1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-12 10:20:32 +00:00
hyperrogue/sky.cpp

730 lines
22 KiB
C++

#include "hyper.h"
namespace hr {
EX bool context_fog = true;
EX ld camera_level;
EX bool camera_sign;
#if HDR
enum eSkyMode { skyNone, skyAutomatic, skySkybox, skyAlways };
#endif
EX eSkyMode draw_sky;
EX bool auto_remove_roofs;
EX bool simple_sky;
EX bool camera_over(ld x) {
if(!auto_remove_roofs) return false;
if(camera_sign) return camera_level <= x;
return camera_level >= x;
}
#if MAXMDIM >= 4 && CAP_GL
EX int get_skybrightness(int mul IS(1)) {
if(simple_sky) return 255;
ld s = 1 - mul * (camera_level - cgi.WALL) / -2;
if(s > 1) return 255;
if(s < 0) return 0;
return int(s * 255);
}
struct sky_item {
cell *c;
shiftmatrix T;
color_t color;
color_t skycolor;
sky_item(cell *_c, const struct shiftmatrix _T, color_t _color, color_t _skycolor) : c(_c), T(_T), color(_color), skycolor(_skycolor) {}
};
struct dqi_sky : drawqueueitem {
vector<sky_item> sky;
void draw() override;
color_t outline_group() override { return 3; }
// singleton
explicit dqi_sky() { hr::sky = this; }
~dqi_sky() override { hr::sky = NULL; }
};
EX struct dqi_sky *sky;
EX bool do_draw_skybox() {
if(no_wall_rendering) return false;
if(!euclid) return false;
if(draw_sky == skySkybox) return true;
if(!embedded_plane) return false;
if(draw_sky == skyAutomatic) return !cgi.emb->is_sph_in_low() && !cgi.emb->is_cylinder();
return false;
}
EX void prepare_sky() {
sky = NULL;
if(do_draw_skybox()) {
shiftmatrix T = ggmatrix(currentmap->gamestart());
T.T = gpushxto0(tC0(T.T)) * T.T;
queuepoly(T, cgi.shEuclideanSky, 0x0044e4FF);
queuepolyat(T * zpush(cgi.STAR * 0.7) * xpush(cgi.STAR * 0.7), cgi.shSkyboxSun, 0xFFFF00FF, PPR::SKY);
}
else {
sky = &queuea<dqi_sky> (euclid ? PPR::EUCLIDEAN_SKY : PPR::MISSILE);
}
}
EX vector<glhr::colored_vertex> skyvertices;
EX cell *sky_centerover;
EX shiftmatrix sky_cview;
EX void delete_sky() {
sky_centerover = nullptr;
skyvertices.clear();
}
EX bool do_draw_sky() {
if(!embedded_plane) return false;
if(draw_sky == skyAlways) return true;
if(draw_sky != skyAutomatic) return false;
if(vid.wall_height < 0 && cgi.emb->is_euc_in_hyp()) return false; /* just looks bad, hollow horospheres should not have sky */
if(vid.wall_height < 0 && meuclid && geom3::ggclass() == gcNIH) return false; /* same */
if(among(geom3::ggclass(), gcSol, gcSolN)) return false; /* errors */
if(among(geom3::ggclass(), gcNil)) return false; /* errors sometimes too */
if(cgi.emb->is_hyp_in_solnih()) return false;
if(cgi.emb->is_euc_in_product()) return false;
if(cgi.emb->is_euc_in_sl2()) return false;
if(cgi.emb->is_cylinder()) return false;
return true;
}
EX bool do_draw_stars(bool rev) {
if(!do_draw_sky()) return false;
if(cgi.emb->is_sph_in_low()) {
if(cgi.SKY < 0) return false;
}
if(cgi.emb->is_euc_in_hyp() && (rev ? cgi.SKY > 0 : cgi.SKY < 0)) return false;
return true;
}
void compute_skyvertices(const vector<sky_item>& sky) {
skyvertices.clear();
if(!do_draw_sky()) return;
int sk = get_skybrightness();
std::map<cell*, pair<color_t, color_t>> colors;
for(const sky_item& si: sky) colors[si.c] =
make_pair(darkena(gradient(0, si.color, 0, sk, 255), 0, 0xFF),
darkena(si.skycolor, 0, 0xFF)
);
hyperpoint skypoint = cpush0(2, cgi.SKY + cgi.emb->center_z());
hyperpoint hellpoint = cpush0(2, cgi.HELL + cgi.emb->center_z());
vector<glhr::colored_vertex> this_poly;
for(const sky_item& si: sky) {
auto c = si.c;
if(c->land == laMirrorWall) continue;
bool inmir = false;
forCellEx(c1, c) if(c1->land == laMirrorWall) inmir = true;
if(inmir) continue;
if(cgflags & qIDEAL) {
for(int i=0; i<c->type; i++) {
int j = (i+1) % c->type;
transmatrix T1 = unshift(si.T);
hyperpoint ci = kleinize(get_corner_position(c, i, 3));
hyperpoint cj = kleinize(get_corner_position(c, j, 3));
static constexpr int prec = 8;
ci = (ci - C0)/prec;
cj = (cj - C0)/prec;
glhr::colored_vertex vs[prec+1][prec+1], vh[prec+1][prec+1];
auto& co = colors[c];
for(int x=0; x<=prec; x++)
for(int y=0; y<=prec-x; y++) {
transmatrix h = T1 * rgpushxto0(normalize(C0+ci*min<ld>(x, prec - .01)+cj*min<ld>(y, prec-.01)));
vs[y][x] = glhr::colored_vertex(h * skypoint, co.first);
vh[y][x] = glhr::colored_vertex(h * hellpoint, co.second);
}
for(int x=0; x<prec; x++)
for(int y=0; y<prec; y++) {
if(x+y < prec) {
skyvertices.emplace_back(vs[y][x]);
skyvertices.emplace_back(vs[y+1][x]);
skyvertices.emplace_back(vs[y][x+1]);
if(x < prec-1 && y < prec-1) {
skyvertices.emplace_back(vh[y][x]);
skyvertices.emplace_back(vh[y+1][x]);
skyvertices.emplace_back(vh[y][x+1]);
}
}
if(x && y && x+y <= prec) {
skyvertices.emplace_back(vs[y][x]);
skyvertices.emplace_back(vs[y][x-1]);
skyvertices.emplace_back(vs[y-1][x]);
if(x < prec-1 && y < prec-1) {
skyvertices.emplace_back(vh[y][x]);
skyvertices.emplace_back(vh[y][x-1]);
skyvertices.emplace_back(vh[y-1][x]);
}
}
}
if(!colors.count(c->move(i))) {
for(int i=0; i<prec; i++) {
int j = i+1;
skyvertices.emplace_back(vs[i][prec-i]);
skyvertices.emplace_back(vs[j][prec-j]);
skyvertices.emplace_back(vh[i][prec-i]);
skyvertices.emplace_back(vh[i][prec-i]);
skyvertices.emplace_back(vs[j][prec-j]);
skyvertices.emplace_back(vh[j][prec-j]);
}
}
}
continue;
}
for(int i=0; i<c->type; i++) {
static constexpr int prec = 2;
if(1) {
cellwalker cw0(c, i);
cellwalker cw2 = cw0;
cw2--; cw2 += wstep;
if(!colors.count(cw2.at)) {
this_poly.clear();
transmatrix T1 = Id;
transmatrix T2 = unshift(si.T);
auto cw = cw0;
auto co = at_or_null(colors, cw.at);
while(co) {
this_poly.emplace_back(T2 * T1 * skypoint, co->first);
this_poly.emplace_back(T2 * T1 * hellpoint, co->second);
auto cw1 = cw;
cw += wstep; cw++;
auto co1 = at_or_null(colors, cw.at);
if(!co1) break;
transmatrix A = currentmap->adj(cw1.at, cw1.spin);
hyperpoint a = tC0(A);
for(int i=1; i<prec; i++) {
hyperpoint h = T1 * normalize(C0 * (prec-i) + a * i);
this_poly.emplace_back(T2 * orthogonal_move(h, cgi.SKY), gradient(co->first, co1->first, 0, i, prec));
this_poly.emplace_back(T2 * orthogonal_move(h, -cgi.SKY), gradient(co->second, co1->second, 0, i, prec));
}
T1 = T1 * A;
co = co1;
}
int k = isize(this_poly);
for(int j=2; j<k; j+=2) {
skyvertices.push_back(this_poly[j-2]);
skyvertices.push_back(this_poly[j-1]);
skyvertices.push_back(this_poly[j]);
skyvertices.push_back(this_poly[j-1]);
skyvertices.push_back(this_poly[j]);
skyvertices.push_back(this_poly[j+1]);
}
goto next;
}
}
if(true) {
hyperpoint tctr = tile_center();
cellwalker cw0(c, i);
cellwalker cw = cw0;
do {
cw += wstep; cw++;
if(cw.at < c || !colors.count(cw.at)) goto next;
}
while(cw != cw0);
vector<hyperpoint> vertices;
vector<color_t> vcolors;
transmatrix T1 = Id;
do {
vertices.push_back(T1 * tctr);
vcolors.push_back(colors[cw.at].first);
T1 = T1 * currentmap->adj(cw.at, cw.spin);
cw += wstep; cw++;
}
while(cw != cw0);
int k = isize(vertices);
color_t ccolor;
for(int i=0; i<k; i++) ccolor = gradient(ccolor, vcolors[i], 0, 1, i+1);
hyperpoint ctr = Hypc;
for(auto& p: vertices) p = cgi.emb->normalize_flat(p);
for(auto& p: vertices) ctr = ctr + p;
ctr = cgi.emb->normalize_flat(ctr);
for(int j=0; j<k; j++) {
int j1 = (j+1) % k;
glhr::colored_vertex cv[prec+1][prec+1];
for(int x=0; x<=prec; x++) for(int y=0; y<=prec; y++) if(x+y <= prec) {
hyperpoint h = ctr * (prec-x-y) + vertices[j] * x + vertices[j1] * y;
h = cgi.emb->normalize_flat(h);
color_t co = gradient(ccolor, gradient(vcolors[j], vcolors[j1], 0, y, x+y), 0, x+y, prec);
// co = (hrand(0x1000000) << 8) | 0xFF;
// co = minecolors[(x+2*y) % 7] << 8 | 0xFF;
h = unshift(si.T) * orthogonal_move(h, cgi.SKY);
cv[y][x] = {h, co};
}
for(int x=0; x<=prec; x++)
for(int y=0; y<=prec; y++) if(x+y < prec) {
skyvertices.emplace_back(cv[y][x]);
skyvertices.emplace_back(cv[y+1][x]);
skyvertices.emplace_back(cv[y][x+1]);
if(true) if(x+y < prec-1) {
skyvertices.emplace_back(cv[y+1][x+1]);
skyvertices.emplace_back(cv[y][x+1]);
skyvertices.emplace_back(cv[y+1][x]);
}
}
}
}
next: ;
}
}
if(!simple_sky) for(auto& v: skyvertices) for(int i=0; i<3; i++) v.color[i] *= 2;
}
void dqi_sky::draw() {
if(!vid.usingGL || sky.empty() || skyvertices.empty()) return;
if(!do_draw_sky()) { delete_sky(); return; }
#if CAP_VR
transmatrix s = (vrhr::rendering() ? vrhr::master_cview : cview()).T * inverse(sky_cview.T);
#else
transmatrix s = cview().T * inverse(sky_cview.T);
#endif
be_euclidean_infinity(s);
for(int ed = current_display->separate_eyes() ? -1 : 0; ed<2; ed+=2) {
if(global_projection && global_projection != ed) continue;
current_display->next_shader_flags = GF_VARCOLOR;
current_display->set_all(ed, 0);
if(global_projection) {
glhr::projection_multiply(glhr::tmtogl(xpush(-vid.ipd * global_projection/2)));
glapplymatrix(xpush(vid.ipd * global_projection/2) * s);
}
else {
glapplymatrix(s);
}
glhr::prepare(skyvertices);
glhr::color2(0xFFFFFFFF);
if(simple_sky) {
glhr::set_fogbase(1);
glhr::set_depthtest(true);
glhr::set_depthwrite(true);
}
else {
glhr::set_fogbase(1.0 + abs(cgi.SKY - cgi.LOWSKY) / sightranges[geometry]);
glhr::set_depthtest(model_needs_depth() && prio < PPR::SUPERLINE);
glhr::set_depthwrite(model_needs_depth() && prio != PPR::TRANSPARENT_SHADOW && prio != PPR::EUCLIDEAN_SKY);
}
glDrawArrays(GL_TRIANGLES, 0, isize(skyvertices));
}
}
color_t skycolor(cell *c) {
int cd = (euclid || stdhyperbolic) ? getCdata(c, 1) : 0;
int z = (cd * 5) & 127;
if(z >= 64) z = 127 - z;
return gradient(0x4040FF, 0xFFFFFF, 0, z, 63);
}
EX bool use_euclidean_infinity = true;
/** move an Euclidean matrix to V(C0) == C0 */
EX void be_euclidean_infinity(transmatrix& V) {
if(euclid && msphere && use_euclidean_infinity)
for(int i=0; i<3; i++) V[i][3] = 0;
}
EX void draw_star(const shiftmatrix& V, const hpcshape& sh, color_t col, ld rev IS(false)) {
if(!do_draw_stars(rev)) return;
ld val = cgi.STAR;
if(rev) val = cgi.FLOOR * 2 - val;
val += cgi.emb->center_z();
auto V1 = V; be_euclidean_infinity(V1.T);
queuepolyat(V1 * lzpush(val), sh, col, PPR::SKY);
}
EX ld star_prob = 0.33;
/* the first star is supposed to appear as long as probability > 0 */
EX vector<ld> stars = {1e-20};
EX bool star_for(int i) {
i = i & ((1<<16)-1);
while(isize(stars) <= i) stars.push_back(randd());
return stars[i] < star_prob;
}
EX hookset<bool(celldrawer *cd)> hooks_ceiling;
EX void g_add_to_sky(cell *c, shiftmatrix& V, color_t col, color_t col2) {
if(sky) sky->sky.emplace_back(c, V, col, col2);
}
void celldrawer::draw_ceiling() {
if(!models::is_perspective(pmodel)) return;
if(callhandlers(false, hooks_ceiling, this)) return;
auto add_to_sky = [this] (color_t col, color_t col2) {
if(sky) sky->sky.emplace_back(c, V, col, col2);
};
switch(ceiling_category(c)) {
/* ceilingless levels */
case 1: {
if(star_for(fieldpattern::fieldval_uniq(c)))
draw_star(V, cgi.shNightStar, 0xFFFFFFFF);
add_to_sky(0x00000F, 0x00000F);
if(c->land == laAsteroids) {
if(star_for(fieldpattern::fieldval_uniq(c) ^ 0x5555))
draw_star(V, cgi.shNightStar, 0xFFFFFFFF, true);
int sk = get_skybrightness(-1);
auto sky = draw_shapevec(c, V * MirrorZ, cgi.shFullFloor.levels[SIDE_SKY], 0x000000FF + 0x100 * (sk/17), PPR::SKY);
if(sky) sky->tinf = NULL, sky->flags |= POLY_INTENSE;
}
return;
}
case 2: {
color_t col;
color_t skycol;
switch(c->land) {
case laWineyard:
col = 0x4040FF;
skycol = 0x8080FF;
if(emeraldval(c) / 4 == 11) draw_star(V, cgi.shSun, 0xFFFF00FF);
break;
case laDesert:
col = 0x2020C0;
skycol = 0x8080FF;
if(emeraldval(c) / 4 == 11) draw_star(V, cgi.shSun, 0xFFFF00FF);
break;
case laFrog:
col = 0x4040FF;
skycol = 0x8080FF;
if(zebra40(c) / 4 == 1) draw_star(V, cgi.shSun, 0xFFFF00FF);
break;
case laPower:
skycol = col = c->landparam ? 0xFF2010 : 0x000020;
break;
/* case laDesert:
col = 0x4040FF;
skycol = (0xCDA98F & 0xFEFEFE) / 2;
break; */
case laAlchemist:
skycol = col = fcol;
break;
case laVariant: {
#if CAP_COMPLEX2
int b = getBits(c);
col = 0x404040;
for(int a=0; a<21; a++)
if((b >> a) & 1)
col += variant::features[a].color_change;
col = col & 0x00FF00;
skycol = col;
#endif
break;
}
case laDragon:
col = c->wall == waChasm ? 0xFFFFFF : 0x4040FF;
skycol = 0;
break;
case laHell: {
int a = 0;
forCellEx(c1, c) if(among(c1->wall, waSulphur, waSulphurC)) a++;
ld z = a * 1. / c->type;
if(z < .5)
col = gradient(0x400000, 0xFF0000, 0, z, .5);
else
col = gradient(0xFF0000, 0xFFFF00, .5, z, 1);
skycol = col;
break;
}
default: {
col = skycolor(c);
skycol = 0xA0A0FF;
}
}
add_to_sky(col, skycol);
return;
}
case 3: {
add_to_sky(0, 0);
if(camera_over(cgi.WALL)) return;
if(c->land == laMercuryRiver) fcol = linf[laTerracotta].color, fd = 1;
if(qfi.fshape) draw_shapevec(c, V, qfi.fshape->levels[SIDE_WALL], darkena(fcol, fd, 0xFF), PPR::WALL);
forCellIdEx(c2, i, c)
if(ceiling_category(c2) != 3) {
color_t wcol2 = gradient(0, wcol, 0, .8, 1);
placeSidewall(c, i, SIDE_HIGH, V, darkena(wcol2, fd, 0xFF));
placeSidewall(c, i, SIDE_HIGH2, V, darkena(wcol2, fd, 0xFF));
placeSidewall(c, i, SIDE_SKY, V, darkena(wcol2, fd, 0xFF));
}
return;
}
case 4: {
add_to_sky(0x00000F, 0x00000F);
if(camera_over(cgi.HIGH)) return;
auto ispal = [&] (cell *c0) { return c0->land == laPalace && among(c0->wall, waPalace, waClosedGate, waOpenGate); };
color_t wcol2 = 0xFFD500;
if(ispal(c)) {
forCellIdEx(c2, i, c) if(!ispal(c2))
placeSidewall(c, i, SIDE_HIGH, V, darkena(wcol2, fd, 0xFF));
}
else {
bool window = false;
forCellIdEx(c2, i, c) if(c2->wall == waPalace && ispal(c->cmodmove(i+1)) && ispal(c->cmodmove(i-1))) window = true;
if(qfi.fshape && !window) draw_shapevec(c, V, qfi.fshape->levels[SIDE_HIGH], darkena(fcol, fd, 0xFF), PPR::WALL);
if(window)
forCellIdEx(c2, i, c)
placeSidewall(c, i, SIDE_HIGH2, V, darkena(wcol2, fd, 0xFF));
}
if(among(c->wall, waClosedGate, waOpenGate) && qfi.fshape) draw_shapevec(c, V, qfi.fshape->levels[SIDE_WALL], 0x202020FF, PPR::WALL);
draw_star(V, cgi.shNightStar, 0xFFFFFFFF);
break;
}
case 6: {
add_to_sky(skycolor(c), 0x4040C0);
if(camera_over(cgi.HIGH2)) return;
color_t wcol2 = winf[waRuinWall].color;
if(c->landparam == 1)
forCellIdEx(c2, i, c) if(c2->landparam != 1)
placeSidewall(c, i, SIDE_HIGH, V, darkena(wcol2, fd, 0xFF));
if(c->landparam != 2)
forCellIdEx(c2, i, c) if(c2->landparam == 2)
placeSidewall(c, i, SIDE_HIGH2, V, darkena(wcol2, fd, 0xFF));
/* if(c->landparam == 0)
if(qfi.fshape) draw_shapevec(c, V, qfi.fshape->levels[SIDE_HIGH], darkena(wcol2, fd, 0xFF), PPR::WALL); */
if(c->landparam == 1)
if(qfi.fshape) draw_shapevec(c, V, qfi.fshape->levels[SIDE_WALL], darkena(wcol2, fd, 0xFF), PPR::WALL);
break;
}
case 7: {
add_to_sky(0x00000F, 0x00000F);
if(fieldpattern::fieldval_uniq(c) % 5 < 2)
draw_star(V, cgi.shNightStar, 0xFFFFFFFF);
if(camera_over(cgi.HIGH2)) return;
color_t wcol2 = winf[waColumn].color;
if(c->landparam == 1)
forCellIdEx(c2, i, c) if(c2->landparam != 1)
placeSidewall(c, i, SIDE_HIGH, V, darkena(wcol2, fd, 0xFF));
if(c->landparam != 2)
forCellIdEx(c2, i, c) if(c2->landparam == 2)
placeSidewall(c, i, SIDE_HIGH2, V, darkena(wcol2, fd, 0xFF));
if(c->landparam == 0)
if(qfi.fshape) draw_shapevec(c, V, qfi.fshape->levels[SIDE_HIGH], darkena(wcol2, fd, 0xFF), PPR::WALL);
if(c->landparam == 1)
if(qfi.fshape) draw_shapevec(c, V, qfi.fshape->levels[SIDE_WALL], darkena(wcol2, fd, 0xFF), PPR::WALL);
break;
}
case 5: {
add_to_sky(0x00000F, 0x00000F);
if(camera_over(cgi.WALL)) return;
if(pseudohept(c)) {
forCellIdEx(c2, i, c)
placeSidewall(c, i, SIDE_HIGH, V, darkena(fcol, fd, 0xFF));
}
else if(qfi.fshape)
draw_shapevec(c, V, qfi.fshape->levels[SIDE_WALL], darkena(fcol, fd, 0xFF), PPR::WALL);
draw_star(V, cgi.shNightStar, 0xFFFFFFFF);
break;
}
default:
add_to_sky(0, 0);
}
}
EX struct renderbuffer *airbuf;
EX void swap_if_missing(bool missing) {
if(!missing) return;
arb::swap_vertices();
#if CAP_IRR
irr::swap_vertices();
#endif
}
EX void make_air() {
if(!sky) return;
if(!embedded_plane) return;
if(centerover != sky_centerover) {
sky_centerover = centerover;
sky_cview = cview();
compute_skyvertices(sky->sky);
}
if(!context_fog) return;
if(vrhr::rendering()) return;
const int AIR_TEXTURE = 512;
if(!airbuf) {
airbuf = new renderbuffer(AIR_TEXTURE, AIR_TEXTURE, true);
if(!airbuf->valid) {
delete airbuf;
airbuf = nullptr;
println(hlog, "unable to make airbuf");
return;
}
}
#if CAP_VR
dynamicval<int> i(vrhr::state, 0);
#endif
bool missing = false;
auto cgi1 = &cgi;
if(1) {
//shot::take("airtest.png", drawqueue);
dynamicval<videopar> v(vid, vid);
dynamicval<bool> vi(inHighQual, true);
vid.xres = AIR_TEXTURE;
vid.yres = AIR_TEXTURE;
dynamicval<ld> g1(current_display->xmin, 0);
dynamicval<ld> g2(current_display->ymin, 0);
dynamicval<ld> g3(current_display->xmax, 1);
dynamicval<ld> g4(current_display->ymax, 1);
calcparam();
models::configure();
resetbuffer rb;
airbuf->enable();
current_display->set_viewport(0);
airbuf->clear(0xFFFF00FF);
pconf.alpha = 1;
pconf.scale = 1;
dynamicval<transmatrix> vm(pconf.cam(), Id);
pconf.stretch = 1;
pmodel = mdDisk;
vid.always3 = false;
geom3::apply_always3();
check_cgi();
missing = !(cgi.state & 2);
cgi.require_basics();
geom3::swap_direction = -1;
if(missing) {
swap(cgi.emb, cgi1->emb);
swap_if_missing(missing);
swap(cgi.emb, cgi1->emb);
}
cgi.require_shapes();
eGeometry orig = geometry;
#if !ISIOS
glDisable(GL_LINE_SMOOTH);
#endif
for(auto& g: sky->sky) {
transmatrix S;
if(1) {
geometry = gSpace534;
S = g.T.T;
S = current_display->radar_transform * S;
geometry = orig;
S = cgi1->emb->actual_to_base(S);
}
int id = shvid(g.c);
ensure_floorshape_generated(id, g.c);
auto& h = cgi.shFullFloor.b[id];
dqi_poly p;
p.V = shiftless(S);
p.offset = h.s;
p.cnt = h.e - h.s;
p.tab = &cgi.ourshape;
p.color = (g.skycolor << 8) | 0xFF;
p.outline = 0;
p.linewidth = 1;
p.flags = POLY_FORCEWIDE;
p.tinf = nullptr;
p.draw();
}
#if !ISIOS
if(vid.antialias & AA_LINES)
glEnable(GL_LINE_SMOOTH);
#endif
#if CAP_SDL
// if(anyshiftclick) IMAGESAVE(airbuf->render(), "air.png");
#endif
rb.reset();
}
GLERR("after draw");
geom3::apply_always3();
geom3::swap_direction = +1;
if(missing) {
swap(cgi.emb, cgi1->emb);
swap_if_missing(missing);
swap(cgi.emb, cgi1->emb);
}
check_cgi();
calcparam();
cgi.require_basics();
GLERR("after make_air");
current_display->set_viewport(0);
current_display->set_all(0,0);
}
#endif
}