S7+1];
|
|
dodecahedron[i+1]->c.setspin(S7-1, 1, false);
|
|
|
|
if(S7 == 5 && elliptic) {
|
|
dodecahedron[i+1]->move(2) = dodecahedron[(i+2)%S7+1];
|
|
dodecahedron[i+1]->c.setspin(2, 3, true);
|
|
dodecahedron[i+1]->move(3) = dodecahedron[(i+3)%S7+1];
|
|
dodecahedron[i+1]->c.setspin(3, 2, true);
|
|
}
|
|
|
|
else if(S7 == 5) {
|
|
dodecahedron[6]->move(i) = dodecahedron[7+i];
|
|
dodecahedron[6]->c.setspin(i, 0, false);
|
|
dodecahedron[7+i]->move(0) = dodecahedron[6];
|
|
dodecahedron[7+i]->c.setspin(0, i, false);
|
|
|
|
dodecahedron[i+7]->move(1) = dodecahedron[(i+4)%5+7];
|
|
dodecahedron[i+7]->c.setspin(1, 4, false);
|
|
dodecahedron[i+7]->move(4) = dodecahedron[(i+1)%5+7];
|
|
dodecahedron[i+7]->c.setspin(4, 1, false);
|
|
|
|
dodecahedron[i+1]->move(2) = dodecahedron[7+(10-i)%5];
|
|
dodecahedron[i+1]->c.setspin(2, 2, false);
|
|
dodecahedron[7+(10-i)%5]->move(2) = dodecahedron[1+i];
|
|
dodecahedron[7+(10-i)%5]->c.setspin(2, 2, false);
|
|
|
|
dodecahedron[i+1]->move(3) = dodecahedron[7+(9-i)%5];
|
|
dodecahedron[i+1]->c.setspin(3, 3, false);
|
|
dodecahedron[7+(9-i)%5]->move(3) = dodecahedron[i+1];
|
|
dodecahedron[7+(9-i)%5]->c.setspin(3, 3, false);
|
|
}
|
|
if(S7 == 4) {
|
|
dodecahedron[5]->move(3-i) = dodecahedron[i+1];
|
|
dodecahedron[5]->c.setspin(3-i, 2, false);
|
|
dodecahedron[i+1]->move(2) = dodecahedron[5];
|
|
dodecahedron[i+1]->c.setspin(2, 3-i, false);
|
|
}
|
|
}
|
|
|
|
if(IRREGULAR) {
|
|
irr::link_start(dodecahedron[0]);
|
|
for(int i=0; i<spherecells(); i++)
|
|
for(int j=0; j<S7; j++)
|
|
irr::may_link_next(dodecahedron[i], j);
|
|
}
|
|
}
|
|
|
|
heptagon *getOrigin() { return dodecahedron[0]; }
|
|
|
|
~hrmap_spherical() {
|
|
dynamicval<eVariation> ph(variation, mvar);
|
|
for(int i=0; i<spherecells(); i++) clearHexes(dodecahedron[i]);
|
|
for(int i=0; i<spherecells(); i++) delete dodecahedron[i];
|
|
}
|
|
|
|
void verify() {
|
|
for(int i=0; i<spherecells(); i++) for(int k=0; k<S7; k++) {
|
|
heptspin hs(dodecahedron[i], k, false);
|
|
heptspin hs2 = hs + wstep + (S7-1) + wstep + (S7-1) + wstep + (S7-1);
|
|
if(hs2.at != hs.at) printf("error %d,%d\n", i, k);
|
|
}
|
|
for(int i=0; i<spherecells(); i++) verifycells(dodecahedron[i]);
|
|
}
|
|
};
|
|
|
|
heptagon *getDodecahedron(int i) {
|
|
hrmap_spherical *s = dynamic_cast<hrmap_spherical*> (currentmap);
|
|
if(!s) return NULL;
|
|
return s->dodecahedron[i];
|
|
}
|
|
|
|
// --- euclidean geometry ---
|
|
|
|
// NOTE: patterns assume that pair_to_vec(0,1) % 3 == 2!
|
|
// Thus, pair_to_vec(0,1) must not be e.g. a power of four
|
|
|
|
int pair_to_vec(int x, int y) {
|
|
return x + (y << 15);
|
|
}
|
|
|
|
pair<int, int> vec_to_pair(int vec) {
|
|
int x = vec & ((1<<15)-1);
|
|
int y = (vec >> 15);
|
|
if(x >= (1<<14)) x -= (1<<15), y++;
|
|
return {x, y};
|
|
}
|
|
|
|
namespace torusconfig {
|
|
// the configuration of the torus topology.
|
|
// torus cells are indexed [0..qty),
|
|
// where the cell to the right from i is indexed i+dx,
|
|
// and the cell to the down-right is numbered i+dy
|
|
|
|
// Changed with command line option: -tpar <qty>,<dx>,<dy>
|
|
// Ideally, qty, dx, and dy should have the same "modulo 3"
|
|
// values as the default -- otherwise the three-color
|
|
// pattern breaks. Also, they should have no common
|
|
// prime divisor.
|
|
int def_qty = 127*3, dx = 1, def_dy = -11*2;
|
|
int qty = def_qty, dy = def_dy;
|
|
|
|
int sdx = 12, sdy = 12;
|
|
|
|
// new values to change
|
|
int newqty, newdy, newsdx, newsdy;
|
|
int torus_cx, torus_cy;
|
|
|
|
vector<torusmode_info> tmodes = {
|
|
{"single row (hex)", TF_SINGLE | TF_HEX},
|
|
{"single row (squares)", TF_SINGLE | TF_SQUARE},
|
|
{"parallelogram (hex)", TF_SIMPLE | TF_HEX},
|
|
{"rectangle (squares)", TF_SIMPLE | TF_SQUARE},
|
|
{"rectangle (hex)", TF_WEIRD | TF_HEX},
|
|
{"Klein bottle (squares)", TF_SIMPLE | TF_KLEIN | TF_SQUARE},
|
|
{"Klein bottle (hex)", TF_WEIRD | TF_KLEIN | TF_HEX},
|
|
};
|
|
|
|
eTorusMode torus_mode, newmode;
|
|
flagtype tmflags() { return tmodes[torus_mode].flags; }
|
|
|
|
int getqty() {
|
|
if(tmflags() & TF_SINGLE)
|
|
return qty;
|
|
else
|
|
return sdx * sdy;
|
|
}
|
|
|
|
int getvec(int x, int y) {
|
|
if(tmflags() & TF_SINGLE)
|
|
return x * dx + y * dy;
|
|
else if(tmflags() & TF_SIMPLE)
|
|
return pair_to_vec(x, y);
|
|
else
|
|
return pair_to_vec(-y - 2 * x, 3 * y);
|
|
}
|
|
|
|
int id_to_vec(int id, bool mirrored = false) {
|
|
if(tmflags() & TF_SINGLE)
|
|
return id;
|
|
else {
|
|
int dx = id % sdx;
|
|
int dy = id / sdx;
|
|
if(mirrored)
|
|
dy = -dy, dx += sdx;
|
|
if(tmflags() & TF_SIMPLE)
|
|
return pair_to_vec(dx, dy);
|
|
else
|
|
return pair_to_vec(- 2 * dx - (dy & 1), 3 * dy);
|
|
}
|
|
}
|
|
|
|
pair<int, bool> vec_to_id_mirror(int vec) {
|
|
if(tmflags() & TF_SINGLE) {
|
|
return {gmod(vec, qty), false};
|
|
}
|
|
else {
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(vec);
|
|
bool mirror = false;
|
|
if(tmflags() & TF_KLEIN) {
|
|
if(tmflags() & TF_WEIRD) {
|
|
x = gmod(x, 4 * sdx);
|
|
mirror = x > 0 && x <= 2 * sdx;
|
|
}
|
|
else {
|
|
x = gmod(x, 2 * sdx);
|
|
mirror = x >= sdx;
|
|
}
|
|
if(mirror) y = -y;
|
|
}
|
|
if(tmflags() & TF_WEIRD) {
|
|
y /= 3; x = (x + (y&1)) / -2;
|
|
}
|
|
x = gmod(x, sdx), y = gmod(y, sdy);
|
|
return {y * sdx + x, mirror};
|
|
}
|
|
}
|
|
|
|
int vec_to_id(int vec) {
|
|
return vec_to_id_mirror(vec).first;
|
|
}
|
|
|
|
void torus_test() {
|
|
printf("Testing torus vec_to_pair/pair_to_vec...\n");
|
|
for(int x=-10; x<=10; x++)
|
|
for(int y=-10; y<=10; y++) {
|
|
auto p = vec_to_pair(pair_to_vec(x, y));
|
|
if(p.first != x || p.second != y)
|
|
printf("Failed for (%d,%d) -> [%d] -> (%d,%d)\n", x, y, pair_to_vec(x,y), p.first, p.second);
|
|
}
|
|
printf("Testing id_to_vec / vec_to_id...\n");
|
|
for(int i=0; i < getqty(); i++)
|
|
for(int m=0; m< (torus_mode == tmKlein ? 2 : 1); m++)
|
|
if(vec_to_id_mirror(id_to_vec(i, m)) != pair<int,bool> (i,m))
|
|
printf("Failed for id %d.%d [%d] (%d.%d)\n", i, m, id_to_vec(i,m), vec_to_id(id_to_vec(i,m)), vec_to_id_mirror(id_to_vec(i,m)).second);
|
|
}
|
|
|
|
int tester = addHook(hooks_tests, 0, torus_test);
|
|
|
|
void activate() {
|
|
if(tmflags() & TF_HEX)
|
|
ginf[gTorus].vertex = 3, ginf[gTorus].sides = 6;
|
|
else
|
|
ginf[gTorus].vertex = 4, ginf[gTorus].sides = 4;
|
|
}
|
|
}
|
|
|
|
int euclid_getvec(int dx, int dy) {
|
|
if(torus) return torusconfig::getvec(dx, dy);
|
|
else return pair_to_vec(dx, dy);
|
|
}
|
|
|
|
template<class T> void build_euclidean_moves(cell *c, int vec, const T& builder) {
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(vec);
|
|
c->type = a4 ? (PURE || ((x^y^1) & 1) ? 4 : 8) : 6;
|
|
|
|
if(c->type == 4) {
|
|
int m = PURE ? 1 : 2;
|
|
builder(euclid_getvec(+1,+0), 0, 2 * m);
|
|
builder(euclid_getvec(+0,+1), 1, 3 * m);
|
|
builder(euclid_getvec(-1,+0), 2, 0 * m);
|
|
builder(euclid_getvec(+0,-1), 3, 1 * m);
|
|
}
|
|
else if(c->type == 8) {
|
|
builder(euclid_getvec(+1,+0), 0, 2);
|
|
builder(euclid_getvec(+1,+1), 1, 5);
|
|
builder(euclid_getvec(+0,+1), 2, 3);
|
|
builder(euclid_getvec(-1,+1), 3, 7);
|
|
builder(euclid_getvec(-1,+0), 4, 0);
|
|
builder(euclid_getvec(-1,-1), 5, 1);
|
|
builder(euclid_getvec(+0,-1), 6, 1);
|
|
builder(euclid_getvec(+1,-1), 7, 3);
|
|
}
|
|
else /* 6 */ {
|
|
builder(euclid_getvec(+1,+0), 0, 3);
|
|
builder(euclid_getvec(+0,+1), 1, 4);
|
|
builder(euclid_getvec(-1,+1), 2, 5);
|
|
builder(euclid_getvec(-1,+0), 3, 0);
|
|
builder(euclid_getvec(+0,-1), 4, 1);
|
|
builder(euclid_getvec(+1,-1), 5, 2);
|
|
}
|
|
}
|
|
|
|
struct hrmap_torus : hrmap {
|
|
|
|
vector<cell*> all;
|
|
vector<int> dists;
|
|
|
|
virtual vector<cell*>& allcells() { return all; }
|
|
|
|
cell *gamestart() {
|
|
return all[0];
|
|
}
|
|
|
|
hrmap_torus() {
|
|
using namespace torusconfig;
|
|
int q = getqty();
|
|
all.resize(q);
|
|
for(int i=0; i<q; i++) {
|
|
all[i] = newCell(8, encodeId(i));
|
|
}
|
|
for(int i=0; i<q; i++) {
|
|
int iv = id_to_vec(i);
|
|
build_euclidean_moves(all[i], iv, [&] (int delta, int d, int d2) {
|
|
auto im = vec_to_id_mirror(iv + delta);
|
|
all[i]->move(d) = all[im.first];
|
|
all[i]->c.setspin(d, im.second, false);
|
|
});
|
|
}
|
|
for(cell *c: all) for(int d=0; d<c->type; d++) {
|
|
cell *c2 = c->move(d);
|
|
for(int d2=0; d2<c2->type; d2++)
|
|
if(c2->move(d2) == c)
|
|
c->c.setspin(d, d2, c->c.spin(d));
|
|
}
|
|
celllister cl(gamestart(), 100, 100000000, NULL);
|
|
dists.resize(q);
|
|
for(int i=0; i<isize(cl.lst); i++)
|
|
dists[decodeId(cl.lst[i]->master)] = cl.dists[i];
|
|
}
|
|
|
|
~hrmap_torus() {
|
|
for(cell *c: all) delete c;
|
|
}
|
|
};
|
|
|
|
hrmap_torus *torusmap() {
|
|
return dynamic_cast<hrmap_torus*> (currentmap);
|
|
}
|
|
|
|
/* cell *getTorusId(int id) {
|
|
hrmap_torus *cur = torusmap();
|
|
if(!cur) return NULL;
|
|
return cur->all[id];
|
|
} */
|
|
|
|
struct hrmap_euclidean : hrmap {
|
|
|
|
cell *gamestart() {
|
|
return euclideanAtCreate(0);
|
|
}
|
|
|
|
struct euclideanSlab {
|
|
cell* a[256][256];
|
|
euclideanSlab() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
a[y][x] = NULL;
|
|
}
|
|
~euclideanSlab() {
|
|
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
|
|
if(a[y][x]) delete a[y][x];
|
|
}
|
|
};
|
|
|
|
static const int slabs = max_vec / 256;
|
|
|
|
euclideanSlab* euclidean[slabs][slabs];
|
|
|
|
hrmap_euclidean() {
|
|
for(int y=0; y<slabs; y++) for(int x=0; x<slabs; x++)
|
|
euclidean[y][x] = NULL;
|
|
}
|
|
|
|
cell*& at(int vec) {
|
|
auto p = vec_to_pair(vec);
|
|
int x = p.first, y = p.second;
|
|
euclideanSlab*& slab = euclidean[(y>>8)&(slabs-1)][(x>>8)&(slabs-1)];
|
|
if(!slab) slab = new hrmap_euclidean::euclideanSlab;
|
|
return slab->a[y&255][x&255];
|
|
}
|
|
|
|
map<int, struct cdata> eucdata;
|
|
|
|
~hrmap_euclidean() {
|
|
for(int y=0; y<slabs; y++) for(int x=0; x<slabs; x++)
|
|
if(euclidean[y][x]) {
|
|
delete euclidean[y][x];
|
|
euclidean[y][x] = NULL;
|
|
}
|
|
eucdata.clear();
|
|
}
|
|
};
|
|
|
|
cellwalker vec_to_cellwalker(int vec) {
|
|
if(!torus)
|
|
return cellwalker(euclideanAtCreate(vec), 0, false);
|
|
else {
|
|
hrmap_torus *cur = torusmap();
|
|
if(!cur) return cellwalker(NULL, 0);
|
|
auto p = torusconfig::vec_to_id_mirror(vec);
|
|
return cellwalker(cur->all[p.first], 0, p.second);
|
|
}
|
|
}
|
|
|
|
int cellwalker_to_vec(cellwalker cw) {
|
|
int id = decodeId(cw.at->master);
|
|
if(!torus) return id;
|
|
return torusconfig::id_to_vec(id, cw.mirrored);
|
|
}
|
|
|
|
int cell_to_vec(cell *c) {
|
|
int id = decodeId(c->master);
|
|
if(!torus) return id;
|
|
return torusconfig::id_to_vec(id, false);
|
|
}
|
|
|
|
pair<int, int> cell_to_pair(cell *c) {
|
|
return vec_to_pair(cell_to_vec(c));
|
|
}
|
|
|
|
union heptacoder {
|
|
heptagon *h;
|
|
int id;
|
|
};
|
|
|
|
int decodeId(heptagon* h) {
|
|
heptacoder u;
|
|
u.h = h; return u.id;
|
|
}
|
|
|
|
heptagon* encodeId(int id) {
|
|
heptacoder u;
|
|
u.id = id;
|
|
return u.h;
|
|
}
|
|
|
|
// --- quotient geometry ---
|
|
|
|
namespace quotientspace {
|
|
struct code {
|
|
int c[MAX_EDGE+1];
|
|
};
|
|
|
|
bool operator == (const code& c1, const code &c2) {
|
|
for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return false;
|
|
return true;
|
|
}
|
|
|
|
bool operator < (const code& c1, const code &c2) {
|
|
for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i];
|
|
return false;
|
|
}
|
|
|
|
int cod(heptagon *h) {
|
|
return zebra40(h->c7);
|
|
}
|
|
|
|
code get(heptspin hs) {
|
|
code res;
|
|
res.c[0] = cod(hs.at);
|
|
for(int i=1; i<=S7; i++) {
|
|
res.c[i] = cod((hs + wstep).at);
|
|
hs += 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int rvadd = 0, rvdir = 1;
|
|
|
|
int rv(int x) { return (rvadd+x*rvdir) % S7; }
|
|
|
|
struct hrmap_quotient : hrmap {
|
|
|
|
hrmap_hyperbolic base;
|
|
|
|
vector<cell*> celllist;
|
|
|
|
cell *origin;
|
|
|
|
map<quotientspace::code, int> reachable;
|
|
vector<heptspin> bfsq;
|
|
|
|
vector<int> connections;
|
|
|
|
void add(const heptspin& hs) {
|
|
code g = get(hs);
|
|
if(!reachable.count(g)) {
|
|
reachable[g] = bfsq.size();
|
|
bfsq.push_back(hs);
|
|
add(hs + 1);
|
|
}
|
|
}
|
|
|
|
vector<heptagon*> allh;
|
|
|
|
hrmap_quotient() {
|
|
|
|
static int symmask = (1<<30);
|
|
|
|
connections.clear();
|
|
switch(geometry) {
|
|
case gFieldQuotient: {
|
|
connections = currfp.connections;
|
|
break;
|
|
}
|
|
|
|
case gZebraQuotient: {
|
|
heptspin hs(base.origin);
|
|
reachable.clear();
|
|
bfsq.clear();
|
|
add(hs);
|
|
|
|
for(int i=0; i<(int)bfsq.size(); i++) {
|
|
hs = bfsq[i] + wstep;
|
|
add(hs);
|
|
connections.push_back(reachable[get(hs)]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case gMinimal: {
|
|
int altzebra[6][7] = {
|
|
{ 16,125,111, 45, 32, 56, 20 },
|
|
{ 26,102,146,152, 35,124, 00 },
|
|
{ 06, 55,143,134,115,101, 10 },
|
|
{ 41, 50, 04, 44,123, 14,153 },
|
|
{ 51, 30,154,122, 33, 03,112 },
|
|
{ 31, 40,113,136,142, 21, 05 }
|
|
};
|
|
|
|
// int ok = 0;
|
|
for(int a=0; a<6; a++) {
|
|
for(int b=0; b<7; b++) {
|
|
int s = altzebra[a][b];
|
|
int mirr = s/100; s %= 100;
|
|
int which = s/10; s %= 10;
|
|
|
|
int shouldbe = a*10+b+mirr*100;
|
|
|
|
if(altzebra[which][s] != shouldbe) {
|
|
printf("error at %d:%d (is=%d shouldbe=%d)\n", a, b, altzebra[which][s], shouldbe);
|
|
}
|
|
|
|
connections.push_back(which * 7 + s + (mirr ? symmask : 0) );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case gKleinQuartic: {
|
|
connections = {
|
|
/* 000 */ 7, 14, 21, 28, 35, 42, 49,
|
|
/* 001 */ 0, 55, 56, 63, 70, 77, 15,
|
|
/* 002 */ 1, 13, 83, 84, 91, 98, 22,
|
|
/* 003 */ 2, 20, 104, 105, 112, 119, 29,
|
|
/* 004 */ 3, 27, 125, 74, 126, 133, 36,
|
|
/* 005 */ 4, 34, 139, 95, 66, 140, 43,
|
|
/* 006 */ 5, 41, 146, 116, 87, 147, 50,
|
|
/* 007 */ 6, 48, 153, 130, 108, 57, 8,
|
|
/* 008 */ 9, 54, 107, 102, 154, 142, 64,
|
|
/* 009 */ 10, 62, 141, 39, 94, 161, 71,
|
|
/* 010 */ 11, 69, 167, 127, 31, 124, 78,
|
|
/* 011 */ 12, 76, 123, 158, 149, 85, 16,
|
|
/* 012 */ 17, 82, 148, 46, 115, 163, 92,
|
|
/* 013 */ 18, 90, 162, 67, 38, 138, 99,
|
|
/* 014 */ 19, 97, 137, 155, 59, 106, 23,
|
|
/* 015 */ 24, 103, 58, 53, 129, 165, 113,
|
|
/* 016 */ 25, 111, 164, 88, 45, 145, 120,
|
|
/* 017 */ 26, 118, 144, 159, 79, 75, 30,
|
|
/* 018 */ 32, 73, 166, 109, 52, 152, 134,
|
|
/* 019 */ 33, 132, 151, 156, 100, 96, 37,
|
|
/* 020 */ 40, 65, 61, 160, 121, 117, 44,
|
|
/* 021 */ 47, 86, 81, 157, 135, 131, 51,
|
|
/* 022 */ 60, 101, 136, 150, 80, 122, 143,
|
|
/* 023 */ 68, 93, 89, 114, 110, 128, 72,
|
|
};
|
|
break;
|
|
}
|
|
|
|
case gBolza: {
|
|
connections = {
|
|
/* 000 */ 8, 16, 24, 32, 12, 20, 28, 36,
|
|
/* 001 */ 0, 35, 47, 21, 4, 39, 43, 17,
|
|
/* 002 */ 1, 15, 42, 29, 5, 11, 46, 25,
|
|
/* 003 */ 2, 23, 45, 37, 6, 19, 41, 33,
|
|
/* 004 */ 3, 31, 40, 9, 7, 27, 44, 13,
|
|
/* 005 */ 34, 30, 18, 14, 38, 26, 22, 10,
|
|
};
|
|
break;
|
|
}
|
|
|
|
case gBolza2: {
|
|
connections = {
|
|
/* 000 */ 16, 32, 48, 64, 24, 40, 56, 72,
|
|
/* 001 */ 20, 44, 52, 76, 28, 36, 60, 68,
|
|
/* 002 */ 0, 79, 83, 45, 8, 67, 95, 33,
|
|
/* 003 */ 4, 71, 87, 37, 12, 75, 91, 41,
|
|
/* 004 */ 1, 23, 94, 61, 13, 27, 86, 49,
|
|
/* 005 */ 5, 31, 90, 53, 9, 19, 82, 57,
|
|
/* 006 */ 2, 39, 85, 77, 10, 43, 89, 65,
|
|
/* 007 */ 6, 47, 81, 69, 14, 35, 93, 73,
|
|
/* 008 */ 3, 55, 88, 21, 15, 59, 80, 25,
|
|
/* 009 */ 7, 63, 92, 29, 11, 51, 84, 17,
|
|
/* 010 */ 70, 58, 46, 18, 78, 50, 38, 26,
|
|
/* 011 */ 66, 54, 42, 30, 74, 62, 34, 22,
|
|
};
|
|
break;
|
|
}
|
|
|
|
default: break;
|
|
}
|
|
|
|
int TOT = connections.size() / S7;
|
|
// printf("heptagons = %d\n", TOT);
|
|
// printf("all cells = %d\n", TOT*(S7+S3)/S3);
|
|
if(!TOT) exit(1);
|
|
allh.resize(TOT);
|
|
for(int i=0; i<TOT; i++) allh[i] = new heptagon;
|
|
// heptagon *oldorigin = origin;
|
|
allh[0]->alt = base.origin;
|
|
|
|
for(int i=0; i<TOT; i++) {
|
|
heptagon *h = allh[i];
|
|
if(i) {
|
|
h->alt = NULL;
|
|
}
|
|
if(true) {
|
|
h->s = hsOrigin;
|
|
h->emeraldval = 0;
|
|
h->zebraval = 0;
|
|
h->fiftyval = 0;
|
|
h->fieldval = S7*i;
|
|
h->rval0 = h->rval1 = 0; h->cdata = NULL;
|
|
h->distance = 0;
|
|
if(!IRREGULAR) h->c7 = newCell(S7, h);
|
|
}
|
|
for(int j=0; j<S7; j++) {
|
|
int co = connections[i*S7+j];
|
|
bool swapped = co & symmask;
|
|
co &= ~symmask;
|
|
h->move(rv(j)) = allh[co/S7];
|
|
h->c.setspin(rv(j), rv(co%S7), swapped);
|
|
}
|
|
}
|
|
|
|
for(int i=0; i<TOT; i++) {
|
|
generateAlts(allh[i], geometry == gBolza2 ? 3 : S3-3, false);
|
|
allh[i]->emeraldval = allh[i]->alt->emeraldval;
|
|
allh[i]->zebraval = allh[i]->alt->zebraval;
|
|
allh[i]->fiftyval = allh[i]->alt->fiftyval;
|
|
allh[i]->distance = allh[i]->alt->distance;
|
|
/* for(int j=0; j<7; j++)
|
|
allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */
|
|
}
|
|
|
|
if(IRREGULAR) {
|
|
irr::link_start(allh[0]);
|
|
for(int i=0; i<TOT; i++)
|
|
for(int j=0; j<S7; j++)
|
|
irr::may_link_next(allh[i], j);
|
|
}
|
|
|
|
celllister cl(gamestart(), 100, 100000000, NULL);
|
|
celllist = cl.lst;
|
|
}
|
|
|
|
heptagon *getOrigin() { return allh[0]; }
|
|
|
|
~hrmap_quotient() {
|
|
for(int i=0; i<isize(allh); i++) {
|
|
clearHexes(allh[i]);
|
|
delete allh[i];
|
|
}
|
|
}
|
|
|
|
vector<cell*>& allcells() { return celllist; }
|
|
};
|
|
|
|
};
|
|
|
|
// --- general ---
|
|
|
|
// very similar to createMove in heptagon.cpp
|
|
cell *createMov(cell *c, int d) {
|
|
if(d<0 || d>= c->type) {
|
|
printf("ERROR createmov\n");
|
|
}
|
|
|
|
if(masterless && !c->move(d)) {
|
|
int id = decodeId(c->master);
|
|
for(int dx=-1; dx<=1; dx++)
|
|
for(int dy=-1; dy<=1; dy++)
|
|
euclideanAtCreate(id + pair_to_vec(dx, dy));
|
|
if(!c->move(d)) { printf("fail!\n"); }
|
|
}
|
|
|
|
if(c->move(d)) return c->move(d);
|
|
else if(IRREGULAR) {
|
|
irr::link_cell(c, d);
|
|
}
|
|
else if(GOLDBERG) {
|
|
gp::extend_map(c, d);
|
|
if(!c->move(d)) {
|
|
printf("extend failed to create for %p/%d\n", c, d);
|
|
exit(1);
|
|
}
|
|
}
|
|
else if(PURE && archimedean) {
|
|
if(arcm::id_of(c->master) <= arcm::current.N * 2) {
|
|
heptspin hs = heptspin(c->master, d) + wstep + 2 + wstep + 1;
|
|
c->c.connect(d, hs.at->c7, hs.spin, hs.mirrored);
|
|
}
|
|
else c->c.connect(d, c, d, false);
|
|
}
|
|
else if(PURE || archimedean) {
|
|
heptagon *h2 = createStep(c->master, d);
|
|
c->c.connect(d, h2->c7,c->master->c.spin(d),false);
|
|
}
|
|
else if(c == c->master->c7) {
|
|
|
|
cell *n = newCell(S6, c->master);
|
|
|
|
heptspin hs(c->master, d, false);
|
|
|
|
int alt3 = c->type/2;
|
|
int alt4 = alt3+1;
|
|
|
|
for(int u=0; u<S6; u+=2) {
|
|
if(hs.mirrored && geometry == gSmallElliptic) hs+=1;
|
|
hs.at->c7->c.connect(hs.spin, n, u, hs.mirrored);
|
|
if(hs.mirrored && geometry == gSmallElliptic) hs+=-1;
|
|
hs = hs + alt3 + wstep - alt4;
|
|
}
|
|
extern void verifycell(cell *c);
|
|
verifycell(n);
|
|
}
|
|
|
|
else {
|
|
cellwalker cw(c, d, false);
|
|
cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1;
|
|
c->c.connect(d, cw2);
|
|
}
|
|
return c->move(d);
|
|
}
|
|
|
|
cell *createMovR(cell *c, int d) {
|
|
d %= MODFIXER; d += MODFIXER; d %= c->type;
|
|
return createMov(c, d);
|
|
}
|
|
|
|
cell *getMovR(cell *c, int d) {
|
|
d %= MODFIXER; d += MODFIXER; d %= c->type;
|
|
return c->move(d);
|
|
}
|
|
|
|
void eumerge(cell* c1, cell *c2, int s1, int s2) {
|
|
if(!c2) return;
|
|
c1->move(s1) = c2; c1->c.setspin(s1, s2, false);
|
|
c2->move(s2) = c1; c2->c.setspin(s2, s1, false);
|
|
}
|
|
|
|
// map<pair<eucoord, eucoord>, cell*> euclidean;
|
|
|
|
cell*& euclideanAt(int vec) {
|
|
if(torus) { printf("euclideanAt called\n"); exit(1); }
|
|
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
|
|
return euc->at(vec);
|
|
}
|
|
|
|
cell*& euclideanAtCreate(int vec) {
|
|
cell*& c = euclideanAt(vec);
|
|
if(!c) {
|
|
c = newCell(8, encodeId(vec));
|
|
euclideanAt(vec) = c;
|
|
build_euclidean_moves(c, vec, [c,vec] (int delta, int d, int d2) { eumerge(c, euclideanAt(vec + delta), d, d2); });
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// initializer (also inits origin from heptagon.cpp)
|
|
void initcells() {
|
|
DEBB(DF_INIT, (debugfile,"initcells\n"));
|
|
|
|
if(archimedean) currentmap = arcm::new_map();
|
|
else if(torus) currentmap = new hrmap_torus;
|
|
else if(euclid) currentmap = new hrmap_euclidean;
|
|
else if(sphere) currentmap = new hrmap_spherical;
|
|
else if(quotient) currentmap = new quotientspace::hrmap_quotient;
|
|
else currentmap = new hrmap_hyperbolic;
|
|
|
|
allmaps.push_back(currentmap);
|
|
|
|
windmap::create();
|
|
|
|
// origin->emeraldval =
|
|
}
|
|
|
|
void clearcell(cell *c) {
|
|
if(!c) return;
|
|
DEBMEM ( printf("c%d %p\n", c->type, c); )
|
|
for(int t=0; t<c->type; t++) if(c->move(t)) {
|
|
DEBMEM ( printf("mov %p [%p] S%d\n", c->move(t), c->move(t)->move(c->c.spin(t)), c->c.spin(t)); )
|
|
if(c->move(t)->move(c->c.spin(t)) != NULL &&
|
|
c->move(t)->move(c->c.spin(t)) != c) {
|
|
printf("type = %d %d -> %d\n", c->type, t, c->c.spin(t));
|
|
printf("cell error\n");
|
|
exit(1);
|
|
}
|
|
c->move(t)->move(c->c.spin(t)) = NULL;
|
|
}
|
|
DEBMEM ( printf("DEL %p\n", c); )
|
|
delete c;
|
|
}
|
|
|
|
heptagon deletion_marker;
|
|
|
|
template<class T> void subcell(cell *c, const T& t) {
|
|
if(GOLDBERG) {
|
|
forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) {
|
|
subcell(c2, t);
|
|
}
|
|
}
|
|
else if(BITRUNCATED && !archimedean && !binarytiling)
|
|
forCellEx(c2, c) t(c2);
|
|
t(c);
|
|
}
|
|
|
|
void clearHexes(heptagon *at) {
|
|
if(at->c7 && at->cdata) {
|
|
delete at->cdata;
|
|
at->cdata = NULL;
|
|
}
|
|
if(IRREGULAR) irr::clear_links(at);
|
|
else if(at->c7) subcell(at->c7, clearcell);
|
|
}
|
|
|
|
void unlink_cdata(heptagon *h) {
|
|
if(h->alt && h->c7) {
|
|
if(h->alt->cdata == (cdata*) h)
|
|
h->alt->cdata = NULL;
|
|
}
|
|
}
|
|
|
|
void clearfrom(heptagon *at) {
|
|
queue<heptagon*> q;
|
|
unlink_cdata(at);
|
|
q.push(at);
|
|
at->alt = &deletion_marker;
|
|
//int maxq = 0;
|
|
while(!q.empty()) {
|
|
at = q.front();
|
|
// if(q.size() > maxq) maxq = q.size();
|
|
q.pop();
|
|
DEBMEM ( printf("from %p\n", at); )
|
|
if(!at->c7) {
|
|
heptagon *h = (heptagon*) at->cdata;
|
|
if(h) {
|
|
if(h->alt != at) printf("alt error :: h->alt = %p\n", h->alt);
|
|
cell *c = h->c7;
|
|
subcell(c, destroycellcontents);
|
|
h->alt = NULL;
|
|
at->cdata = NULL;
|
|
}
|
|
}
|
|
int edges = at->degree();
|
|
if(binarytiling) edges = at->c7->type;
|
|
for(int i=0; i<edges; i++) if(at->move(i)) {
|
|
if(at->move(i)->alt != &deletion_marker)
|
|
q.push(at->move(i));
|
|
unlink_cdata(at->move(i));
|
|
at->move(i)->alt = &deletion_marker;
|
|
DEBMEM ( printf("!mov %p [%p]\n", at->move(i), at->move(i)->move[at->c.spin(i)]); )
|
|
if(at->move(i)->move(at->c.spin(i)) != NULL &&
|
|
at->move(i)->move(at->c.spin(i)) != at) {
|
|
printf("hept error\n");
|
|
exit(1);
|
|
}
|
|
at->move(i)->move(at->c.spin(i)) = NULL;
|
|
at->move(i) = NULL;
|
|
}
|
|
clearHexes(at);
|
|
delete at;
|
|
}
|
|
//printf("maxq = %d\n", maxq);
|
|
}
|
|
|
|
void verifycell(cell *c) {
|
|
int t = c->type;
|
|
for(int i=0; i<t; i++) {
|
|
cell *c2 = c->move(i);
|
|
if(c2) {
|
|
if(!masterless && BITRUNCATED && c == c->master->c7) verifycell(c2);
|
|
if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) {
|
|
printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->c.spin(i), c2->type);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void verifycells(heptagon *at) {
|
|
if(GOLDBERG || IRREGULAR || archimedean) return;
|
|
for(int i=0; i<S7; i++) if(at->move(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) {
|
|
printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->c.spin(i), at->move(i), at->move(i)->move(at->c.spin(i)));
|
|
}
|
|
if(!sphere && !quotient)
|
|
for(int i=0; i<S7; i++) if(at->move(i) && at->c.spin(i) == 0 && at->s != hsOrigin)
|
|
verifycells(at->move(i));
|
|
verifycell(at->c7);
|
|
}
|
|
|
|
int eudist(int sx, int sy) {
|
|
int z0 = abs(sx);
|
|
int z1 = abs(sy);
|
|
if(a4) return z0 + z1;
|
|
int z2 = abs(sx+sy);
|
|
return max(max(z0,z1), z2);
|
|
}
|
|
|
|
int eudist(int vec) {
|
|
auto p = vec_to_pair(vec);
|
|
return eudist(p.first, p.second);
|
|
}
|
|
|
|
int compdist(int dx[]) {
|
|
int mi = dx[0];
|
|
for(int u=0; u<S3; u++) mi = min(mi, dx[u]);
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] > mi+2)
|
|
return -1; // { printf("cycle error!\n"); exit(1); }
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] == mi+2)
|
|
return mi+1;
|
|
int cnt = 0;
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] == mi) cnt++;
|
|
if(cnt < 2)
|
|
return mi+1;
|
|
return mi;
|
|
}
|
|
|
|
int celldist(cell *c) {
|
|
if(torus)
|
|
return torusmap()->dists[decodeId(c->master)];
|
|
if(masterless)
|
|
return eudist(decodeId(c->master));
|
|
if(sphere) return celldistance(c, currentmap->gamestart());
|
|
if(IRREGULAR) return irr::celldist(c, false);
|
|
if(binarytiling || archimedean || ctof(c)) return c->master->distance;
|
|
if(GOLDBERG) return gp::compute_dist(c, celldist);
|
|
int dx[MAX_S3];
|
|
for(int u=0; u<S3; u++)
|
|
dx[u] = createMov(c, u+u)->master->distance;
|
|
return compdist(dx);
|
|
}
|
|
|
|
#define ALTDIST_BOUNDARY 99999
|
|
#define ALTDIST_UNKNOWN 99998
|
|
|
|
#define ALTDIST_ERROR 90000
|
|
|
|
// defined in 'game'
|
|
int euclidAlt(short x, short y);
|
|
|
|
int celldistAlt(cell *c) {
|
|
if(masterless) {
|
|
if(torus) return celldist(c);
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(decodeId(c->master));
|
|
return euclidAlt(x, y);
|
|
}
|
|
if(binarytiling) return celldist(c) + (specialland == laCamelot && !tactic::on? 30 : 0);
|
|
if(sphere || quotient) {
|
|
return celldist(c) - 3;
|
|
}
|
|
if(!c->master->alt) return 0;
|
|
if(IRREGULAR) return irr::celldist(c, true);
|
|
if(ctof(c)) return c->master->alt->distance;
|
|
if(GOLDBERG) return gp::compute_dist(c, celldistAlt);
|
|
int dx[MAX_S3]; dx[0] = 0;
|
|
for(int u=0; u<S3; u++) if(createMov(c, u+u)->master->alt == NULL)
|
|
return ALTDIST_UNKNOWN;
|
|
for(int u=0; u<S3; u++)
|
|
dx[u] = createMov(c, u+u)->master->alt->distance;
|
|
// return compdist(dx); -> not OK because of boundary conditions
|
|
int mi = dx[0];
|
|
for(int i=1; i<S3; i++) mi = min(mi, dx[i]);
|
|
for(int i=0; i<S3; i++) if(dx[i] > mi+2)
|
|
return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
|
|
for(int i=0; i<S3; i++) if(dx[i] == mi+2)
|
|
return mi+1;
|
|
return mi;
|
|
}
|
|
|
|
int dirfromto(cell *cfrom, cell *cto) {
|
|
for(int i=0; i<cfrom->type; i++) if(cfrom->move(i) == cto) return i;
|
|
return -1;
|
|
}
|
|
|
|
#define RPV_MODULO 5
|
|
|
|
#define RPV_RAND 0
|
|
#define RPV_ZEBRA 1
|
|
#define RPV_EMERALD 2
|
|
#define RPV_PALACE 3
|
|
#define RPV_CYCLE 4
|
|
|
|
int getCdata(cell *c, int j);
|
|
|
|
// x mod 5 = pattern type
|
|
// x mod (powers of 2) = pattern type specific
|
|
// (x/5) mod 15 = picture for drawing floors
|
|
// x mod 7 = chance of pattern-specific pic
|
|
// whole = randomization
|
|
|
|
bool randpattern(cell *c, int rval) {
|
|
int i, sw=0;
|
|
switch(rval%5) {
|
|
case 0:
|
|
if(rval&1) {
|
|
return hrandpos() < rval;
|
|
}
|
|
else {
|
|
int cd = getCdata(c, 0);
|
|
return !((cd/(((rval/2)&15)+1))&1);
|
|
}
|
|
case 1:
|
|
i = zebra40(c);
|
|
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
|
|
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
|
|
i >>= 2;
|
|
i--; i /= 3;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 2:
|
|
i = emeraldval(c);
|
|
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
|
|
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
|
|
i >>= 2; i--;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 3:
|
|
if(polara50(c)) { if(rval&4) sw^=1; }
|
|
if(polarb50(c)) { if(rval&8) sw^=1; }
|
|
i = fiftyval049(c); i += 6; i /= 7;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 4:
|
|
i = (rval&3);
|
|
if(i == 1 && (celldist(c)&1)) sw ^= 1;
|
|
if(i == 2 && (celldist(c)&2)) sw ^= 1;
|
|
if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
|
|
if(rval & (4<<towerval(c, celldist))) sw ^= 1;
|
|
return sw;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
string describeRPM(eLand l) {
|
|
int rval = randompattern[l];
|
|
switch(rval%5) {
|
|
case 0:
|
|
if(rval&1)
|
|
return "R:"+its(rval/(HRANDMAX/100))+"%";
|
|
else
|
|
return "Landscape/"+its(((rval/2)&15)+1);
|
|
case 1:
|
|
return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
|
|
case 2:
|
|
return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
|
|
case 3:
|
|
return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
|
|
case 4:
|
|
return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
int randpatternCode(cell *c, int rval) {
|
|
switch(rval % RPV_MODULO) {
|
|
case 1:
|
|
return zebra40(c);
|
|
case 2:
|
|
return emeraldval(c);
|
|
case 3:
|
|
return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
|
|
case 4:
|
|
return towerval(c, celldist) * 6 + celldist(c) % 6;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define RANDITER 31
|
|
|
|
char rpm_memoize[3][256][RANDITER+1];
|
|
|
|
void clearMemoRPM() {
|
|
for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
|
|
rpm_memoize[a][b][i] = 2;
|
|
}
|
|
|
|
bool randpatternMajority(cell *c, int ival, int iterations) {
|
|
int rval = 0;
|
|
if(ival == 0) rval = randompattern[laCaves];
|
|
if(ival == 1) rval = randompattern[laLivefjord];
|
|
if(ival == 2) rval = randompattern[laEmerald];
|
|
if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
|
|
int code = randpatternCode(c, rval);
|
|
char& memo(rpm_memoize[ival][code][iterations]);
|
|
if(memo < 2) return memo;
|
|
int z = 0;
|
|
if(iterations) for(int i=0; i<c->type; i++) {
|
|
if(randpatternMajority(createMov(c,i), ival, iterations-1))
|
|
z++;
|
|
else
|
|
z--;
|
|
}
|
|
if(z!=0) memo = (z>0);
|
|
else memo = randpattern(c, rval);
|
|
// printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
|
|
return memo;
|
|
}
|
|
|
|
map<heptagon*, int> spins;
|
|
|
|
#define RVAL_MASK 0x10000000
|
|
#define DATA_MASK 0x20000000
|
|
|
|
cdata orig_cdata;
|
|
|
|
void affect(cdata& d, short rv, signed char signum) {
|
|
if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
|
|
if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
|
|
if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
|
|
if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
|
|
int id = (rv>>4) & 63;
|
|
if(id < 32)
|
|
d.bits ^= (1 << id);
|
|
}
|
|
|
|
void setHeptagonRval(heptagon *h) {
|
|
if(!(h->rval0 || h->rval1)) {
|
|
h->rval0 = hrand(0x10000);
|
|
h->rval1 = hrand(0x10000);
|
|
}
|
|
}
|
|
|
|
cdata *getHeptagonCdata(heptagon *h) {
|
|
if(h->cdata) return h->cdata;
|
|
|
|
if(sphere || quotient) h = currentmap->gamestart()->master;
|
|
|
|
if(h == currentmap->gamestart()->master) {
|
|
return h->cdata = new cdata(orig_cdata);
|
|
}
|
|
|
|
cdata mydata = *getHeptagonCdata(h->move(0));
|
|
|
|
for(int di=3; di<5; di++) {
|
|
heptspin hs; hs.at = h; hs.spin = di;
|
|
int signum = +1;
|
|
while(true) {
|
|
heptspin hstab[15];
|
|
hstab[7] = hs;
|
|
|
|
for(int i=8; i<12; i++) {
|
|
hstab[i] = hstab[i-1];
|
|
hstab[i] += ((i&1) ? 4 : 3);
|
|
hstab[i] += wstep;
|
|
hstab[i] += ((i&1) ? 3 : 4);
|
|
}
|
|
|
|
for(int i=6; i>=3; i--) {
|
|
hstab[i] = hstab[i+1];
|
|
hstab[i] += ((i&1) ? 3 : 4);
|
|
hstab[i] += wstep;
|
|
hstab[i] += ((i&1) ? 4 : 3);
|
|
}
|
|
|
|
if(hstab[3].at->distance < hstab[7].at->distance) {
|
|
hs = hstab[3]; continue;
|
|
}
|
|
|
|
if(hstab[11].at->distance < hstab[7].at->distance) {
|
|
hs = hstab[11]; continue;
|
|
}
|
|
|
|
int jj = 7;
|
|
for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k;
|
|
|
|
int ties = 0, tiespos = 0;
|
|
for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance)
|
|
ties++, tiespos += (k-jj);
|
|
|
|
// printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
|
|
if(ties == 2) jj += tiespos/2;
|
|
|
|
if(jj&1) signum = -1;
|
|
hs = hstab[jj];
|
|
|
|
break;
|
|
}
|
|
hs = hs + 3 + wstep;
|
|
setHeptagonRval(hs.at);
|
|
|
|
affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum);
|
|
|
|
/* if(!(spins[hs.at] & hs.spin)) {
|
|
spins[hs.at] |= (1<<hs.spin);
|
|
int t = 0;
|
|
for(int k=0; k<7; k++) if(spins[hs.at] & (1<<k)) t++;
|
|
static bool wast[256];
|
|
if(!wast[spins[hs.at]]) {
|
|
printf("%p %4x\n", hs.at, spins[hs.at]);
|
|
wast[spins[hs.at]] = true;
|
|
}
|
|
} */
|
|
}
|
|
|
|
return h->cdata = new cdata(mydata);
|
|
}
|
|
|
|
cdata *getEuclidCdata(int h) {
|
|
|
|
if(torus) {
|
|
static cdata xx;
|
|
return &xx;
|
|
}
|
|
|
|
int x, y;
|
|
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
|
|
if(euc->eucdata.count(h)) return &(euc->eucdata[h]);
|
|
|
|
tie(x,y) = vec_to_pair(h);
|
|
|
|
if(x == 0 && y == 0) {
|
|
cdata xx;
|
|
for(int i=0; i<4; i++) xx.val[i] = 0;
|
|
xx.bits = 0;
|
|
return &(euc->eucdata[h] = xx);
|
|
}
|
|
int ord = 1, bid = 0;
|
|
while(!((x|y)&ord)) ord <<= 1, bid++;
|
|
|
|
for(int k=0; k<3; k++) {
|
|
int x1 = x + (k<2 ? ord : 0);
|
|
int y1 = y - (k>0 ? ord : 0);
|
|
if((x1&ord) || (y1&ord)) continue;
|
|
int x2 = x - (k<2 ? ord : 0);
|
|
int y2 = y + (k>0 ? ord : 0);
|
|
|
|
cdata *d1 = getEuclidCdata(pair_to_vec(x1,y1));
|
|
cdata *d2 = getEuclidCdata(pair_to_vec(x2,y2));
|
|
cdata xx;
|
|
double disp = pow(2, bid/2.) * 6;
|
|
|
|
for(int i=0; i<4; i++) {
|
|
double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
|
|
xx.val[i] = floor(dv);
|
|
if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
|
|
}
|
|
xx.bits = 0;
|
|
|
|
for(int b=0; b<32; b++) {
|
|
bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
|
|
int flipchance = (1<<bid);
|
|
if(flipchance > 512) flipchance = 512;
|
|
if(hrand(1024) < flipchance) gbit = !gbit;
|
|
if(gbit) xx.bits |= (1<<b);
|
|
}
|
|
|
|
return &(euc->eucdata[h] = xx);
|
|
}
|
|
|
|
// impossible!
|
|
return NULL;
|
|
}
|
|
|
|
int getCdata(cell *c, int j) {
|
|
if(masterless) return getEuclidCdata(decodeId(c->master))->val[j];
|
|
else if(geometry) return 0;
|
|
else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3;
|
|
else {
|
|
int jj = 0;
|
|
auto ar = gp::get_masters(c);
|
|
for(int k=0; k<3; k++)
|
|
jj += getHeptagonCdata(ar[k])->val[j];
|
|
return jj;
|
|
}
|
|
}
|
|
|
|
int getBits(cell *c) {
|
|
if(masterless) return getEuclidCdata(decodeId(c->master))->bits;
|
|
else if(geometry) return 0;
|
|
else if(c->type != 6) return getHeptagonCdata(c->master)->bits;
|
|
else {
|
|
auto ar = gp::get_masters(c);
|
|
int b0 = getHeptagonCdata(ar[0])->bits;
|
|
int b1 = getHeptagonCdata(ar[1])->bits;
|
|
int b2 = getHeptagonCdata(ar[2])->bits;
|
|
return (b0 & b1) | (b1 & b2) | (b2 & b0);
|
|
}
|
|
}
|
|
|
|
cell *heptatdir(cell *c, int d) {
|
|
if(d&1) {
|
|
cell *c2 = createMov(c, d);
|
|
int s = c->c.spin(d);
|
|
s += 3; s %= 6;
|
|
return createMov(c2, s);
|
|
}
|
|
else return createMov(c, d);
|
|
}
|
|
|
|
int heptdistance(heptagon *h1, heptagon *h2) {
|
|
// very rough distance
|
|
int d = 0;
|
|
while(true) {
|
|
if(h1 == h2) return d;
|
|
for(int i=0; i<S7; i++) if(h1->move(i) == h2) return d + 1;
|
|
int d1 = h1->distance, d2 = h2->distance;
|
|
if(d1 >= d2) d++, h1 = createStep(h1, binarytiling ? 5 : 0);
|
|
if(d2 > d1) d++, h2 = createStep(h2, binarytiling ? 5 : 0);
|
|
}
|
|
}
|
|
|
|
int heptdistance(cell *c1, cell *c2) {
|
|
if(!hyperbolic || quotient) return celldistance(c1, c2);
|
|
else return heptdistance(c1->master, c2->master);
|
|
}
|
|
|
|
map<pair<cell*, cell*>, int> saved_distances;
|
|
|
|
int celldistance(cell *c1, cell *c2) {
|
|
int d = 0;
|
|
|
|
if((masterless) && (euclid6 || (euclid4 && PURE))) {
|
|
if(!torus)
|
|
return eudist(decodeId(c1->master) - decodeId(c2->master));
|
|
else if(torus && torusconfig::torus_mode == 0)
|
|
return torusmap()->dists[torusconfig::vec_to_id(decodeId(c1->master)-decodeId(c2->master))];
|
|
}
|
|
|
|
if(geometry == gFieldQuotient && !GOLDBERG)
|
|
return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2));
|
|
|
|
if(sphere || quotient || torus) {
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
celllister cl(c1, 100, 100000000, NULL);
|
|
for(int i=0; i<isize(cl.lst); i++)
|
|
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
return 64;
|
|
}
|
|
|
|
if(NONSTDVAR || masterless || archimedean || binarytiling) {
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
if(isize(saved_distances) > 1000000) saved_distances.clear();
|
|
|
|
celllister cl(c1, 64, 1000, c2);
|
|
|
|
for(int i=0; i<isize(cl.lst); i++)
|
|
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
return 64;
|
|
}
|
|
|
|
int d1 = celldist(c1), d2 = celldist(c2);
|
|
|
|
cell *cl1=c1, *cr1=c1, *cl2=c2, *cr2=c2;
|
|
while(true) {
|
|
|
|
if(weirdhyperbolic) {
|
|
if(cl1 == cl2) return d;
|
|
if(cl1 == cr2) return d;
|
|
if(cr1 == cl2) return d;
|
|
if(cr1 == cr2) return d;
|
|
|
|
if(isNeighbor(cl1, cl2)) return d+1;
|
|
if(isNeighbor(cl1, cr2)) return d+1;
|
|
if(isNeighbor(cr1, cl2)) return d+1;
|
|
if(isNeighbor(cr1, cr2)) return d+1;
|
|
}
|
|
|
|
if(d1 == d2) for(int u=0; u<2; u++) {
|
|
cell *ac0 = u ? cr1 : cr2, *ac = ac0;
|
|
cell *tgt = u ? cl2 : cl1;
|
|
cell *xtgt = u ? cr2 : cr1;
|
|
if(ac == tgt) return d;
|
|
ac = chosenDown(ac, 1, 1, celldist);
|
|
if(ac == tgt) return d+1;
|
|
if(ac == xtgt) return d;
|
|
ac = chosenDown(ac, 1, 1, celldist);
|
|
if(ac == tgt) return d+2;
|
|
if(BITRUNCATED) {
|
|
ac = chosenDown(ac, 1, 1, celldist);
|
|
if(ac == tgt) {
|
|
if(chosenDown(ac0, 1, 0, celldist) ==
|
|
chosenDown(tgt, -1, 0, celldist))
|
|
return d+2;
|
|
return d+3;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(weirdhyperbolic) {
|
|
forCellEx(c, cl2) if(isNeighbor(c, cr1)) return d+2;
|
|
forCellEx(c, cl1) if(isNeighbor(c, cr2)) return d+2;
|
|
|
|
forCellEx(ca, cl2) forCellEx(cb, cr1) if(isNeighbor(ca, cb)) return d+3;
|
|
forCellEx(ca, cl1) forCellEx(cb, cr2) if(isNeighbor(ca, cb)) return d+3;
|
|
|
|
forCellEx(ca, cl2) forCellEx(cb, cr1) forCellEx(cc, cb) if(isNeighbor(ca, cc)) return d+4;
|
|
forCellEx(ca, cl1) forCellEx(cb, cr2) forCellEx(cc, cb) if(isNeighbor(ca, cc)) return d+4;
|
|
}
|
|
|
|
if(d1 >= d2) {
|
|
cl1 = chosenDown(cl1, -1, 0, celldist);
|
|
// cl1->item = eItem(rand() % 10);
|
|
cr1 = chosenDown(cr1, 1, 0, celldist);
|
|
// cr1->item = eItem(rand() % 10);
|
|
d++; d1--;
|
|
}
|
|
if(d1 < d2) {
|
|
cl2 = chosenDown(cl2, -1, 0, celldist);
|
|
// cl2->item = eItem(rand() % 10);
|
|
cr2 = chosenDown(cr2, 1, 0, celldist);
|
|
// cr2->item = eItem(rand() % 10);
|
|
d++; d2--;
|
|
}
|
|
}
|
|
}
|
|
|
|
void clearCellMemory() {
|
|
for(int i=0; i<isize(allmaps); i++)
|
|
if(allmaps[i])
|
|
delete allmaps[i];
|
|
allmaps.clear();
|
|
last_cleared = NULL;
|
|
saved_distances.clear();
|
|
pd_from = NULL;
|
|
}
|
|
|
|
auto cellhooks = addHook(clearmemory, 500, clearCellMemory);
|
|
|
|
}
|