// Hyperbolic Rogue -- Locations // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details /** \file locations.cpp * \brief definition of connection tables, walkers, cell and heptagon structures * * The standard geometry uses 'heptagons' for the underlying heptagonal tessellation, * and 'cells' for the tessellation that the game is actually played on. * Other geometries also use the class 'heptagon' even if they are not heptagon-based; * there may be one 'heptagon' per each cell. Heptagons are not used in masterless * geometries, though. This file implements the basic types and functions for navigating both graphs. */ #include "hyper.h" namespace hr { #if HDR extern int cellcount, heptacount; #define NODIR 126 #define NOBARRIERS 127 /** \brief Cell information for the game. struct cell builds on this */ struct gcell { #if CAP_BITFIELD /** \brief which land does this cell belong to */ eLand land : 8; /** \brief wall type (waNone for no walls) */ eWall wall : 8; /** \brief monster on this cell -- note that player characters are handled separately */ eMonster monst : 8; /** \brief item on this cell */ eItem item : 8; /** \brief if this is a barrier, what lands on are on the sides? */ eLand barleft : 8, barright : 8; /** \brief is it currently sparkling with lightning? */ unsigned ligon : 1; signed mpdist : 7, ///< minimum player distance, the smaller value, the more generated it is */ pathdist : 8, ///< distance from the target -- actual meaning may change cpdist : 8; ///< current distance to the player unsigned mondir : 8, ///< which direction the monster is facing (if relevant), also used for boats bardir : 8, ///< may equal NODIR (no barrier here), NOBARRIERS (barriers not allowed here), or the barrier direction stuntime : 8, ///< for stunned monsters, stun time left; also used for Mutant Ivy timing hitpoints : 7, ///< hitpoints left, for Palace monsters, Dragons, Krakens etc. Also reused as cpid for mirrors monmirror : 1; ///< monster mirroring state for nonorientable geometries unsigned landflags : 8; ///< some lands need additional flags #else eLand land; eWall wall; eMonster monst; eItem item; eLand barleft, barright; bool ligon, monmirror; signed char pathdist, cpdist, mpdist; unsigned char mondir, bardir, stuntime, hitpoints; unsigned char landflags; #endif /** 'landparam' is used for: * heat in Icy/Cocytus; * heat in Dry (0..10); * CR2 structure; * hive Weird Rock color / pheromones; * Ocean/coast depth; * Bomberbird Egg hatch time / mine marking; * number of Ancient Jewelry; * improved tracking in Trollheim */ union { int32_t landpar; unsigned int landpar_color; float heat; char bytes[4]; struct fieldinfo { uint16_t fieldval; unsigned rval : 4; unsigned flowerdist : 4; unsigned walldist : 4; unsigned walldist2 : 4; } fi; } LHU; /** \brief wall parameter, used e.g. for remaining power of Bonfires and Thumpers */ char wparam; #ifdef CELLID int cellid; #endif gcell() { #ifdef CELLID cellid = cellcount; #endif } }; #define landparam LHU.landpar #define landparam_color LHU.landpar_color #define fval LHU.fi.fieldval #define FULL_EDGE 120 template<class T> struct walker; /** Connection tables are used by heptagon and cell structures. They basically * describe the structure of the graph on the given manifold. We assume that * the class T has a field c of type connection_table<T>, * as its last field. Edges are listed in the clockwise order (for 2D tilings, * for 3D tilings the order is more arbitrary). For each edge we remember which other T * we are connected to, as well as the index of this edge in the other T, and whether it is * mirrored (for graphs on non-orientable manifolds). * To conserve memory, these classes need to be allocated with tailored_alloc * and freed with tailored_free. */ int gmod(int i, int j); template<class T> struct connection_table { /** \brief Table of moves. This is the maximum size, but tailored_alloc allocates less. */ T* move_table[FULL_EDGE + (FULL_EDGE + sizeof(char*) - 1) / sizeof(char*)]; unsigned char *spintable() { return (unsigned char*) (&move_table[full()->degree()]); } /** \brief get the full T from the pointer to this connection table */ T* full() { return (T*)((char*)this - offsetof(T, c)); } /** \brief for the edge d, set the `spin` and `mirror` attributes */ void setspin(int d, int spin, bool mirror) { unsigned char& c = spintable() [d]; c = spin; if(mirror) c |= 128; } /** \brief we are spin(i)-th neighbor of move[i] */ int spin(int d) { return spintable() [d] & 127; } /** \brief on non-orientable surfaces, the d-th edge may be mirrored */ bool mirror(int d) { return spintable() [d] & 128; } /** \brief 'fix' the edge number d to get the actual index in [0, degree()) */ int fix(int d) { return gmod(d, full()->degree()); } /** \brief T in the direction i */ T*& move(int i) { return move_table[i]; } /** \brief T in the direction i, modulo degree() */ T*& modmove(int i) { return move(fix(i)); } unsigned char modspin(int i) { return spin(fix(i)); } /** \brief initialize the table */ void fullclear() { for(int i=0; i<full()->degree(); i++) move_table[i] = NULL; } /** \brief connect this in direction d0 to c1 in direction d1, possibly mirrored */ void connect(int d0, T* c1, int d1, bool m) { move(d0) = c1; c1->move(d1) = full(); setspin(d0, d1, m); c1->c.setspin(d1, d0, m); } /* like the other connect, but take the parameters of the other cell from a walker */ void connect(int d0, walker<T> hs) { connect(d0, hs.at, hs.spin, hs.mirrored); } }; /** \brief Allocate a class T with a connection_table, but with only `degree` connections. * * Also set yet unknown connections to NULL. * * Generating the hyperbolic world consumes lots of * RAM, so we really need to be careful on low memory devices. */ template<class T> T* tailored_alloc(int degree) { T* result; #ifndef NO_TAILORED_ALLOC int b = offsetof(T, c) + offsetof(connection_table<T>, move_table) + sizeof(T*) * degree + degree; result = (T*) new char[b]; new (result) T(); #else result = new T; #endif result->type = degree; for(int i=0; i<degree; i++) result->c.move_table[i] = NULL; return result; } /** \brief Counterpart to hr::tailored_alloc(). */ template<class T> void tailored_delete(T* x) { x->~T(); delete[] ((char*) (x)); } static const struct wstep_t { wstep_t() {} } wstep; static const struct wmirror_t { wmirror_t() {}} wmirror; static const struct rev_t { rev_t() {} } rev; static const struct revstep_t { revstep_t() {}} revstep; extern int hrand(int); /** \brief the walker structure is used for walking on surfaces defined via \ref connection_table. */ template<class T> struct walker { /** \brief where we are at */ T *at; /** \brief in which direction (edge) we are facing */ int spin; /** \brief are we mirrored */ bool mirrored; walker<T> (T *at = NULL, int s = 0, bool m = false) : at(at), spin(s), mirrored(m) { if(at) s = at->c.fix(s); } /** \brief spin by i to the left (or right, when mirrored */ walker<T>& operator += (int i) { spin = at->c.fix(spin+(mirrored?-i:i)); return (*this); } /** \brief spin by i to the right (or left, when mirrored */ walker<T>& operator -= (int i) { spin = at->c.fix(spin-(mirrored?-i:i)); return (*this); } /** \brief add wmirror to mirror this walker */ walker<T>& operator += (wmirror_t) { mirrored = !mirrored; return (*this); } /** \brief add wstep to make a single step, after which we are facing the T we were originally on */ walker<T>& operator += (wstep_t) { at->cmove(spin); int nspin = at->c.spin(spin); if(at->c.mirror(spin)) mirrored = !mirrored; at = at->move(spin); spin = nspin; return (*this); } /** \brief add wrev to face the other direction, may be non-deterministic and use hrand */ walker<T>& operator += (rev_t) { auto rd = reverse_directions(at, spin); if(rd.size() == 1) spin = rd[0]; else spin = rd[hrand(rd.size())]; return (*this); } /** \brief adding revstep is equivalent to adding rev and step */ walker<T>& operator += (revstep_t) { (*this) += rev; return (*this) += wstep; } bool operator != (const walker<T>& x) const { return at != x.at || spin != x.spin || mirrored != x.mirrored; } bool operator == (const walker<T>& x) const { return at == x.at && spin == x.spin && mirrored == x.mirrored; } bool operator < (const walker<T>& cw2) const { return tie(at, spin, mirrored) < tie(cw2.at, cw2.spin, cw2.mirrored); } /** how much should we spin to face direction dir */ int to_spin(int dir) { return gmod(dir - spin, at->type) * (mirrored ? -1 : 1); } walker<T>& operator ++ (int) { return (*this) += 1; } walker<T>& operator -- (int) { return (*this) -= 1; } template<class U> walker operator + (U t) const { walker<T> w = *this; w += t; return w; } template<class U> walker operator - (U t) const { walker<T> w = *this; w += (-t); return w; } /** \brief what T are we facing, without creating it */ T*& peek() { return at->move(spin); } /** \brief what T are we facing, with creating it */ T* cpeek() { return at->cmove(spin); } /** \brief would we create a new T if we stepped forwards? */ bool creates() { return !peek(); } /** \brief mirror this walker with respect to the d-th edge */ walker<T> mirrorat(int d) { return walker<T> (at, at->c.fix(d+d - spin), !mirrored); } }; struct cell; // automaton state enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC }; struct cell *createMov(struct cell *c, int d); struct heptagon *createStep(struct heptagon *c, int d); struct cdata_or_heptagon { virtual ~cdata_or_heptagon() {} }; struct cdata : cdata_or_heptagon { int val[4]; int bits; }; /** \brief Limit on the 'distance' value in heptagon. * * This value is signed (negative distances are used * in horocycle implementation. Distance is currently a short, and we need a bit of breathing room. * It would not be a technical problem to use a larger type, but 32000 is close to what fits in * the memory of a normal computer. Farlands appear close to this limit. **/ constexpr int global_distance_limit = 32000; /** This value is used in iterative algorithms to prevent infinite loops created by incorrect data (e.g., circular dragon). It should be larger than global_distance_limit */ constexpr int iteration_limit = 10000000; /** \brief underlying tiling * in bitruncated/irregular/Goldberg geometries, heptagons form the * underlying regular tiling (not necessarily heptagonal); in pure * geometries, they correspond 1-1 to tiles; in 'masterless' geometries * heptagons are unused */ struct heptagon : cdata_or_heptagon { /** \brief Automata are used to generate the standard maps. s is the state of this automaton */ hstate s : 6; /** \brief distance modulo 4, in heptagons */ unsigned int dm4: 2; /** \brief distance from the origin; based on the final geometry of cells, not heptagons themselves */ short distance; /** \brief Emerald/wineyard generator. May have different meaning in other geometries. */ short emeraldval; /** \brief Palace pattern generator. May have different meaning in other geometries. */ short fiftyval; /** \brief Zebra pattern generator. May have different meaning in other geometries. */ short zebraval; /** \brief Field quotient pattern ID. May have different meaning in other geometries. */ int fieldval : 24; /** \brief the number of adjacent heptagons */ unsigned char type : 8; /** \brief data for fractal landscapes */ short rval0, rval1; /** for the main map, it contains the fractal landscape data * * For alternate structures, cdata contains the pointer to the original. */ struct cdata *cdata; /** \brief which central cell does this heptagon correspond too * * For alternate geometries, c7 is NULL */ cell *c7; /** \brief associated generator of alternate structure, for Camelot and horocycles */ heptagon *alt; /** \brief connection table */ connection_table<heptagon> c; // DO NOT add any fields after connection_table! (see tailored_alloc) heptagon*& move(int d) { return c.move(d); } heptagon*& modmove(int d) { return c.modmove(d); } // functions heptagon () { heptacount++; } ~heptagon () { heptacount--; } heptagon *cmove(int d) { return createStep(this, d); } heptagon *cmodmove(int d) { return createStep(this, c.fix(d)); } inline int degree() { return type; } // prevent accidental copying heptagon(const heptagon&) = delete; heptagon& operator=(const heptagon&) = delete; }; struct cell : gcell { char type; ///< our degree int degree() { return type; } int listindex; ///< used by celllister heptagon *master; ///< heptagon who owns us; for 'masterless' tilings it contains coordinates instead connection_table<cell> c; // DO NOT add any fields after connection_table! (see tailored_alloc) cell*& move(int d) { return c.move(d); } cell*& modmove(int d) { return c.modmove(d); } cell* cmove(int d) { return createMov(this, d); } cell* cmodmove(int d) { return createMov(this, c.fix(d)); } cell() {} // prevent accidental copying cell(const cell&) = delete; heptagon& operator=(const cell&) = delete; }; /** abbreviations */ typedef walker<heptagon> heptspin; typedef walker<cell> cellwalker; /** \brief A structure useful when walking on the cell graph in arbitrary way, or listing cells in general. * * Only one celllister may be active at a time, using the stack semantics. * Only the most recently created one works; the previous one will resume * working when this one is destroyed. */ struct manual_celllister { /** \brief list of cells in this list */ vector<cell*> lst; vector<int> tmps; /** \brief is the given cell on the list? */ bool listed(cell *c) { return c->listindex >= 0 && c->listindex < isize(lst) && lst[c->listindex] == c; } /** \brief add a cell to the list */ bool add(cell *c) { if(listed(c)) return false; tmps.push_back(c->listindex); c->listindex = isize(lst); lst.push_back(c); return true; } ~manual_celllister() { for(int i=0; i<isize(lst); i++) lst[i]->listindex = tmps[i]; } }; /** \brief automatically generate a list of nearby cells */ struct celllister : manual_celllister { vector<int> dists; void add_at(cell *c, int d) { if(add(c)) dists.push_back(d); } /** \brief automatically generate a list of nearby cells @param orig where to start @param maxdist maximum distance to cover @param maxcount maximum number of cells to cover @param breakon we are actually looking for this cell, so stop when reaching it */ celllister(cell *orig, int maxdist, int maxcount, cell *breakon) { add_at(orig, 0); cell *last = orig; for(int i=0; i<isize(lst); i++) { cell *c = lst[i]; if(maxdist) forCellCM(c2, c) { add_at(c2, dists[i]+1); if(c2 == breakon) return; } if(c == last) { if(isize(lst) >= maxcount || dists[i]+1 == maxdist) break; last = lst[isize(lst)-1]; } } } /** \brief for a given cell c on the list, return its distance from orig */ int getdist(cell *c) { return dists[c->listindex]; } }; /** \brief translate heptspins to cellwalkers and vice versa */ static const struct cth_t { cth_t() {}} cth; inline heptspin operator+ (cellwalker cw, cth_t) { return heptspin(cw.at->master, cw.spin * DUALMUL, cw.mirrored); } inline cellwalker operator+ (heptspin hs, cth_t) { return cellwalker(hs.at->c7, hs.spin / DUALMUL, hs.mirrored); } #endif EX bool proper(cell *c, int d) { return d >= 0 && d < c->type; } #if HDR constexpr int STRONGWIND = 99; constexpr int FALL = 98; constexpr int NO_SPACE = 97; constexpr int TELEPORT = 96; constexpr int JUMP = 95; constexpr int STAY = 94; namespace whirlwind { cell *jumpDestination(cell*); } /** \brief a structure for representing movements * * mostly for 'proper' moves where s->move(d) == t, * but also sometimes for other moves */ struct movei { cell *s; cell *t; int d; bool op() { return s != t; } bool proper() const { return d >= 0 && d < s->type && s->move(d) == t; } movei(cell *_s, int _d) : s(_s), d(_d) { if(d == STRONGWIND) t = whirlwind::jumpDestination(s); else if(d < 0 || d >= s->type) t = s; else t = s->move(d); } movei(cell *_s, cell *_t, int _d) : s(_s), t(_t), d(_d) {} movei(cellwalker cw) : s(cw.at), t(cw.cpeek()), d(cw.spin) {} movei rev() const { return movei(t, s, rev_dir_or(d)); } int dir_or(int x) const { return proper() ? d : x; } int rev_dir_or(int x) const { return proper() ? s->c.spin(d) : x; } int rev_dir_mirror() const { return proper() ? s->c.spin(d) : d; } int rev_dir_force() const { hassert(proper()); return s->c.spin(d); } int dir_force() const { hassert(proper()); return d; } bool mirror() { return s->c.mirror(d); } }; #endif EX movei moveimon(cell *c) { return movei(c, c->mondir); } EX movei match(cell *f, cell *t) { for(int i=0; i<f->type; i++) if(f->move(i) == t) return movei(f, t, i); return movei(f, t, -1); } }