hyperrogue/reg3.cpp

2930 lines
94 KiB
C++

// Hyperbolic Rogue -- regular honeycombs
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file reg3.cpp
* \brief regular honeycombs
*
* works with spherical and hyperbolic ones -- Euclidean cubic tiling implemented in euclid.cpp
* includes non-quotient spaces as well as field quotient and elliptic spaces
* hyperbolic honeycombs rely on bt:: to deal with floating point errors (just like archimedean)
*/
#include "hyper.h"
namespace hr {
EX hyperpoint final_coords(hyperpoint h) {
if(sn::in() || !bt::in())
return ultra_normalize(h);
#if CAP_BT
if(bt::in() && !mproduct)
return bt::bt_to_minkowski(h);
#endif
return h;
}
void subcellshape::compute_common() {
reg3::make_vertices_only(vertices_only, faces);
faces_local = faces;
for(auto& face: faces_local) for(auto& v: face) v = from_cellcenter * final_coords(v);
vertices_only_local = vertices_only;
for(auto& v: vertices_only_local) v = from_cellcenter * final_coords(v);
int N = isize(faces);
dirdist.resize(N);
for(int i=0; i<N; i++) {
auto& da = dirdist[i];
da.resize(N, false);
set<unsigned> cface;
for(auto& v: faces[i]) cface.insert(bucketer(v));
for(int j=0; j<N; j++) {
int mutual = 0;
for(auto& w: faces[j]) if(cface.count(bucketer(w))) mutual++;
da[j] = i == j ? 0 : mutual == 2 ? 1 : INFD;
}
}
floyd_warshall(dirdist);
next_dir.resize(N);
for(int a=0; a<N; a++) next_dir[a].resize(N);
for(int a=0; a<N; a++)
for(int b=0; b<N; b++)
if(dirdist[a][b] == 1)
for(int c=0; c<N; c++)
if(dirdist[a][c] == 1 && dirdist[b][c] == 1) {
transmatrix t = build_matrix(tC0(cgi.adjmoves[a]), tC0(cgi.adjmoves[b]), tC0(cgi.adjmoves[c]), C0);
if(det(t) > 0) next_dir[a][b] = c;
}
}
void subcellshape::compute_hept() {
cellcenter = C0;
to_cellcenter = Id;
from_cellcenter = Id;
compute_common();
}
EX namespace reg3 {
EX void make_vertices_only(vector<hyperpoint>& vo, const vector<vector<hyperpoint>>& csh) {
vo.clear();
for(auto& v: csh)
for(hyperpoint h: v) {
bool found = false;
for(hyperpoint h2: vo) if(hdist(h, h2) < 1e-6) found = true;
if(!found) vo.push_back(h);
}
}
EX }
// you may need to disable this to revert to old behavior (e.g., to make old recordings work)
EX bool fix_stretch = true;
transmatrix sfix_rgpushxto0(hyperpoint h) {
if(fix_stretch && stretch::applicable() && !fake::in()) return stretch::translate(h);
return rgpushxto0(h);
}
transmatrix sfix_gpushxto0(hyperpoint h) {
if(fix_stretch && stretch::applicable() && !fake::in()) return stretch::itranslate(h);
return gpushxto0(h);
}
#if MAXMDIM >= 4
void subcellshape::compute_sub() {
hyperpoint gres = Hypc;
for(auto& face: faces) {
hyperpoint res = Hypc;
for(auto& vertex: face)
res += vertex;
face_centers.push_back(normalize(res));
gres += res;
}
cellcenter = normalize(gres);
to_cellcenter = sfix_rgpushxto0(cellcenter);
from_cellcenter = sfix_gpushxto0(cellcenter);
compute_common();
}
/** \brief regular three-dimensional tessellations */
EX namespace reg3 {
EX int subcube_count = 1;
EX flagtype coxeter_param = 0;
const flagtype cox_othercell = 1;
const flagtype cox_midedges = 2;
const flagtype cox_vertices = 4;
#if HDR
inline short& altdist(heptagon *h) { return h->emeraldval; }
#endif
EX int extra_verification;
EX bool ultra_mirror_on;
EX bool ultra_mirror_in() { return (cgflags & qULTRA) && ultra_mirror_on; }
EX bool cubes_reg3;
EX bool in() {
if(fake::in()) return FPIU(in());
if(geometry == gCubeTiling && (cubes_reg3 || !PURE)) return true;
return WDIM == 3 && !euclid && !bt::in() && !nonisotropic && !mhybrid && !kite::in();
}
EX void compute_ultra() {
cgi.ultra_mirror_part = .99;
cgi.ultra_material_part = .99;
cgi.ultra_mirrors.clear();
if(cgflags & qULTRA) {
for(auto& v: cgi.heptshape->vertices_only) {
hyperpoint nei;
auto& faces = cgi.heptshape->faces;
for(int i=0; i<isize(faces); i++)
for(int j=0; j<isize(faces[i]); j++)
if(sqhypot_d(WDIM, faces[i][j]-v) < 1e-6)
nei = faces[i][j?j-1:j+1];
transmatrix T = spintox(v);
hyperpoint a = T * v;
hyperpoint b = T * nei;
ld f0 = 0.5;
ld f1 = binsearch(0.5, 1, [&] (ld d) {
hyperpoint c = lerp(b, a, d);
if(debugflags & DF_GEOM)
println(hlog, "d=", d, " c= ", c, " material = ", material(c));
return material(c) <= 0;
});
cgi.ultra_material_part = f1;
auto f = [&] (ld d) {
hyperpoint c = lerp(b, a, d);
c = normalize(c);
return c[1] * c[1] + c[2] * c[2];
};
for(int it=0; it<100; it++) {
ld fa = (f0*2+f1) / 3;
ld fb = (f0*1+f1*2) / 3;
if(debugflags & DF_GEOM)
println(hlog, "f(", fa, ") = ", f(fa), " f(", fb, ") = ", f(fb));
if(f(fa) > f(fb)) f0 = fa;
else f1 = fb;
}
cgi.ultra_mirror_part = f0;
hyperpoint c = lerp(b, a, f0);
c = normalize(c);
c[1] = c[2] = 0;
c = normalize(c);
cgi.ultra_mirror_dist = hdist0(c);
if(cgi.ultra_mirror_part >= 1-1e-6) continue;
cgi.ultra_mirrors.push_back(rspintox(v) * xpush(cgi.ultra_mirror_dist*2) * MirrorX * spintox(v));
}
}
}
EX void generate() {
if(fake::in()) {
fake::generate();
return;
}
auto& hsh = get_hsh();
int& loop = cgi.loop;
int& face = cgi.face;
auto& spins = cgi.spins;
auto& cellshape = hsh.faces;
auto& adjcheck = cgi.adjcheck;
int& mid = cgi.schmid;
mid = 3;
face = 3;
if(S7 == 6) face = 4;
if(S7 == 8) mid = 4;
if(S7 == 12) face = 5;
if(S7 == 20) mid = 5;
/* icosahedron not implemented */
loop = ginf[geometry].tiling_name[5] - '0';
DEBB(DF_GEOM, ("face = ", face, " loop = ", loop, " S7 = ", S7));
ld angle_between_faces, hcrossf;
/* frontal face direction */
hyperpoint h0, h1, h2, h3, h012, h013;
if(1) {
dynamicval<eGeometry> dg(geometry, gSphere);
angle_between_faces = edge_of_triangle_with_angles(TAU/mid, M_PI/face, M_PI/face);
h0 = xtangent(1);
h1 = cspin(0, 1, angle_between_faces) * h0;
h2 = cspin(1, 2, TAU/face) * h1;
h3 = cspin(1, 2, -TAU/face) * h1;
hcrossf = edge_of_triangle_with_angles(90._deg, M_PI/mid, M_PI/face);
h012 = cspin(1, 2, M_PI/face) * cspin(0, 1, hcrossf) * h0;
h013 = cspin(1, 2, -M_PI/face) * cspin(0, 1, hcrossf) * h0;
}
for(auto hx: {&h0, &h1, &h2, &h3, &h012, &h013}) (*hx)[3] = 0;
ld klein_scale = binsearch(0, 10, [&] (ld d) {
dynamicval<eGeometry> g(geometry, elliptic ? gCell120 : geometry);
/* center of an edge */
hyperpoint u = C0 + (h012 + h013) * d / 2;
if(material(u) <= 0) {
println(hlog, "klein_scale = ", d, " bad");
return true;
}
u = normalize(u);
hyperpoint h = C0 * face;
for(int i=0; i<face; i++) h += d * (cspin(1, 2, TAU*i/face) * h012);
h = normalize(h);
hyperpoint h2 = rspintox(h) * xpush0(2 * hdist0(h));
h2 = spintox(u) * h2;
u = spintox(u) * u;
h2 = gpushxto0(u) * h2;
u = gpushxto0(u) * u;
ld x = hypot(h2[1], h2[2]);
ld y = h2[0];
ld loop2 = 360 / (90 + atan(y/x) / degree);
println(hlog, "d=", d, " loop2= ", loop2);
if(sphere) return loop2 < loop;
return loop2 > loop;
});
/* precise ideal vertex */
if(klein_scale > 1-1e-5 && klein_scale < 1+1e-5) klein_scale = 1;
if(euclid) klein_scale = sqrt(3)/2;
/* actual vertex */
hyperpoint v2 = C0 + klein_scale * h012;
hyperpoint midface = Hypc;
for(int i=0; i<face; i++) midface += cspin(1, 2, TAU * i/face) * v2;
midface = normalize(midface);
ld between_centers = 2 * hdist0(midface);
DEBB(DF_GEOM, ("between_centers = ", between_centers));
if(S7 == 20) {
spins[0] = Id;
spins[1] = cspin(0, 1, angle_between_faces) * cspin180(1, 2);
spins[2] = spins[1] * cspin(1, 2, -TAU/face) * spins[1];
spins[3] = spins[1] * cspin(1, 2, +TAU/face) * spins[1];
for(int a=4; a<10; a++) spins[a] = cspin(1, 2, TAU/face) * spins[a-3];
for(int a=S7/2; a<S7; a++) spins[a] = spins[a-S7/2] * spin180();
}
if(S7 == 12 || S7 == 8) {
spins[0] = Id;
spins[1] = cspin(0, 1, angle_between_faces) * cspin180(1, 2);
for(int a=2; a<face+1; a++) spins[a] = cspin(1, 2, TAU*(a-1)/face) * spins[1];
for(int a=S7/2; a<S7; a++) spins[a] = cspin180(0, 1) * spins[a-S7/2];
if(S7 == 8) swap(spins[6], spins[7]);
if(S7 == 12) swap(spins[8], spins[11]);
if(S7 == 12) swap(spins[9], spins[10]);
}
if(S7 == 6) {
spins[0] = Id;
spins[1] = cspin(0, 1, angle_between_faces) * cspin180(1, 2);
spins[2] = cspin90(1, 2) * spins[1];
for(int a=S7/2; a<S7; a++) spins[a] = spins[a-S7/2] * cspin180(0, 1);
}
if(S7 == 4) {
spins[0] = Id;
spins[1] = cspin(0, 1, angle_between_faces) * cspin180(1, 2);
for(int a=2; a<face+1; a++) spins[a] = cspin(1, 2, TAU*(a-1)/face) * spins[1];
}
cellshape.clear();
cellshape.resize(S7);
for(int a=0; a<S7; a++) {
for(int b=0; b<face; b++)
cellshape[a].push_back(spins[a] * cspin(1, 2, TAU*b/face) * v2);
}
cgi.adjmoves[0] = cpush(0, between_centers) * cspin180(0, 2);
for(int i=1; i<S7; i++) cgi.adjmoves[i] = spins[i] * cgi.adjmoves[0];
for(int a=0; a<S7; a++)
DEBB(DF_GEOM, ("center of ", a, " is ", kz(tC0(cgi.adjmoves[a]))));
DEBB(DF_GEOM, ("doublemove = ", kz(tC0(cgi.adjmoves[0] * cgi.adjmoves[0]))));
adjcheck = hdist(tC0(cgi.adjmoves[0]), tC0(cgi.adjmoves[1])) * 1.0001;
if(loop == 4) cgi.strafedist = adjcheck;
else cgi.strafedist = hdist(cgi.adjmoves[0] * C0, cgi.adjmoves[1] * C0);
if(stretch::applicable()) {
transmatrix T = cspin90(0, 2);
transmatrix iT = inverse(T);
for(auto& v: cgi.adjmoves) v = T * v * iT;
for(auto& vv: cellshape) for(auto& v: vv) v = T * v;
}
hsh.compute_hept();
compute_ultra();
generate_subcells();
}
EX void generate_plain_subcubes() {
if(S7 != 6) throw hr_exception("generate_plain_subcubes but no cubes");
auto& ssh = cgi.subshapes;
const int sub = subcube_count;
auto vx = abs(cgi.heptshape->faces[0][0][0]);
auto vz = abs(cgi.heptshape->faces[0][0][3]);
for(int x=1-sub; x<sub; x+=2)
for(int y=1-sub; y<sub; y+=2)
for(int z=1-sub; z<sub; z+=2) {
ssh.emplace_back();
auto &ss = ssh.back();
ss.faces = cgi.heptshape->faces;
for(auto& face: ss.faces) for(auto& v: face) {
v[0] += vx * x;
v[1] += vx * y;
v[2] += vx * z;
v[3] += vz * (sub-1);
}
}
}
EX void generate_coxeter(flagtype f) {
auto& ssh = cgi.subshapes;
for(auto& fac: cgi.heptshape->faces) {
hyperpoint facectr = Hypc;
vector<hyperpoint> ring;
hyperpoint last = fac.back();
ring.push_back(last);
for(hyperpoint h: fac) {
if(f & cox_midedges)
ring.push_back(mid(last, h));
ring.push_back(last = h);
facectr += h;
}
facectr = normalize(facectr);
hyperpoint fc2 = rspintox(facectr) * xpush0(2*hdist0(facectr));
if(f & cox_vertices) {
for(int i=1; i<isize(ring); i++) {
ssh.emplace_back();
auto &ss = ssh.back();
auto h = (f & cox_othercell) ? facectr : fc2;
ss.faces.push_back({C0, h, ring[i-1]});
ss.faces.push_back({C0, h, ring[i]});
ss.faces.push_back({C0, ring[i-1], ring[i]});
ss.faces.push_back({h, ring[i-1], ring[i]});
}
}
else if(f & cox_midedges) {
ring.push_back(ring[1]);
for(int i=3; i<isize(ring); i+=2) {
ssh.emplace_back();
auto &ss = ssh.back();
auto h = (f & cox_othercell) ? facectr : fc2;
ss.faces.push_back({C0, ring[i-2], ring[i-1]});
ss.faces.push_back({C0, ring[i-1], ring[i-0]});
ss.faces.push_back({C0, h, ring[i-2]});
ss.faces.push_back({C0, h, ring[i-0]});
if(f & cox_othercell) {
ss.faces.push_back({facectr, ring[i-2], ring[i-1], ring[i-0]});
}
else {
ss.faces.push_back({fc2, ring[i-1], ring[i-0]});
ss.faces.push_back({fc2, ring[i-2], ring[i-1]});
}
}
}
else {
ssh.emplace_back();
auto &ss = ssh.back();
for(int i=1; i<isize(ring); i++)
ss.faces.push_back({C0, ring[i-1], ring[i]});
if(f & cox_othercell) {
ring.pop_back();
ss.faces.push_back(ring);
}
else {
for(int i=1; i<isize(ring); i++)
ss.faces.push_back({fc2, ring[i-1], ring[i]});
}
}
}
}
EX void generate_special_subcubes(bool bch) {
if(S7 != 6) throw hr_exception("generate_plain_subcubes but no cubes");
const int sub = subcube_count;
if(1) {
auto vx = abs(cgi.heptshape->faces[0][0][0]);
auto vz = abs(cgi.heptshape->faces[0][0][3]);
auto step = hdist0(tC0(cgi.adjmoves[0]));
array<int, 3> co;
int s = bch ? 1 : 2;
for(co[0]=-sub; co[0]<=sub; co[0]+=s)
for(co[1]=-sub; co[1]<=sub; co[1]+=s)
for(co[2]=-sub; co[2]<=sub; co[2]+=s)
if(((co[0]^co[1]^1)&1) && ((co[0]^co[2]^1)&1)) {
hyperpoint ctr = Hypc;
ctr[3] = vz * sub;
struct direction {
hyperpoint dir;
int limit;
transmatrix mirror;
void flip() { dir = -dir; limit = 200 - limit; }
};
array<direction, 3> di;
int mi = 0;
for(int i=0; i<3; i++) {
ctr[i] += co[i] * vx;
auto& dii = di[i];
if(co[i] >= 0) {
dii.dir = ctangent(i, vx);
dii.limit = sub - co[i];
dii.mirror = cpush(i, +step/2) * cmirror(i) * cpush(i, -step/2);
}
else {
dii.dir = ctangent(i, -vx);
dii.limit = co[i] + sub;
dii.mirror = cpush(i, -step/2) * cmirror(i) * cpush(i, +step/2);
}
if(dii.limit == 0) mi++;
}
sort(di.begin(), di.end(), [] (direction& d1, direction& d2) { return d1.limit > d2.limit; });
cgi.subshapes.emplace_back();
auto &ss = cgi.subshapes.back();
auto pt0 = [&] (const array<ld, 3>& x) {
transmatrix M = Id;
hyperpoint res = ctr;
for(int i=0; i<3; i++) {
ld xx = x[i];
if(xx > di[i].limit) xx = 2*di[i].limit-xx, M = di[i].mirror * M;
res += di[i].dir * xx;
}
return normalize(M * res);
};
auto pt = [&] (ld x, ld y, ld z) {
if(sub == 1 || !bch || sphere) return pt0(make_array(x,y,z));
// Unfortunately using the rule above for bch (with sub > 1) generates faces which are not flat.
// Therefore, we replace the vertices by the centers of their Voronoi cells
// we do this only in the hyperbolic case -- it does not work correctly in the spherical case because of Voronoi not working as expected
// the arguments for pt1 are the Voronoi centers for: (x,y,z) = (1,.5,0)
// pt1 rearranges them to whatever (x,y,z) actually is
array<ld, 3> arg1 = {x, y, z};
auto pt1 = [&] (ld x1, ld y1, ld z1) {
array<ld, 3> arg0;
for(int i=0; i<3; i++) {
if(arg1[i] == 1) arg0[i] = x1;
else if(arg1[i] == -1) arg0[i] = -x1;
else if(arg1[i] == .5) arg0[i] = y1;
else if(arg1[i] == -.5) arg0[i] = -y1;
else if(arg1[i] == 0) arg0[i] = z1;
else throw hr_exception("unknown number in pt1");
}
return normalize(pt0(arg0));
};
hyperpoint a = pt1(0,0,0);
hyperpoint b = pt1(2,0,0);
hyperpoint c = pt1(1,1,1);
hyperpoint d = pt1(1,1,-1);
hyperpoint res = circumscribe(a, b, c, d);
return res;
};
auto add_face = [&] (std::initializer_list<hyperpoint> vh) {
ss.faces.push_back(vh);
};
const ld h = .5;
if(mi == 0) {
for(int s: {-1, 1}) {
for(int i=0; i<3; i++) {
if(bch)
add_face({pt(0,.5,s), pt(.5,0,s), pt(0,-.5,s), pt(-.5,0,s)});
else
add_face({pt(-1,-1,s), pt(-1,+1,s), pt(+1,+1,s), pt(+1,-1,s)});
tie(di[0], di[1], di[2]) = make_tuple(di[1], di[2], di[0]);
}
}
if(bch) for(int u=0; u<8; u++) {
for(int j=0; j<3; j++) if((u>>j)&1) di[j].flip();
add_face({pt(0,.5,1), pt(0,1,.5), pt(.5,1,0), pt(1,.5,0), pt(1,0,.5), pt(.5,0,1)});
for(int j=0; j<3; j++) if((u>>j)&1) di[j].flip();
}
}
else if(mi == 1) {
auto& M = di[2].mirror;
for(int s: {-1, 1}) {
if(bch)
add_face({pt(0,h,s), pt(h,0,s), pt(0,-h,s), pt(-h,0,s)});
else
add_face({pt(-1,-1,s), pt(-1,+1,s), pt(+1,+1,s), pt(+1,-1,s)});
for(int i=0; i<2; i++) {
if(bch)
add_face({pt(1,0,-.5), pt(1,-.5,0), M*pt(1,0,-.5), pt(1,.5,0)});
else
add_face({pt(-1,-1,-1), pt(-1,+1,-1), pt(-1,+1,+1), pt(-1,-1,+1)});
tie(di[0], di[1]) = make_tuple(di[1], di[0]); di[0].flip();
}
}
if(bch) for(ld s: {-1, 1}) for(int i=0; i<4; i++) {
add_face({pt(0,.5,s), pt(0,1,s/2), pt(.5,1,0), pt(1,.5,0), pt(1,0,s/2), pt(.5,0,s)});
tie(di[0], di[1]) = make_tuple(di[1], di[0]); di[0].flip();
}
}
else {
transmatrix spi = mi == 2 ? di[1].mirror * di[2].mirror : di[0].mirror * di[1].mirror;
if(cgi.loop == 5) spi = spi * spi;
vector<transmatrix> spi_power = {Id};
for(int i=1; i<cgi.loop; i++) spi_power.push_back(spi_power.back() * spi);
if(mi == 2) {
for(auto P: spi_power) {
if(bch)
add_face({P*pt(.5,0,-1), P*pt(0,-.5,-1), P*pt(-.5,0,-1), P*pt(0,.5,-1)});
else
add_face({P*pt(-1,-1,-1), P*pt(1,-1,-1), P*spi*pt(1,-1,-1), P*spi*pt(-1,-1,-1)});
}
vector<hyperpoint> f0, f1;
for(auto P: spi_power) f0.push_back(bch ? P*pt(-1,-.5,0) : P*pt(-1,-1,-1));
for(auto P: spi_power) f1.push_back(bch ? P*pt(+1,-.5,0) : P*pt(+1,-1,-1));
ss.faces.push_back(f0);
ss.faces.push_back(f1);
if(bch) for(auto P: spi_power) for(int s: {-1,1})
add_face({P*pt(-.5*s,0,-1), P*pt(0,-.5,-1), P*pt(0,-1,-.5), P*pt(-.5*s,-1,0), P*pt(-1*s,-.5,0), P*pt(-1*s,0,-.5)});
}
else {
vector<transmatrix> face_dirs = {Id};
for(int i=0; i<isize(face_dirs); i++)
for(int j=0; j<2; j++)
for(auto P1: spi_power) {
auto T = face_dirs[i];
if(j == 0) T = T * P1 * di[1].mirror * di[2].mirror;
if(j == 1) T = T * P1 * di[2].mirror * di[0].mirror;
bool fnd = false;
for(auto& F: face_dirs)
for(auto P: spi_power)
if(eqmatrix(T, F*P)) fnd = true;
if(!fnd) face_dirs.push_back(T);
}
// tetrahedron in {4,3,3}; dodecahedron in {4,3,5}
if(cgi.loop == 3) hassert(isize(face_dirs) == 4);
if(cgi.loop == 5) hassert(isize(face_dirs) == 12);
for(auto F: face_dirs) {
vector<hyperpoint> f0;
for(auto P: spi_power) f0.push_back(bch ? F*P*pt(-.5,0,-1) : F*P*pt(-1,-1,-1));
ss.faces.push_back(f0);
}
vector<transmatrix> vertex_dirs;
hyperpoint pter = normalize(pt0(make_array(-.5,-.5,-.5)));
for(auto& F: face_dirs) for(auto& P: spi_power) {
transmatrix T = F * P;
bool fnd = false;
for(auto T1: vertex_dirs) if(hdist(T * pter, T1*pter) < 1e-3) fnd = true;
if(!fnd) vertex_dirs.push_back(T);
}
if(cgi.loop == 3) hassert(isize(vertex_dirs) == 4);
if(cgi.loop == 5) hassert(isize(vertex_dirs) == 20);
if(bch) for(auto& V: vertex_dirs)
add_face({V*pt(-1,-.5,0), V*pt(-1,0,-.5), V*pt(-.5,0,-1), V*pt(0,-.5,-1), V*pt(0,-1,-.5), V*pt(-.5,-1,0)});
}
}
}
}
}
EX void generate_bch_oct() {
if(S7 != 6) throw hr_exception("generate_bch_oct but no cubes");
const int sub = subcube_count;
if(1) {
auto vx = abs(cgi.heptshape->faces[0][0][0]);
auto vz = abs(cgi.heptshape->faces[0][0][3]);
array<int, 3> co;
// vx = 1; vz = 0;
for(co[0]=-sub; co[0]<sub; co[0]++)
for(co[1]=-sub; co[1]<sub; co[1]++)
for(co[2]=-sub; co[2]<sub; co[2]++) {
auto co1 = co;
array<ld, 3> sgn = {1,1,1};
if((co[1] ^ co[0]) & 1) co1[1]++, sgn[1] = -1;
if((co[2] ^ co[0]) & 1) co1[2]++, sgn[2] = -1;
hyperpoint ctr = Hypc;
ctr[3] = vz * sub;
auto pt = [&] (int m, ld x0, ld x1, ld x2) {
hyperpoint res = ctr;
auto x = make_array(x0, x1, x2);
for(int i=0; i<3; i++)
res[i] = vx * (co1[i] + x[(m+i)%3] * sgn[i]);
return res;
};
for(int it=0; it<2; it++) {
cgi.subshapes.emplace_back();
auto &ss = cgi.subshapes.back();
for(int m=0; m<3; m++) {
ss.faces.push_back({pt(m,0,0,0), pt(m,1,0,0), pt(m,1,0,.5), pt(m,.5,0,1), pt(m,0,0,1)});
ss.faces.push_back({pt(m,1,0,0), pt(m,1,0,.5), pt(m,1,.5,0) });
}
ss.faces.push_back({pt(0,1,0,.5), pt(0,1,.5,0), pt(0,.5,1,0), pt(0,0,1,.5), pt(0,0,.5,1), pt(0,.5,0,1)});
for(int d=0; d<3; d++)
co1[d] += sgn[d], sgn[d] *= -1;
println(hlog, ss.faces);
}
}
}
}
EX void generate_subcells() {
cgi.subshapes.clear();
switch(variation) {
case eVariation::subcubes:
generate_plain_subcubes();
break;
case eVariation::dual_subcubes:
generate_special_subcubes(false);
break;
case eVariation::bch:
generate_special_subcubes(true);
break;
case eVariation::bch_oct:
generate_bch_oct();
break;
case eVariation::coxeter:
generate_coxeter(coxeter_param);
break;
case eVariation::pure: {
cgi.subshapes.emplace_back();
cgi.subshapes[0].faces = cgi.heptshape->faces;
break;
}
default:
throw hr_exception("unknown variation in generate_subcells");
}
for(auto& ss: cgi.subshapes) ss.compute_sub();
println(hlog, "subcells generated = ", isize(cgi.subshapes));
}
void binary_rebase(heptagon *h, const transmatrix& V) {
}
void test();
#if HDR
/** \brief vertex_adjacencies[heptagon id] is a list of other heptagons which are vertex adjacent
* note: in case of ideal vertices this is just the face adjacency
**/
struct vertex_adjacency_info {
/** id of the adjacent heptagon */
int h_id;
/** transition matrix to that heptagon */
transmatrix T;
/** the sequence of moves we need to make to get there */
vector<int> move_sequence;
};
struct hrmap_closed3 : hrmap {
vector<heptagon*> allh;
vector<vector<vector<int>>> strafe_data;
vector<vector<transmatrix>> tmatrices;
vector<vector<transmatrix>> tmatrices_cell;
vector<cell*> acells;
map<cell*, pair<int, int> > local_id; /* acells index, subshape index */
vector<vector<cell*>> acells_by_master;
vector<vector<vertex_adjacency_info> > vertex_adjacencies;
vector<vector<vector<int>>> move_sequences;
transmatrix adj(heptagon *h, int d) override { return tmatrices[h->fieldval][d]; }
transmatrix adj(cell *c, int d) override { return tmatrices_cell[local_id.at(c).first][d]; }
heptagon *getOrigin() override { return allh[0]; }
transmatrix relative_matrixc(cell *h2, cell *h1, const hyperpoint& hint) override;
void initialize(int cell_count);
vector<cell*>& allcells() override { return acells; }
~hrmap_closed3() {
clearfrom(getOrigin());
}
subcellshape& get_cellshape(cell *c) override {
if(PURE) return *cgi.heptshape ;
int id = local_id.at(c).second;
return cgi.subshapes[id];
}
transmatrix master_relative(cell *c, bool get_inverse) override {
int id = local_id.at(c).second;
auto& ss = cgi.subshapes[id];
return get_inverse ? ss.from_cellcenter : ss.to_cellcenter;
}
void make_subconnections();
int wall_offset(cell *c) override;
int shvid(cell *c) override { return local_id.at(c).second; }
transmatrix ray_iadj(cell *c, int i) override;
cellwalker strafe(cellwalker cw, int j) override {
int id = local_id.at(cw.at).first;
return cellwalker(cw.at->cmove(j), strafe_data[id][j][cw.spin]);
}
const vector<int>& get_move_seq(cell *c, int i) override {
int id = local_id.at(c).first;
return move_sequences[id][i];
}
};
struct hrmap_quotient3 : hrmap_closed3 { };
#endif
transmatrix hrmap_closed3::ray_iadj(cell *c, int i) {
if(PURE) return iadj(c, i);
auto& v = get_face_vertices(c, i);
hyperpoint h =
project_on_triangle(v[0], v[1], v[2]);
transmatrix T = rspintox(h);
return T * xpush(-2*hdist0(h)) * spintox(h);
}
int hrmap_closed3::wall_offset(cell *c) {
if(PURE) return 0;
auto& wo = cgi.walloffsets[ local_id.at(c).second ];
if(wo.second == nullptr)
wo.second = c;
return wo.first;
}
EX const vector<hyperpoint>& get_face_vertices(cell *c, int d) {
return cgi.subshapes[currentmap->shvid(c)].faces_local[d];
}
EX int get_face_vertex_count(cell *c, int d) {
return isize(get_face_vertices(c, d));
}
void hrmap_closed3::initialize(int big_cell_count) {
allh.resize(big_cell_count);
tmatrices.resize(big_cell_count);
acells.clear();
for(int a=0; a<big_cell_count; a++) {
allh[a] = init_heptagon(S7);
allh[a]->fieldval = a;
}
}
const static bool testing_subconnections = false;
void hrmap_closed3::make_subconnections() {
auto& ss = cgi.subshapes;
auto& vas = vertex_adjacencies;
vas.resize(isize(allh));
for(int a=0; a<isize(allh); a++) {
auto& va = vas[a];
va.emplace_back(vertex_adjacency_info{a, Id, {}});
set<unsigned> buckets;
for(auto& v: cgi.heptshape->vertices_only) buckets.insert(bucketer(v));
if(cgflags & qIDEAL) {
for(int d=0; d<S7; d++) {
transmatrix T = adj(allh[a], d);
va.emplace_back(vertex_adjacency_info{allh[a]->move(d)->fieldval, T, {d}});
}
}
else
for(int i=0; i<isize(va); i++) {
for(int d=0; d<S7; d++) {
transmatrix T = va[i].T * adj(allh[va[i].h_id], d);
bool found = false;
for(auto& va2: va) if(eqmatrix(va2.T, T)) found = true;
if(found) continue;
bool found_va = false;
for(auto& w: cgi.heptshape->vertices_only)
if(buckets.count(bucketer(T*w)))
found_va = true;
if(!found_va) continue;
va.emplace_back(vertex_adjacency_info{allh[va[i].h_id]->move(d)->fieldval, T, va[i].move_sequence});
va.back().move_sequence.push_back(d);
}
}
}
map<int, int> by_sides;
vector<map<unsigned, vector<hyperpoint> > > which_cell_0;
which_cell_0.resize(isize(allh));
acells_by_master.resize(isize(allh));
for(int a=0; a<isize(allh); a++) {
for(int id=0; id<isize(ss); id++) {
bool exists = false;
auto& cc = ss[id].cellcenter;
for(auto& va: vertex_adjacencies[a]) {
hyperpoint h = iso_inverse(va.T) * cc;
for(auto h1: which_cell_0[va.h_id][bucketer(h)])
if(hdist(h1, h) < 1e-6)
exists = true;
}
if(exists) continue;
cell *c = newCell(isize(ss[id].faces), allh[a]);
by_sides[isize(ss[id].faces)]++;
if(!allh[a]->c7)
allh[a]->c7 = c;
local_id[c] = {isize(acells), id};
acells.push_back(c);
acells_by_master[a].push_back(c);
which_cell_0[a][bucketer(cc)].push_back(cc);
}
}
println(hlog, "found ", isize(acells), " cells, ", by_sides);
tmatrices_cell.resize(isize(acells));
move_sequences.resize(isize(acells));
int failures = 0;
vector<map<unsigned, vector<pair<cell*, int> > > > which_cell;
which_cell.resize(isize(allh));
for(cell *c: acells) {
int id = local_id[c].second;
for(int i=0; i<c->type; i++)
which_cell[c->master->fieldval][bucketer(ss[id].face_centers[i])].emplace_back(c, i);
}
strafe_data.resize(isize(acells));
for(cell *c: acells) {
int id = local_id[c].second;
int cid = local_id[c].first;
auto& tmcell = tmatrices_cell[cid];
vector<int> foundtab;
vector<tuple<int, int, int>> foundtab_ids;
strafe_data[cid].resize(c->type);
for(int i=0; i<c->type; i++) {
int found = 0;
hyperpoint ctr = ss[id].face_centers[i];
transmatrix T1 = Id;
int h_id = c->master->fieldval;
vector<int> path;
while(true) {
int d = -1;
ld dist = hdist0(ctr);
for(int d1=0; d1<S7; d1++) {
auto ctr1 = iso_inverse(tmatrices[h_id][d1]) * ctr;
ld dist1 = hdist0(ctr1);
if(dist1 < dist - 1e-6) d = d1, dist = dist1;
}
if(d == -1) break;
path.push_back(d);
T1 = T1 * tmatrices[h_id][d];
ctr = iso_inverse(tmatrices[h_id][d]) * ctr;
h_id = allh[h_id]->move(d)->fieldval;
}
for(auto& va: vertex_adjacencies[h_id]) {
hyperpoint ctr1 = iso_inverse(va.T) * ctr;
auto bucket = bucketer(ctr1);
for(auto p: which_cell[va.h_id][bucket]) {
cell *c1 = p.first;
int j = p.second;
int id1 = local_id[c1].second;
if(hdist(ctr1, ss[id1].face_centers[j]) < 1e-6) {
transmatrix T2 = T1 * va.T;
if(id == id1 && eqmatrix(T2, Id)) continue;
c->c.connect(i, c1, j, false);
if(!found) {
tmcell.push_back(ss[id].from_cellcenter * T2 * ss[id1].to_cellcenter);
if(elliptic) fixelliptic(tmcell.back());
auto& ms = move_sequences[local_id[c].first];
ms.push_back(path);
for(auto dir: va.move_sequence) ms.back().push_back(dir);
auto& sd = strafe_data[cid][i];
sd.resize(c->type, -1);
for(int i1=0; i1<c->type; i1++) {
set<unsigned> facevertices;
for(auto v: ss[id].faces[i1]) facevertices.insert(bucketer(v));
if(ss[id].dirdist[i][i1] == 1) {
int found_strafe = 0;
for(int j1=0; j1<c1->type; j1++) if(j1 != j) {
int num = 0;
for(auto v: ss[id1].faces[j1])
if(facevertices.count(bucketer(T2*v)))
num++;
if(num == 2) sd[i1] = j1, found_strafe++;
}
if(found_strafe != 1) println(hlog, "found_strafe = ", found_strafe);
}
}
/* for bch, also provide second-order strafe */
if(variation == eVariation::bch) for(int i1=0; i1<c->type; i1++) {
if(ss[id].dirdist[i][i1] != 2) continue;
if(isize(ss[id].faces[i]) == 6) continue;
if(isize(ss[id].faces[i1]) == 6) continue;
vector<int> fac;
for(int i2=0; i2<c->type; i2++) if(ss[id].dirdist[i][i2] == 1 && ss[id].dirdist[i2][i1] == 1)
fac.push_back(sd[i2]);
if(isize(fac) != 2) {
println(hlog, "fac= ", fac);
throw hr_exception("fac error");
}
int found_strafe = 0;
for(int j1=0; j1<c1->type; j1++) if(j1 != j)
if(ss[id1].dirdist[j1][fac[0]] == 1)
if(ss[id1].dirdist[j1][fac[1]] == 1) {
sd[i1] = j1;
found_strafe++;
}
if(found_strafe != 1) println(hlog, "found_strafe = ", found_strafe, " (second order)");
}
}
foundtab_ids.emplace_back(va.h_id, id1, j);
found++;
}
}
if(found && !testing_subconnections) break;
}
if(testing_subconnections && !found) {
c->c.connect(i, c, i, false);
tmcell.push_back(Id);
}
foundtab.push_back(found);
if(found != 1) failures++;
}
if(testing_subconnections) println(hlog, "foundtab = ", foundtab);
}
println(hlog, "total failures = ", failures);
if(failures && !testing_subconnections) throw hr_exception("hrmap_closed3 failures");
}
transmatrix hrmap_closed3::relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) {
if(c1 == c2) return Id;
int d = hr::celldistance(c2, c1);
for(int a=0; a<c1->type; a++) if(hr::celldistance(c2, c1->move(a)) < d)
return adj(c1, a) * relative_matrix(c2, c1->move(a), hint);
for(int a=0; a<c1->type; a++) println(hlog, "d=", d, " vs ", hr::celldistance(c2, c1->move(a)));
println(hlog, "error in hrmap_quotient3:::relative_matrix");
return Id;
}
#if CAP_CRYSTAL
int encode_coord(int bits, const crystal::coord& co) {
int c = 0;
for(int i=0; i<(1<<bits); i++) c |= ((co[i]>>1) & ((1<<bits)-1)) << (bits*i);
return c;
}
EX crystal::coord decode_coord(int bits, int a) {
crystal::coord co;
for(int i=0; i<(1<<bits); i++) co[i] = (a & ((1<<bits)-1)) * 2, a >>= bits;
return co;
}
struct hrmap_from_crystal : hrmap_quotient3 {
int bits;
hrmap_from_crystal(int b) : bits(b) {
int size = 1 << (4*bits);
initialize(size);
if(1) {
auto m = crystal::new_map();
dynamicval<hrmap*> cm(currentmap, m);
for(int a=0; a<size; a++) {
auto co = decode_coord(bits, a);
heptagon *h1 = get_heptagon_at(co);
for(int d=0; d<8; d++) {
int b = encode_coord(bits, crystal::get_coord(h1->cmove(d)));
allh[a]->c.connect(d, allh[b], h1->c.spin(d), false);
tmatrices[a].push_back(crystal::get_adj(h1, d));
}
}
delete m;
}
make_subconnections();
}
};
#endif
struct hrmap_field3 : reg3::hrmap_quotient3 {
fieldpattern::fpattern *f;
hrmap_field3(fieldpattern::fpattern *ptr) {
f = ptr;
auto lgr = f->local_group;
int N = isize(f->matrices) / lgr;
initialize(N);
vector<int> moveid(S7), movedir(lgr);
for(int s=0; s<lgr; s++)
for(int i=0; i<S7; i++) if(eqmatrix(f->fullv[s] * cgi.adjmoves[0], cgi.adjmoves[i]))
moveid[i] = s;
for(int s=0; s<lgr; s++)
for(int i=0; i<S7; i++) if(hdist(tC0(inverse(f->fullv[s]) * cgi.adjmoves[0]), tC0(cgi.adjmoves[i])) < 1e-4)
movedir[s] = i;
for(int a=0; a<N; a++) {
tmatrices[a].resize(S7);
for(int b=0; b<S7; b++) {
int k = lgr*a;
k = f->matcode[ f->mmul(f->mmul(f->matrices[k], f->matrices[moveid[b]]), f->P) ];
for(int l=0; l<lgr; l++) if(f->gmul(k, l) % lgr == 0) {
tmatrices[a][b] = cgi.adjmoves[b] * f->fullv[l];
allh[a]->c.connect(b, allh[k/lgr], movedir[l], false);
}
}
}
make_subconnections();
create_patterns();
}
set<cellwalker> plane;
void make_plane(cellwalker cw) {
if(plane.count(cw)) return;
plane.insert(cw);
auto& ss = get_cellshape(cw.at);
for(int i=0; i<cw.at->type; i++)
if(ss.dirdist[i][cw.spin] == 1)
make_plane(strafe(cw, i));
}
void create_patterns() {
DEBB(DF_GEOM, ("creating pattern = ", isize(allh)));
if(!PURE) {
println(hlog, "create_patterns not implemented");
return;
}
// also, strafe needs currentmap
dynamicval<hrmap*> c(currentmap, this);
if(S7 == 12) {
// Emerald in 534
cell *a = gamestart();
cell *b = a;
for(cell *c: allcells())
if(bounded_celldistance(a, c) == 5) {
b = c;
break;
}
for(cell *c: allcells())
if(bounded_celldistance(a, c) > bounded_celldistance(b, c))
c->master->zebraval |= 1;
// Vineyard in 534
b = (cellwalker(a, 0) + wstep + rev + wstep).at;
for(cell *c: allcells())
if(bounded_celldistance(a, c) == bounded_celldistance(b, c))
c->master->zebraval |= 2;
}
if(S7 == 6 && ginf[geometry].vertex == 5) {
// Emerald in 534
cell *a = gamestart();
for(cell *c: allcells())
if(bounded_celldistance(a, c) > 3)
c->master->zebraval |= 1;
// Vineyard in 435
make_plane(cellwalker(gamestart(), 0));
DEBB(DF_GEOM, ("plane size = ", isize(plane)));
set<int> plane_indices;
for(auto cw: plane) plane_indices.insert(cw.at->master->fieldval);
int fN = isize(f->matrices);
set<int> nwi;
for(int i=0; i<fN; i++) {
bool ok = true;
for(auto o: plane_indices) {
int j = f->gmul(i, o * f->local_group) / f->local_group;
if(plane_indices.count(j)) ok = false;
forCellEx(c1, allcells()[j]) if(plane_indices.count(c1->master->fieldval)) ok = false;
}
if(ok) nwi.insert(i);
}
int gpow = 0;
for(int i: nwi) {
int pw = 1;
int at = i;
while(true) {
at = f->gmul(at, i);
if(!nwi.count(at)) break;
pw++;
}
if(pw == 4) gpow = i;
}
int u = 0;
for(int a=0; a<5; a++) {
for(int o: plane_indices) {
int j = f->gmul(u, o * f->local_group) / f->local_group;
allcells()[j]->master->zebraval |= 2;
}
u = f->gmul(u, gpow);
}
}
}
};
/** \brief homology cover of the Seifert-Weber space */
namespace seifert_weber {
using crystal::coord;
vector<coord> periods;
int flip(int x) { return (x+6) % 12; }
void build_reps() {
// start_game();
auto& hsh = get_hsh();
set<coord> boundaries;
for(int a=0; a<12; a++)
for(int b=0; b<12; b++) if(hsh.dirdist[a][b] == 1) {
coord res = crystal::c0;
int sa = a, sb = b;
do {
// printf("%d ", sa);
if(sa < 6) res[sa]++; else res[sa-6]--;
sa = flip(sa);
sb = flip(sb);
swap(sa, sb);
sb = hsh.next_dir[sa][sb];
// sb = next_dirsa][sb];
}
while(a != sa || b != sb);
// printf("\n");
if(res > crystal::c0)
boundaries.insert(res);
}
periods.clear();
for(int index = 5; index >= 0; index--) {
for(auto k: boundaries) println(hlog, k);
DEBB(DF_GEOM, ("simplifying..."));
for(auto by: boundaries) if(among(by[index], 1, -1)) {
DEBB(DF_GEOM, ("simplifying by ", by));
periods.push_back(by);
set<coord> nb;
for(auto v: boundaries)
if(v == by) ;
else if(v[index] % by[index] == 0)
nb.insert(v - by * (v[index] / by[index]));
else println(hlog, "error");
boundaries = std::move(nb);
break;
}
}
}
int get_rep(coord a) {
a = a - periods[0] * (a[5] / periods[0][5]);
a = a - periods[1] * (a[4] / periods[1][4]);
a = a - periods[2] * (a[3] / periods[2][3]);
for(int i=0; i<3; i++) a[i] = gmod(a[i], 5);
return a[2] * 25 + a[1] * 5 + a[0];
}
coord decode(int id) {
coord res = crystal::c0;
for(int a=0; a<3; a++) res[a] = id % 5, id /= 5;
return res;
}
struct hrmap_singlecell : hrmap_quotient3 {
hrmap_singlecell(ld angle) {
initialize(1);
tmatrices[0].resize(S7);
for(int b=0; b<S7; b++) {
allh[0]->c.connect(b, allh[0], (b+S7/2) % S7, false);
transmatrix T = cgi.adjmoves[b];
hyperpoint p = tC0(T);
tmatrices[0][b] = rspintox(p) * xpush(hdist0(p)) * cspin(2, 1, angle) * spintox(p);
}
make_subconnections();
}
};
struct hrmap_seifert_cover : hrmap_quotient3 {
hrmap_seifert_cover() {
if(periods.empty()) build_reps();
initialize(125);
for(int a=0; a<125; a++) {
tmatrices[a].resize(12);
for(int b=0; b<12; b++) {
coord x = decode(a);
if(b < 6) x[b]++;
else x[b-6]--;
int a1 = get_rep(x);
allh[a]->c.connect(b, allh[a1], flip(b), false);
transmatrix T = cgi.adjmoves[b];
hyperpoint p = tC0(T);
tmatrices[a][b] = rspintox(p) * xpush(hdist0(p)) * cspin(2, 1, 108._deg) * spintox(p);
}
}
make_subconnections();
}
};
}
EX bool minimize_quotient_maps = false;
EX bool strafe_test = false;
hrmap_quotient3 *gen_quotient_map(bool minimized, fieldpattern::fpattern &fp) {
#if CAP_FIELD
if(geometry == gSpace535 && minimized) {
return new seifert_weber::hrmap_singlecell(108._deg);
}
else if(geometry == gSpace535)
return new seifert_weber::hrmap_seifert_cover;
else if(hyperbolic) {
return new hrmap_field3(&fp);
}
else if(geometry == gCubeTiling)
return new seifert_weber::hrmap_singlecell(0);
#endif
return nullptr;
}
struct hrmap_h3_abstract : hrmap {
reg3::hrmap_quotient3 *quotient_map;
transmatrix adj(heptagon *h, int d) override {
throw hr_exception("any adj");
}
transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) override {
if(PURE) return relative_matrix(c2->master, c1->master, hint);
return relative_matrix_via_masters(c2, c1, hint);
}
transmatrix master_relative(cell *c, bool get_inverse) override {
if(PURE) return Id;
int aid = cell_id.at(c);
return quotient_map->master_relative(quotient_map->acells[aid], get_inverse);
}
int shvid(cell *c) override {
if(PURE) return 0;
if(!cell_id.count(c)) return quotient_map->shvid(c);
int aid = cell_id.at(c);
return quotient_map->shvid(quotient_map->acells[aid]);
}
int wall_offset(cell *c) override {
if(PURE) return 0;
if(!cell_id.count(c)) return quotient_map->wall_offset(c); /* necessary because ray samples are from quotient_map */
int aid = cell_id.at(c);
return quotient_map->wall_offset(quotient_map->acells[aid]);
}
transmatrix adj(cell *c, int d) override {
if(PURE) return adj(c->master, d);
if(!cell_id.count(c)) return quotient_map->adj(c, d); /* necessary because ray samples are from quotient_map */
int aid = cell_id.at(c);
return quotient_map->tmatrices_cell[aid][d];
}
subcellshape& get_cellshape(cell *c) override {
if(PURE) return *cgi.heptshape;
int aid = cell_id.at(c);
return quotient_map->get_cellshape(quotient_map->acells[aid]);
}
map<cell*, int> cell_id;
map<pair<heptagon*, int>, cell*> cell_at;
cell *get_cell_at(heptagon *h, int acell_id) {
pair<heptagon*, int> p(h, acell_id);
auto& ca = cell_at[p];
if(!ca) {
ca = newCell(quotient_map->acells[acell_id]->type, h);
cell_id[ca] = acell_id;
if(!h->c7) h->c7 = ca;
}
return ca;
}
void find_cell_connection(cell *c, int d) override {
if(PURE) {
auto h = c->master->cmove(d);
c->c.connect(d, h->c7, c->master->c.spin(d), false);
return;
}
int id = cell_id.at(c);
heptagon *h = c->master;
for(int dir: quotient_map->move_sequences[id][d])
h = h->cmove(dir);
auto ac = quotient_map->acells[id];
cell *c1 = get_cell_at(h, quotient_map->local_id[ac->move(d)].first);
c->c.connect(d, c1, ac->c.spin(d), false);
}
transmatrix ray_iadj(cell *c, int i) override {
if(PURE) return iadj(c, i);
if(!cell_id.count(c)) return quotient_map->ray_iadj(c, i); /* necessary because ray samples are from quotient_map */
int aid = cell_id.at(c);
return quotient_map->ray_iadj(quotient_map->acells[aid], i);
}
const vector<int>& get_move_seq(cell *c, int i) override {
int aid = cell_id.at(c);
return quotient_map->get_move_seq(quotient_map->acells[aid], i);
}
cellwalker strafe(cellwalker cw, int j) override {
int aid = PURE ? cw.at->master->fieldval : cell_id.at(cw.at);
auto ress = quotient_map->strafe(cellwalker(quotient_map->acells[aid], cw.spin), j);
cellwalker res = cellwalker(cw.at->cmove(j), ress.spin);
if(PURE && strafe_test) {
hyperpoint hfront = tC0(cgi.adjmoves[cw.spin]);
cw.at->cmove(j);
transmatrix T = currentmap->adj(cw.at, j);
for(int i=0; i<S7; i++) if(i != cw.at->c.spin(j))
if(hdist(hfront, T * tC0(cgi.adjmoves[i])) < cgi.strafedist + .01) {
auto resx = cellwalker(cw.at->cmove(j), i);
if(res == resx) return res;
if(PURE && res != resx) println(hlog, "h3: ", res, " vs ", resx);
}
throw hr_exception("incorrect strafe");
}
return res;
}
};
struct hrmap_h3 : hrmap_h3_abstract {
heptagon *origin;
hrmap *binary_map;
vector<heptagon*> extra_origins;
map<heptagon*, pair<heptagon*, transmatrix>> reg_gmatrix;
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
vector<cell*>& allcells() override {
return hrmap::allcells();
}
hrmap_h3() {
println(hlog, "generating hrmap_h3");
origin = init_heptagon(S7);
heptagon& h = *origin;
h.s = hsOrigin;
if(PURE) h.c7 = newCell(S7, origin);
worst_error1 = 0, worst_error2 = 0;
dynamicval<hrmap*> cr(currentmap, this);
heptagon *alt = NULL;
transmatrix T = Id;
binary_map = nullptr;
quotient_map = gen_quotient_map(minimize_quotient_maps, currfp);
h.zebraval = quotient_map ? quotient_map->allh[0]->zebraval : 0;
#if CAP_BT
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gBinary3);
bt::build_tmatrix();
alt = init_heptagon(S7);
alt->s = hsOrigin;
alt->alt = alt;
binary_map = bt::new_alt_map(alt);
T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * cspin(0, 2, 1.1249) * xpush(0.07) * Id;
}
#endif
reg_gmatrix[origin] = make_pair(alt, T);
altmap[alt].emplace_back(origin, T);
if(PURE) {
celllister cl(origin->c7, 4, 100000, NULL);
for(cell *c: cl.lst) {
hyperpoint h = tC0(relative_matrix(c->master, origin, C0));
cgi.close_distances[bucketer(h)] = cl.getdist(c);
}
}
if(!PURE) get_cell_at(origin, 0);
}
ld worst_error1, worst_error2;
heptagon *getOrigin() override {
return origin;
}
void fix_distances(heptagon *h, heptagon *h2) {
vector<heptagon*> to_fix;
auto fix_pair = [&] (heptagon *h, heptagon *h2) {
if(!h2) return;
if(h->distance > h2->distance+1) {
h->distance = h2->distance + 1;
to_fix.push_back(h);
}
else if(h2->distance > h->distance+1) {
h2->distance = h->distance + 1;
to_fix.push_back(h2);
}
if(h->alt && h->alt == h2->alt) {
if(altdist(h) > altdist(h2) + 1) {
altdist(h) = altdist(h2) + 1;
to_fix.push_back(h);
}
else if (altdist(h2) > altdist(h) + 1) {
altdist(h2) = altdist(h) + 1;
to_fix.push_back(h2);
}
}
};
if(!h2) to_fix = {h};
else fix_pair(h, h2);
for(int i=0; i<isize(to_fix); i++) {
h = to_fix[i];
for(int j=0; j<S7; j++) fix_pair(h, h->move(j));
}
}
#define DEB 0
heptagon *counterpart(heptagon *h) {
return quotient_map->allh[h->fieldval];
}
void verify_neighbors(heptagon *alt, int steps, const hyperpoint& hT) {
ld err;
for(auto& p2: altmap[alt]) if((err = intval(tC0(p2.second), hT)) < 1e-3) {
println(hlog, "FAIL");
exit(3);
}
#if CAP_BT
if(steps) {
dynamicval<eGeometry> g(geometry, gBinary3);
dynamicval<hrmap*> cm(currentmap, binary_map);
for(int i=0; i<alt->type; i++)
verify_neighbors(alt->cmove(i), steps-1, currentmap->iadj(alt, i) * hT);
}
#endif
}
heptagon *create_step(heptagon *parent, int d) override {
auto& p1 = reg_gmatrix[parent];
if(DEB) println(hlog, "creating step ", parent, ":", d, ", at ", p1.first, tC0(p1.second));
heptagon *alt = p1.first;
#if CAP_FIELD
transmatrix T = p1.second * (quotient_map ? quotient_map->tmatrices[parent->fieldval][d] : cgi.adjmoves[d]);
#else
transmatrix T = p1.second * cgi.adjmoves[d];
#endif
#if CAP_BT
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gBinary3);
dynamicval<hrmap*> cm(currentmap, binary_map);
binary_map->virtualRebase(alt, T);
}
#endif
fixmatrix(T);
auto hT = tC0(T);
if(DEB) println(hlog, "searching at ", alt, ":", hT);
if(DEB) for(auto& p2: altmap[alt]) println(hlog, "for ", tC0(p2.second), " intval is ", intval(tC0(p2.second), hT));
ld err;
for(auto& p2: altmap[alt]) if((err = intval(tC0(p2.second), hT)) < 1e-3) {
if(err > worst_error1) println(hlog, hr::format("worst_error1 = %lg", double(worst_error1 = err)));
// println(hlog, "YES found in ", isize(altmap[alt]));
if(DEB) println(hlog, "-> found ", p2.first);
int fb = 0;
hyperpoint old = tC0(p1.second);;
#if CAP_FIELD
if(quotient_map) {
p2.first->c.connect(counterpart(parent)->c.spin(d), parent, d, false);
fix_distances(p2.first, parent);
return p2.first;
}
#endif
for(int d2=0; d2<S7; d2++) {
hyperpoint back = p2.second * tC0(cgi.adjmoves[d2]);
if((err = intval(back, old)) < 1e-3) {
if(err > worst_error2) println(hlog, hr::format("worst_error2 = %lg", double(worst_error2 = err)));
if(p2.first->move(d2)) println(hlog, "error: repeated edge");
p2.first->c.connect(d2, parent, d, false);
fix_distances(p2.first, parent);
fb++;
}
}
if(fb != 1) {
println(hlog, "found fb = ", fb);
println(hlog, old);
for(int d2=0; d2<S7; d2++) {
println(hlog, p2.second * tC0(cgi.adjmoves[d2]), " in distance ", intval(p2.second * tC0(cgi.adjmoves[d2]), old));
}
parent->c.connect(d, parent, d, false);
return parent;
}
return p2.first;
}
if(extra_verification) verify_neighbors(alt, extra_verification, hT);
if(DEB) println(hlog, "-> not found");
int d2 = 0, fv = isize(reg_gmatrix);
#if CAP_FIELD
if(quotient_map) {
auto cp = counterpart(parent);
d2 = cp->c.spin(d);
fv = cp->c.move(d)->fieldval;
}
#endif
heptagon *created = init_heptagon(S7);
if(PURE && parent->c7) created->c7 = newCell(S7, created);
#if CAP_FIELD
if(quotient_map) {
created->emeraldval = fv;
created->zebraval = quotient_map->allh[fv]->zebraval;
}
else
#endif
created->zebraval = hrand(10);
created->fieldval = fv;
created->distance = parent->distance + 1;
created->fiftyval = 9999;
fixmatrix(T);
reg_gmatrix[created] = make_pair(alt, T);
altmap[alt].emplace_back(created, T);
created->c.connect(d2, parent, d, false);
return created;
}
~hrmap_h3() {
#if CAP_BT
if(binary_map) {
dynamicval<eGeometry> g(geometry, gBinary3);
delete binary_map;
}
#endif
if(quotient_map) delete quotient_map;
clearfrom(origin);
for(auto e: extra_origins) clearfrom(e);
}
map<heptagon*, int> reducers;
bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override {
altdist(h) = 0;
if(firststate != hsOrigin) reducers[h] = dir;
return true;
}
void extend_altmap(heptagon* h, int levs, bool link_cdata) override {
if(reducers.count(h)) {
heptspin hs(h, reducers[h]);
reducers.erase(h);
hs += wstep;
hs += rev;
altdist(hs.at) = altdist(h) - 1;
hs.at->alt = h->alt;
reducers[hs.at] = hs.spin;
fix_distances(hs.at, NULL);
}
for(int i=0; i<S7; i++) {
auto h2 = h->cmove(i);
if(h2->alt == NULL) {
h2->alt = h->alt;
altdist(h2) = altdist(h) + 1;
fix_distances(h2, NULL);
}
}
}
transmatrix adj(heptagon *h, int d) override {
#if CAP_FIELD
if(quotient_map) return quotient_map->adj(h, d);
else
#endif
return relative_matrix(h->cmove(d), h, C0);
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
auto p1 = reg_gmatrix[h1];
auto p2 = reg_gmatrix[h2];
transmatrix T = Id;
#if CAP_BT
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gBinary3);
dynamicval<hrmap*> cm(currentmap, binary_map);
T = binary_map->relative_matrix(p2.first, p1.first, hint);
}
#endif
T = inverse(p1.second) * T * p2.second;
if(elliptic && T[LDIM][LDIM] < 0) T = centralsym * T;
return T;
}
cell* gen_extra_origin(int fv) override {
auto orig = isize(extra_origins) ? extra_origins.back() : origin;
auto& p1 = reg_gmatrix[orig];
heptagon *alt = p1.first;
transmatrix T = p1.second;
for(int a=0; a<10; a++) {
T = T * xpush(euclid ? 1000 : 10);
#if CAP_BT
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gBinary3);
dynamicval<hrmap*> cm(currentmap, binary_map);
binary_map->virtualRebase(alt, T);
fixmatrix(T);
}
#endif
}
heptagon *created = init_heptagon(S7);
created->s = hsOrigin;
created->fieldval = quotient_map->acells[fv]->master->fieldval;
reg_gmatrix[created] = make_pair(alt, T);
altmap[alt].emplace_back(created, T);
extra_origins.push_back(created);
return get_cell_at(created, fv);
}
};
EX int get_aid(cell *c) {
auto m = dynamic_cast<hrmap_h3*> (currentmap);
if(!m) throw hr_exception("get_aid incorrect");
if(PURE) return c->master->fieldval;
return m->cell_id[c];
}
EX int get_size_of_aid(int aid) {
auto m = dynamic_cast<hrmap_h3*> (currentmap);
if(!m) throw hr_exception("get_size_of_fv incorrect");
return m->quotient_map->acells[aid]->type;
}
struct hrmap_sphere3 : hrmap_closed3 {
vector<transmatrix> locations;
hrmap_sphere3() {
heptagon *h = init_heptagon(S7);
h->s = hsOrigin;
locations.push_back(Id);
allh.push_back(h);
for(int i=0; i<isize(allh); i++) {
tmatrices.emplace_back();
auto& tmi = tmatrices.back();
transmatrix T1 = locations[i];
hyperpoint old = tC0(T1);
for(int d=0; d<S7; d++) {
transmatrix T = T1 * cgi.adjmoves[d];
fixmatrix(T);
auto hT = tC0(T);
bool hopf = stretch::applicable();
if(hopf)
T = stretch::translate(hT);
for(int i1=0; i1<isize(allh); i1++)
if(intval(tC0(locations[i1]), hT) < 1e-3) {
int fb = 0;
for(int d2=0; d2<S7; d2++) {
hyperpoint back = locations[i1] * tC0(cgi.adjmoves[d2]);
if(intval(back, old) < 1e-3) {
allh[i]->c.connect(d, allh[i1], d2, false);
fb++;
tmi.push_back(inverse(T1) * locations[i1]);
}
}
if(fb != 1) throw hr_exception("friend not found");
goto next_d;
}
if(1) {
int d2 = 0;
if(hopf) {
for(d2=0; d2<S7; d2++) {
hyperpoint back = T * tC0(cgi.adjmoves[d2]);
if(intval(back, old) < 1e-3)
break;
}
if(d2 == S7)
throw hr_exception("Hopf connection failed");
}
heptagon *h = init_heptagon(S7);
h->zebraval = hrand(10);
h->fieldval = isize(allh);
h->fiftyval = 9999;
allh.push_back(h);
locations.push_back(T);
if(isnan(T[0][0])) exit(1);
allh[i]->c.connect(d, h, d2, false);
tmi.push_back(inverse(T1) * T);
if(elliptic) fixelliptic(tmi.back());
}
next_d: ;
}
}
make_subconnections();
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return iso_inverse(locations[h1->fieldval]) * locations[h2->fieldval];
}
};
EX const transmatrix& get_sphere_loc(int v) {
return ((hrmap_sphere3*)currentmap)->locations[v];
}
struct ruleset {
fieldpattern::fpattern fp;
vector<int> root;
string other;
vector<short> children;
vector<int> childpos;
vector<int> otherpos;
virtual hrmap_quotient3 *qmap() = 0;
ruleset() : fp(0) {}
void load_ruleset_new(string fname) {
shstream ins(decompress_string(read_file_as_string(fname)));
ins.read(ins.vernum);
if(1) {
dynamicval<eVariation> dv(variation);
dynamicval<flagtype> dc(coxeter_param);
dynamicval<int> ds(subcube_count);
mapstream::load_geometry(ins);
}
ins.read(fieldpattern::use_rule_fp);
ins.read(fieldpattern::use_quotient_fp);
ins.read(reg3::minimize_quotient_maps);
hread_fpattern(ins, fp);
hread(ins, root);
hread(ins, children);
hread(ins, other);
hread(ins, childpos);
println(hlog, "roots = ", isize(root), " states = ", isize(childpos)-1, " hashv = ", fp.hashv);
}
/** \brief address = (fieldvalue, state) */
typedef pair<int, int> address;
/** nles[x] lists the addresses from which we can reach address x
* without ever ending in the starting point */
map<address, set<address>> nonlooping_earlier_states;
vector<vector<int>> possible_states;
virtual int connection(int fv, int d) = 0;
void find_mappings() {
int opos = 0;
for(int c: children) {
if(c < -1) c += (1<<16);
if(c >= 0)
otherpos.push_back(-1);
else {
otherpos.push_back(opos);
while(other[opos] != ',') opos++;
opos++;
}
}
/* find all back paths */
auto &nles = nonlooping_earlier_states;
nles.clear();
vector<address> bfs;
int qty = isize(root);
for(int i=0; i<qty; i++)
bfs.emplace_back(i, root[i]);
int qstate = isize(childpos) - 1;
DEBB(DF_GEOM, ("qstate = ", qstate));
for(int i=0; i<isize(bfs); i++) {
address last = bfs[i];
int state = last.second;
int fv = last.first;
for(int d=0; d<childpos[state+1]-childpos[state]; d++) {
int nstate = children[childpos[state]+d];
if(nstate < -1) nstate += (1<<16);
if(nstate >= 0) {
address next = {connection(fv, d), nstate};
if(!nles.count(next)) bfs.push_back(next);
nles[next].insert(last);
}
}
}
/* remove BFS roots, and addresses that lead only there */
bfs = {};
for(int i=0; i<isize(root); i++)
bfs.emplace_back(i, root[i]);
for(int i=0; i<isize(bfs); i++) {
address last = bfs[i];
int state = last.second;
int fv = last.first;
for(int d=0; d<childpos[state+1]-childpos[state]; d++) {
int nstate = children[childpos[state]+d];
if(nstate < -1) nstate += (1<<16);
if(nstate >= 0) {
address next = {connection(fv, d), nstate};
if(!nles.count(next)) continue;
int c = isize(nles[next]);
nles[next].erase(last);
if(nles[next].empty() && c) {
nles.erase(next);
bfs.push_back(next);
}
}
}
}
DEBB(DF_GEOM, ("removed cases = ", isize(bfs)));
/* remove non-branching states */
set<address> good;
bfs = {};
auto visit = [&] (address a) { if(good.count(a)) return; good.insert(a); bfs.push_back(a); };
for(auto& a: nonlooping_earlier_states) if(isize(a.second) > 1) visit(a.first);
for(int i=0; i<isize(bfs); i++) {
address last = bfs[i];
int state = last.second;
int fv = last.first;
for(int d=0; d<childpos[state+1]-childpos[state]; d++) {
int nstate = children[childpos[state]+d];
if(nstate < -1) nstate += (1<<16);
if(nstate >= 0) {
address next = {connection(fv, d), nstate};
if(!nles.count(next)) continue;
visit(next);
}
}
}
set<address> bad;
for(auto& a: nonlooping_earlier_states) if(!good.count(a.first)) bad.insert(a.first);
for(auto& b: bad) nonlooping_earlier_states.erase(b);
int to_cut = 0;
for(auto& a: nonlooping_earlier_states) {
set<address> goods;
for(auto& b: a.second) if(good.count(b)) goods.insert(b); else to_cut++;
a.second = goods;
}
println(hlog, "to_cut = ", to_cut, " from ", isize(bad), " bad cases");
// just the number of FV's
int pstable = 0;
for(auto& p: nonlooping_earlier_states)
pstable = max(pstable, p.first.first+1);
println(hlog, "pstable size = ", pstable, " (states: ", qstate, ")");
possible_states.resize(pstable);
for(auto& p: nonlooping_earlier_states)
possible_states[p.first.first].push_back(p.first.second);
}
bool ruleset_link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) {
alt->fieldval = h->fieldval;
if(firststate == hsOrigin) {
alt->fiftyval = root[alt->fieldval % isize(root)];
return true;
}
vector<int>& choices = possible_states[alt->fieldval];
vector<int> choices2;
for(auto c: choices) {
bool ok = true;
for(int d=0; d<childpos[c+1]-childpos[c]; d++)
if(h->cmove(d)->distance < h->distance)
if(children[childpos[c]+d] == -1)
ok = false;
if(ok) choices2.push_back(c);
}
alt->fiftyval = hrand_elt(choices2, -1);
return alt->fiftyval != -1;
}
};
struct hrmap_h3_rule : hrmap_h3_abstract, ruleset {
heptagon *origin;
reg3::hrmap_quotient3 *emerald_map;
hrmap_quotient3 *qmap() override { return quotient_map; }
hrmap_h3_rule() {
println(hlog, "generating hrmap_h3_rule");
load_ruleset_new(get_rule_filename(false));
quotient_map = gen_quotient_map(minimize_quotient_maps, fp);
find_mappings();
origin = init_heptagon(S7);
heptagon& h = *origin;
h.s = hsOrigin;
h.fiftyval = root[0];
if(PURE) h.c7 = newCell(S7, origin);
emerald_map = gen_quotient_map(false, currfp);
h.emeraldval = 0;
if(!PURE) get_cell_at(origin, 0);
}
int connection(int fv, int d) override {
return qmap()->allh[fv]->move(d)->fieldval;
}
heptagon *getOrigin() override {
return origin;
}
#define DEB 0
heptagon *counterpart(heptagon *h) {
return quotient_map->allh[h->fieldval];
}
vector<short> evmemo;
void find_emeraldval(heptagon *target, heptagon *parent, int d) {
generate_cellrotations();
auto& cr = cgi.cellrotations;
if(evmemo.empty()) {
println(hlog, "starting");
map<int, int> matrix_hashtable;
auto matrix_hash = [] (const transmatrix& M) {
return bucketer(M[0][0])
+ bucketer(M[0][1]) * 71
+ bucketer(M[0][2]) * 113
+ bucketer(M[1][0]) * 1301
+ bucketer(M[1][1]) * 1703
+ bucketer(M[1][2]) * 17031
+ bucketer(M[2][2]) * 2307
+ bucketer(M[2][0]) * 2311
+ bucketer(M[2][1]) * 10311;
};
for(int i=0; i<isize(cr); i++) matrix_hashtable[matrix_hash(cr[i].M)] = cr[i].inverse_id;
println(hlog, "ids size = ", isize(matrix_hashtable));
for(int eid=0; eid<isize(emerald_map->allh); eid++)
for(int k0=0; k0<isize(cr); k0++)
for(int fv=0; fv<isize(quotient_map->allh); fv++) {
for(int d=0; d<S7; d++) {
int ed = cr[k0].mapping[d];
auto cpart = emerald_map->allh[eid];
int eid1 = emerald_map->allh[eid]->move(ed)->fieldval;
const transmatrix& X = cr[cr[k0].inverse_id].M;
transmatrix U = quotient_map->iadj(quotient_map->allh[fv], d) * X * emerald_map->adj(cpart, ed);
int k1 = matrix_hashtable[matrix_hash(U)];
/* for(int ik1=0; ik1<isize(cr); ik1++) {
auto& mX1 = cr[ik1].M;
if(eqmatrix(mX1, U)) k1 = cr[ik1].inverse_id;
} */
evmemo.push_back(eid1 * isize(cr) + k1);
}
}
println(hlog, "generated ", isize(evmemo));
}
int memo_id = parent->emeraldval;
memo_id = memo_id * isize(quotient_map->allh) + parent->fieldval;
memo_id = memo_id * S7 + d;
target->emeraldval = evmemo[memo_id];
target->zebraval = emerald_map->allh[target->emeraldval / isize(cr)]->zebraval;
}
heptagon *create_step(heptagon *parent, int d) override {
int id = parent->fiftyval;
if(id < 0) id += (1<<16);
auto cp = counterpart(parent);
int d2 = cp->c.spin(d);
int fv = cp->c.move(d)->fieldval;
// indenter ind(2);
heptagon *res = nullptr;
int id1 = children[S7*id+d];
int pos = otherpos[S7*id+d];
if(id1 < -1) id1 += (1<<16);
if(id1 == -1 && false) {
int kk = pos;
string s;
while(other[kk] != ',') s += other[kk++];
println(hlog, "id=", id, " d=", d, " d2=", d2, " id1=", id1, " pos=", pos, " s = ", s);
}
if(id1 != -1) {
res = init_heptagon(S7);
if(PURE && parent->c7)
res->c7 = newCell(S7, res);
res->fieldval = fv;
res->distance = parent->distance + 1;
res->fiftyval = id1;
find_emeraldval(res, parent, d);
// res->c.connect(d2, parent, d, false);
}
else if(other[pos] == ('A' + d) && other[pos+1] == ',') {
res = init_heptagon(S7);
res->alt = parent->alt;
res->fieldval = fv;
res->distance = parent->distance - 1;
vector<int> possible;
int pfv = parent->fieldval;
for(auto s: nonlooping_earlier_states[address{pfv, id}]) possible.push_back(s.second);
id1 = hrand_elt(possible, 0);
res->fiftyval = id1;
find_emeraldval(res, parent, d);
}
else {
heptagon *at = parent;
while(other[pos] != ',') {
int dir = (other[pos++] & 31) - 1;
// println(hlog, "from ", at, " go dir ", dir);
at = at->cmove(dir);
}
res = at;
}
if(!res) throw hr_exception("res missing");
if(res->move(d2)) println(hlog, "res conflict");
res->c.connect(d2, parent, d, false);
return res;
}
~hrmap_h3_rule() {
if(quotient_map) delete quotient_map;
clearfrom(origin);
}
transmatrix adj(heptagon *h, int d) override {
return quotient_map->adj(h, d);
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override {
return ruleset_link_alt(h, alt, firststate, dir);
}
};
vector<heptspin> starts = {nullptr};
struct hrmap_h3_subrule : hrmap, ruleset {
heptagon *origin;
hrmap_quotient3 *quotient_map;
hrmap_quotient3 *qmap() override { return quotient_map; }
int connection(int fv, int d) override {
return quotient_map->local_id[quotient_map->acells[fv]->move(d)].first;
}
void explain_conflict(vector<heptspin> hs) {
vector<heptagon*> v;
for(auto h: hs) v.push_back(h.at);
int N = isize(v);
vector<vector<int>> paths(N);
while(true) {
bool eq = true;
for(auto c: v) if(c != v[0]) eq = false;
if(eq) break;
int mindist = 999999;
int maxdist = -999999;
for(auto c: v) {
if(c->distance < mindist) mindist = c->distance;
if(c->distance > maxdist) maxdist = c->distance;
}
int goal = min(mindist, maxdist-1);
println(hlog, "mindist = ", mindist, " maxdist = ", maxdist, " goal = ", goal);
int id = 0;
for(auto& c: v) {
while(c->distance > goal) {
println(hlog, c, " distance is ", c->distance);
int d = find_parent(c);
paths[id].push_back(c->c.spin(d));
c = c->move(d);
}
id++;
}
}
for(auto& p: paths) reverse(p.begin(), p.end());
hs.push_back(heptspin(v[0], find_parent(v[0])));
for(auto h: hs) {
println(hlog, h, " : dist = ", h.at->distance, " id = ", h.at->fiftyval, " qid = ", h.at->fieldval);
}
println(hlog, "paths = ", paths);
}
hrmap_h3_subrule() {
println(hlog, "loading a subrule ruleset");
load_ruleset_new(get_rule_filename(true));
quotient_map = gen_quotient_map(minimize_quotient_maps, fp);
int t = quotient_map->acells[0]->type;
find_mappings();
origin = init_heptagon(t);
heptagon& h = *origin;
h.s = hsOrigin;
h.fieldval = 0;
h.fiftyval = root[0];
h.c7 = newCell(t, origin);
}
heptagon *getOrigin() override {
return origin;
}
heptagon *create_step(heptagon *parent, int d) override {
heptspin parentd(parent, d);
if(starts[isize(starts)/2] == parentd) {
int i = 0;
vector<heptspin> cut;
for(auto s: starts) if(i++ >= isize(starts)/2) cut.push_back(s);
println(hlog, "cycle detected is ", cut);
explain_conflict(cut);
throw hr_exception("create_step cycle detected");
}
starts.push_back(parentd);
finalizer f([] { starts.pop_back(); });
int id = parent->fiftyval;
if(id < 0) id += (1<<16);
int qid = parent->fieldval;
int d2 = quotient_map->acells[qid]->c.spin(d);
int qid2 = quotient_map->local_id[quotient_map->acells[qid]->move(d)].first;
heptagon *res = nullptr;
int id1 = children[childpos[id]+d];
int pos = otherpos[childpos[id]+d];
if(id1 < -1) id1 += (1<<16);
if(id1 != -1) {
int t = childpos[id1+1] - childpos[id1];
res = init_heptagon(t);
res->c7 = newCell(t, res);
res->fieldval = qid2;
res->distance = parent->distance + 1;
res->fiftyval = id1;
}
else if(other[pos] == ('A' + d) && other[pos+1] == ',') {
vector<int> possible;
for(auto s: nonlooping_earlier_states[address{qid, id}]) possible.push_back(s.second);
if(possible.empty()) throw hr_exception("impossible");
id1 = hrand_elt(possible, 0);
int t = childpos[id1+1] - childpos[id1];
res = init_heptagon(t);
res->alt = parent->alt;
res->fieldval = qid2;
res->distance = parent->distance - 1;
res->fiftyval = id1;
}
else {
heptagon *at = parent;
while(other[pos] != ',') {
int dir = other[pos++] - 'a';
at = at->cmove(dir);
}
res = at;
}
if(!res) throw hr_exception("res missing");
if(res->move(d2)) {
heptspin a(res, d2);
heptspin b = a + wstep;
heptspin c(parent, d);
println(hlog, "res conflict: ", a, " already connected to ", b, " and should be connected to ", c);
explain_conflict({a, b, c});
}
res->c.connect(d2, parent, d, false);
return res;
}
int find_parent(heptagon *h) {
int id = h->fiftyval;
int pos = childpos[id];
for(int i=0; i<childpos[id+1]-childpos[id]; i++)
if(other[otherpos[pos+i]] == 'A'+i && other[otherpos[pos+i]+1] == ',') {
println(hlog, "find_parent returns ", i, " for ", h);
return i;
}
println(hlog, "find_parent fails for ", h);
println(hlog, "aid size = ", isize(quotient_map->acells));
println(hlog, "roots size = ", isize(root));
return 0;
}
~hrmap_h3_subrule() {
if(quotient_map) delete quotient_map;
clearfrom(origin);
}
transmatrix adj(heptagon *h, int d) override {
return quotient_map->adj(quotient_map->acells[h->fieldval], d);
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
int shvid(cell *c) override {
return quotient_map->shvid(quotient_map->acells[c->master->fieldval]);
}
int wall_offset(cell *c) override {
return quotient_map->wall_offset(quotient_map->acells[c->master->fieldval]);
}
subcellshape& get_cellshape(cell *c) override {
return quotient_map->get_cellshape(quotient_map->acells[c->master->fieldval]);
}
transmatrix ray_iadj(cell *c, int i) override {
return quotient_map->ray_iadj(quotient_map->acells[c->master->fieldval], i);
}
cellwalker strafe(cellwalker cw, int j) override {
int aid = cw.at->master->fieldval;
auto ress = quotient_map->strafe(cellwalker(quotient_map->acells[aid], cw.spin), j);
return cellwalker(cw.at->cmove(j), ress.spin);
}
bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override {
return ruleset_link_alt(h, alt, firststate, dir);
}
void dump(string fname) {
fhstream f(fname, "wt");
int T = isize(quotient_map->acells);
println(f, hyperbolic ? "h3." : "e3.");
println(f, "celltypes ", T);
for(int t=0; t<T; t++) {
auto &sh = quotient_map->get_cellshape(quotient_map->acells[t]);
println(f, "celltype ", t, " ", isize(sh.faces));
int id = 0;
for(auto& fa: sh.faces_local) {
println(f, "face ", t, " ", id++, " ", isize(fa));
for(auto& h: fa) {
auto h1 = kleinize(h);
println(f, hr::format("%.20f %.20f %.20f", h1[0], h1[1], h1[2]));
}
}
println(f);
}
for(int t=0; t<T; t++) {
auto c = quotient_map->acells[t];
for(int i=0; i<c->type; i++) {
auto c1 = c->move(i);
auto t1 = c1->master->fieldval % T;
auto s1 = c->c.spin(i);
println(f, "connection ", t, " ", i, " ", t1, " ", s1);
transmatrix T = quotient_map->adj(c, i);
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
print(f, hr::format("%.20f", T[i][j]), j == 3 ? "\n" : " ");
}
}
println(f);
}
}
println(f, "states ", isize(childpos) - 1);
for(int t=0; t<T; t++) print(f, root[t % isize(root)], t == T-1 ? "\n" : " ");
for(int i=0; i<isize(childpos)-1; i++) {
int S = childpos[i+1] - childpos[i];
print(f, "state ", i, " ", S);
for(int u=childpos[i]; u<childpos[i+1]; u++) {
if(children[u] >= 0) {
print(f, " ", children[u]);
continue;
}
int pos = otherpos[u];
if(other[pos] == ('A' + u - childpos[i]) && other[pos+1] == ',') {
print(f, " P");
continue;
}
print(f, " (");
while(other[pos] != ',') {
print(f, " ", other[pos++] - 'a');
}
print(f, " )");
}
println(f);
}
}
};
struct hrmap_h3_rule_alt : hrmap {
heptagon *origin;
hrmap_h3_rule_alt(heptagon *o) {
origin = o;
}
};
EX hrmap *new_alt_map(heptagon *o) {
println(hlog, "new_alt_map called");
return new hrmap_h3_rule_alt(o);
}
/** 1 -- consider pure rules, 2 -- consider variation rules, 3 -- consider both */
EX int consider_rules = 3;
EX string replace_rule_file;
EX string get_rule_filename(bool with_variations) {
if(replace_rule_file != "") return replace_rule_file;
string s;
s += "honeycombs/";
s += ginf[geometry].tiling_name[1];
s += ginf[geometry].tiling_name[3];
s += ginf[geometry].tiling_name[5];
if(hyperbolic) s += "h";
else s += "c";
if(with_variations) {
if(variation == eVariation::coxeter) s += "-c" + its(coxeter_param);
if(variation == eVariation::subcubes) s += "-s" + its(subcube_count);
if(variation == eVariation::dual_subcubes) s += "-d" + its(subcube_count);
if(variation == eVariation::bch) s += "-bs" + its(subcube_count);
}
s += ".dat";
return find_file(s);
}
EX bool variation_rule_available() {
return (consider_rules & 2) && file_exists(get_rule_filename(true));
}
EX bool pure_rule_available() {
return (consider_rules & 1) && file_exists(get_rule_filename(false));
}
ruleset& get_ruleset() {
auto h1 = dynamic_cast<hrmap_h3_subrule*> (currentmap);
if(h1) return *h1;
auto h2 = dynamic_cast<hrmap_h3_rule*> (currentmap);
if(h2) return *h2;
throw hr_exception("get_ruleset called but not in rule");
}
EX void dump_rules(string fname) {
auto h = dynamic_cast<hrmap_h3_subrule*> (currentmap);
if(h) h->dump(fname);
}
EX int rule_get_root(int i) {
return get_ruleset().root[i];
}
EX const vector<short>& rule_get_children() {
return get_ruleset().children;
}
EX const vector<int>& rule_get_childpos() {
return get_ruleset().childpos;
}
EX hrmap* new_map() {
if(geometry == gSeifertCover) return new seifert_weber::hrmap_seifert_cover;
if(geometry == gSeifertWeber) return new seifert_weber::hrmap_singlecell(108._deg);
if(geometry == gHomologySphere) return new seifert_weber::hrmap_singlecell(36._deg);
if(quotient && !sphere) return new hrmap_field3(&currfp);
if(variation_rule_available()) return new hrmap_h3_subrule;
if(pure_rule_available()) return new hrmap_h3_rule;
if(sphere) return new hrmap_sphere3;
return new hrmap_h3;
}
hrmap_h3* hypmap() {
return ((hrmap_h3*) currentmap);
}
EX bool in_hrmap_h3() {
return dynamic_cast<hrmap_h3*> (currentmap);
}
EX bool in_hrmap_rule_or_subrule() {
return dynamic_cast<hrmap_h3_rule*> (currentmap) || dynamic_cast<hrmap_h3_subrule*> (currentmap);
}
EX bool exact_rules() {
if(PURE) return in_hrmap_rule_or_subrule();
return dynamic_cast<hrmap_h3_subrule*> (currentmap);
}
EX int quotient_count() {
return isize(hypmap()->quotient_map->allh);
}
EX int quotient_count_sub() {
return isize(hypmap()->quotient_map->acells);
}
/** This is a generalization of hyperbolic_celldistance in expansion.cpp to three dimensions.
It still assumes that there are at most 4 cells around every edge, and that distances from
the origin are known, so it works only in {5,3,4}.
*/
int celldistance_534(cell *c1, cell *c2) {
int d1 = celldist(c1);
int d2 = celldist(c2);
vector<cell*> s1 = {c1};
vector<cell*> s2 = {c2};
int best = 99999999;
int d0 = 0;
auto go_nearer = [&] (vector<cell*>& v, int& d) {
vector<cell*> w;
for(cell *c: v)
forCellEx(c1, c)
if(celldist(c1) < d)
w.push_back(c1);
sort(w.begin(), w.end());
d--; d0++;
auto last = std::unique(w.begin(), w.end());
w.erase(last, w.end());
v = w;
};
while(d0 < best) {
for(cell *a1: s1) for(cell *a2: s2) {
if(a1 == a2) best = min(best, d0);
else if(isNeighbor(a1, a2)) best = min(best, d0+1);
}
if(d1 == 0 && d2 == 0) break;
if(d1 >= d2) go_nearer(s1, d1);
if(d1 < d2) go_nearer(s2, d2);
}
return best;
}
EX int celldistance(cell *c1, cell *c2) {
if(c1 == c2) return 0;
if(c1 == currentmap->gamestart()) return c2->master->distance;
if(c2 == currentmap->gamestart()) return c1->master->distance;
if(geometry == gSpace534 && PURE) return celldistance_534(c1, c2);
auto r = hypmap();
hyperpoint h = tC0(r->relative_matrix(c1->master, c2->master, C0));
int b = bucketer(h);
if(cgi.close_distances.count(b)) return cgi.close_distances[b];
if(in_hrmap_rule_or_subrule())
return clueless_celldistance(c1, c2);
dynamicval<eGeometry> g(geometry, gBinary3);
#if CAP_BT
return 20 + bt::celldistance3(r->reg_gmatrix[c1->master].first, r->reg_gmatrix[c2->master].first);
#else
return 20;
#endif
}
EX bool pseudohept(cell *c) {
if(sphere) {
auto m = currentmap;
hyperpoint h = tC0(m->relative_matrix(c->master, m->getOrigin(), C0));
if(S7 == 12) {
hyperpoint h1 = cspin(0, 1, atan2(16, 69) + 45._deg) * h;
for(int i=0; i<4; i++) if(abs(abs(h1[i]) - .5) > .01) return false;
return true;
}
if(S7 == 8)
return h[3] >= .99 || h[3] <= -.99 || abs(h[3]) < .01;
if(cgi.loop == 3 && cgi.face == 3 && S7 == 4)
return c == m->gamestart();
if(cgi.loop == 4 && cgi.face == 3)
return abs(h[3]) > .9;
if(cgi.loop == 3 && cgi.face == 4)
return abs(h[3]) > .9;
if(cgi.loop == 5 && cgi.face == 3)
return abs(h[3]) > .99 || abs(h[0]) > .99 || abs(h[1]) > .99 || abs(h[2]) > .99;
}
auto m = hypmap();
if(cgflags & qSINGLE) return true;
if(fake::in()) return FPIU(reg3::pseudohept(c));
// chessboard pattern in 534
if(geometry == gField534)
return hr::celldistance(c, currentmap->gamestart()) & 1;
if(geometry == gCrystal344 || geometry == gCrystal534 || geometry == gSeifertCover)
return false;
if(quotient) return false; /* added */
auto mr = dynamic_cast<hrmap_h3_rule*> (currentmap);
if(mr) {
if(geometry == gSpace535)
return c->master->fieldval % 31 == 0;
return c->master->fieldval == 0;
}
auto ms = dynamic_cast<hrmap_h3_subrule*> (currentmap);
if(ms) return c->master->fieldval == 0;
if(m && hyperbolic) {
heptagon *h = m->reg_gmatrix[c->master].first;
return (h->zebraval == 1) && (h->distance & 1);
}
return false;
}
EX void generate_cellrotations() {
auto &cr = cgi.cellrotations;
if(isize(cr)) return;
for(int a=0; a<S7; a++)
for(int b=0; b<S7; b++)
for(int c=0; c<S7; c++) {
transmatrix T = build_matrix(cgi.adjmoves[a]*C0, cgi.adjmoves[b]*C0, cgi.adjmoves[c]*C0, C0);
if(abs(det(T)) < 0.001) continue;
transmatrix U = build_matrix(cgi.adjmoves[0]*C0, cgi.adjmoves[1]*C0, cgi.adjmoves[2]*C0, C0);
transmatrix S = U * inverse(T);
if(abs(det(S) - 1) > 0.01) continue;
vector<int> perm(S7);
for(int x=0; x<S7; x++) perm[x] = -1;
for(int x=0; x<S7; x++)
for(int y=0; y<S7; y++)
if(hdist(S * cgi.adjmoves[x] * C0, cgi.adjmoves[y] * C0) < .1) perm[x] = y;
bool bad = false;
for(int x=0; x<S7; x++) if(perm[x] == -1) bad = true;
if(bad) continue;
cr.emplace_back(geometry_information::cellrotation_t{S, perm, 0});
}
int rots = isize(cr);
for(int i=0; i<rots; i++)
for(int j=0; j<rots; j++)
if(cr[i].mapping[cr[j].mapping[0]] == 0 && cr[i].mapping[cr[j].mapping[1]] == 1 && cr[i].mapping[cr[j].mapping[2]] == 2)
cr[i].inverse_id = j;
}
#endif
#if 0
/* More precise, but very slow distance. Not used/optimized for now */
ld adistance(cell *c) {
hyperpoint h = tC0(regmap()->reg_gmatrix[c->master].second);
h = bt::deparabolic3(h);
return regmap()->reg_gmatrix[c->master].first->distance * log(2) - h[0];
}
map<pair<cell*, cell*>, int> memo;
bool cdd;
int celldistance(cell *c1, cell *c2) {
if(memo.count(make_pair(c1, c2))) return memo[make_pair(c1, c2)];
if(c1 == c2) return 0;
vector<cell*> v[2];
v[0].push_back(c1);
v[1].push_back(c2);
int steps = 0;
map<cell*, int> visited;
visited[c1] = 1;
visited[c2] = 2;
while(true) {
if(cdd) {
println(hlog, "state ", steps, "/",isize(v[0]), "/", isize(v[1]));
println(hlog, " A: ", v[0]);
println(hlog, " B: ", v[1]);
}
for(int i: {0,1}) {
vector<cell*> new_v;
for(cell *c: v[i]) forCellCM(cn, c) if(adistance(cn) < adistance(c)) {
auto &vi = visited[cn];
if((vi&3) == 0) {
vi = 4 * (steps+1);
vi |= (1<<i);
new_v.push_back(cn);
}
else if((vi&3) == 2-i) {
vector<pair<cell*, int>> ca1, ca2;
int b1 = 4*steps-4;
int b2 = ((vi>>2)<<2) - 4;
for(auto p: visited) {
if(cdd) println(hlog, p);
int ps = p.second & 3;
if(ps == 1+i && p.second >= b1)
ca1.emplace_back(p.first, p.second/4);
if(ps == 2-i && p.second >= b2 && p.second <= b2+8)
ca2.emplace_back(p.first, p.second/4);
}
int bound = 1<<16;
for(auto p1: ca1) for(auto p2: ca2) {
hyperpoint h = tC0(relative_matrix(p1.first->master, p2.first->master));
int b = bucketer(h);
if(close_distances.count(b)) {
int d = close_distances[b] + p1.second + p2.second;
if(cdd) println(hlog, "candidate: close=", close_distances[b], p1, p2, "; h = ", h);
if(d < bound) bound = d;
}
else if(cdd) println(hlog, "bucket missing");
}
return memo[make_pair(c1, c2)] = bound;
return bound;
}
}
v[i] = std::move(new_v);
}
steps++;
}
}
cellwalker target;
int tsteps;
int dist_alt(cell *c) {
if(!target.at) {
target = cellwalker(currentmap->gamestart(), 0);
tsteps = 0;
for(int i=0; i<30; i++) target += wstep, target += rev, tsteps++;
}
if(specialland == laCamelot) return reg3::celldistance(c, target.at);
else {
int d = reg3::celldistance(c, target.at) - tsteps;
if(d < 10) target += wstep, target += rev, tsteps++;
return d;
}
}
#endif
// Construct a cellwalker in direction j from cw.at, such that its direction is as close
// as possible to cw.spin. Assume that j and cw.spin are adjacent
#if MAXMDIM >= 4
EX int matrix_order(const transmatrix A) {
transmatrix T = A;
int res = 1;
while(!eqmatrix(T, Id)) {
res++; T = T * A;
}
return res;
}
EX void generate_fulls() {
reg3::generate_cellrotations();
if(cgi.xp_order) return;
auto cons = [&] (int i0, int i1, int i2) {
transmatrix T = build_matrix(cgi.adjmoves[ 0]*C0, cgi.adjmoves[ 1]*C0, cgi.adjmoves[ 2]*C0, C0);
transmatrix U = build_matrix(cgi.adjmoves[i0]*C0, cgi.adjmoves[i1]*C0, cgi.adjmoves[i2]*C0, C0);
return U * inverse(T);
};
cgi.full_P = cgi.adjmoves[0];
cgi.full_R = S7 == 8 ? cons(1, 7, 0) : S7 == 20 ? cons(1,2,6) : cons(1, 2, 0);
cgi.full_X = S7 == 8 ? cons(1, 0, 6) : S7 == 6 ? cons(1, 0, 5) : S7 == 20 ? cons(1,0,7) : cons(1, 0, cgi.face);
cgi.xp_order = matrix_order(cgi.full_X * cgi.full_P);
cgi.r_order = matrix_order(cgi.full_R);
cgi.rx_order = matrix_order(cgi.full_R * cgi.full_X);
println(hlog, "orders = ", tie(cgi.rx_order, cgi.r_order, cgi.xp_order));
}
eVariation target_variation;
flagtype target_coxeter;
int target_subcube_count;
EX void edit_variation() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("variations"));
dialog::addBoolItem(XLAT("pure"), target_variation == eVariation::pure, 'p');
dialog::add_action([] { target_variation = eVariation::pure; });
dialog::addBoolItem(XLAT("symmetric subdivision"), target_variation == eVariation::coxeter, 't');
dialog::add_action([] { target_variation = eVariation::coxeter; });
if(S7 == 6) {
dialog::addBoolItem(XLAT("sub-cubes"), target_variation == eVariation::subcubes, 'c');
dialog::add_action([] { target_variation = eVariation::subcubes; });
if(!(cgflags & qIDEAL)) {
dialog::addBoolItem(XLAT("dual sub-cubes"), target_variation == eVariation::dual_subcubes, 'd');
dialog::add_action([] { target_variation = eVariation::dual_subcubes; });
dialog::addBoolItem(XLAT("bitruncated sub-cubes"), target_variation == eVariation::bch, 'b');
dialog::add_action([] { target_variation = eVariation::bch; });
}
}
else
dialog::addInfo(XLAT("note: more choices in cubic honeycombs"));
if(is_subcube_based(target_variation)) {
dialog::addBreak(100);
dialog::addSelItem(XLAT("subdivision"), its(target_subcube_count), 'z');
dialog::add_action([] {
dialog::editNumber(target_subcube_count, 1, 8, 1, 2, XLAT("subdivision"), "");
dialog::bound_low(1);
});
}
if(target_variation == eVariation::coxeter) {
dialog::addBreak(100);
dialog::addBoolItem(XLAT("split by original faces"), target_coxeter & cox_othercell, 'f');
dialog::add_action([] { target_coxeter ^= cox_othercell; });
dialog::addBoolItem(XLAT("split by vertex axes"), target_coxeter & cox_vertices, 'v');
dialog::add_action([] { target_coxeter ^= cox_vertices; });
dialog::addBoolItem(XLAT("split by midedges"), target_coxeter & cox_midedges, 'm');
dialog::add_action([] { target_coxeter ^= cox_midedges; });
}
dialog::addBreak(100);
dialog::addItem(XLAT("activate"), 'x');
dialog::add_action([] {
stop_game();
set_variation(target_variation);
subcube_count = target_subcube_count;
coxeter_param = target_coxeter;
start_game();
});
dialog::addBack();
dialog::display();
}
EX void configure_variation() {
target_variation = variation;
target_subcube_count = subcube_count;
target_coxeter = coxeter_param;
pushScreen(edit_variation);
}
EX }
#endif
#if MAXMDIM == 3
EX namespace reg3 {
EX bool in() { return false; }
EX bool in_rule() { return false; }
EX bool cubes_reg3;
EX bool exact_rules() { return false; }
EX }
#endif
}