/** * @file condition_variable.h * @brief std::condition_variable implementation for MinGW * * (c) 2013-2016 by Mega Limited, Auckland, New Zealand * @author Alexander Vassilev * * @copyright Simplified (2-clause) BSD License. * You should have received a copy of the license along with this * program. * * This code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * @note * This file may become part of the mingw-w64 runtime package. If/when this happens, * the appropriate license will be added, i.e. this code will become dual-licensed, * and the current BSD 2-clause license will stay. */ #ifndef MINGW_CONDITIONAL_VARIABLE_H #define MINGW_CONDITIONAL_VARIABLE_H #if !defined(__cplusplus) || (__cplusplus < 201103L) #error A C++11 compiler is required! #endif // Use the standard classes for std::, if available. #include <condition_variable> #include <cassert> #include <chrono> #include <system_error> #include <sdkddkver.h> // Detect Windows version. #if (WINVER < _WIN32_WINNT_VISTA) #include <atomic> #endif #if (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) #pragma message "The Windows API that MinGW-w32 provides is not fully compatible\ with Microsoft's API. We'll try to work around this, but we can make no\ guarantees. This problem does not exist in MinGW-w64." #include <windows.h> // No further granularity can be expected. #else #if (WINVER < _WIN32_WINNT_VISTA) #include <windef.h> #include <winbase.h> // For CreateSemaphore #include <handleapi.h> #endif #include <synchapi.h> #endif #include "mingw.mutex.h" #include "mingw.shared_mutex.h" #if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0501) #error To use the MinGW-std-threads library, you will need to define the macro _WIN32_WINNT to be 0x0501 (Windows XP) or higher. #endif namespace mingw_stdthread { #if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS) enum class cv_status { no_timeout, timeout }; #else using std::cv_status; #endif namespace xp { // Include the XP-compatible condition_variable classes only if actually // compiling for XP. The XP-compatible classes are slower than the newer // versions, and depend on features not compatible with Windows Phone 8. #if (WINVER < _WIN32_WINNT_VISTA) class condition_variable_any { recursive_mutex mMutex {}; std::atomic<int> mNumWaiters {0}; HANDLE mSemaphore; HANDLE mWakeEvent {}; public: using native_handle_type = HANDLE; native_handle_type native_handle() { return mSemaphore; } condition_variable_any(const condition_variable_any&) = delete; condition_variable_any& operator=(const condition_variable_any&) = delete; condition_variable_any() : mSemaphore(CreateSemaphoreA(NULL, 0, 0xFFFF, NULL)) { if (mSemaphore == NULL) throw std::system_error(GetLastError(), std::generic_category()); mWakeEvent = CreateEvent(NULL, FALSE, FALSE, NULL); if (mWakeEvent == NULL) { CloseHandle(mSemaphore); throw std::system_error(GetLastError(), std::generic_category()); } } ~condition_variable_any() { CloseHandle(mWakeEvent); CloseHandle(mSemaphore); } private: template <class M> bool wait_impl(M& lock, DWORD timeout) { { lock_guard<recursive_mutex> guard(mMutex); mNumWaiters++; } lock.unlock(); DWORD ret = WaitForSingleObject(mSemaphore, timeout); mNumWaiters--; SetEvent(mWakeEvent); lock.lock(); if (ret == WAIT_OBJECT_0) return true; else if (ret == WAIT_TIMEOUT) return false; //2 possible cases: //1)The point in notify_all() where we determine the count to //increment the semaphore with has not been reached yet: //we just need to decrement mNumWaiters, but setting the event does not hurt // //2)Semaphore has just been released with mNumWaiters just before //we decremented it. This means that the semaphore count //after all waiters finish won't be 0 - because not all waiters //woke up by acquiring the semaphore - we woke up by a timeout. //The notify_all() must handle this gracefully // else { using namespace std; throw system_error(make_error_code(errc(0)/*errc::owner_dead*/)); // no protocol_error in my mingw } } public: template <class M> void wait(M& lock) { wait_impl(lock, INFINITE); } template <class M, class Predicate> void wait(M& lock, Predicate pred) { while(!pred()) { wait(lock); }; } void notify_all() noexcept { lock_guard<recursive_mutex> lock(mMutex); //block any further wait requests until all current waiters are unblocked if (mNumWaiters.load() <= 0) return; ReleaseSemaphore(mSemaphore, mNumWaiters, NULL); while(mNumWaiters > 0) { auto ret = WaitForSingleObject(mWakeEvent, 1000); if (ret == WAIT_FAILED || ret == WAIT_ABANDONED) std::terminate(); } assert(mNumWaiters == 0); //in case some of the waiters timed out just after we released the //semaphore by mNumWaiters, it won't be zero now, because not all waiters //woke up by acquiring the semaphore. So we must zero the semaphore before //we accept waiters for the next event //See _wait_impl for details while(WaitForSingleObject(mSemaphore, 0) == WAIT_OBJECT_0); } void notify_one() noexcept { lock_guard<recursive_mutex> lock(mMutex); int targetWaiters = mNumWaiters.load() - 1; if (targetWaiters <= -1) return; ReleaseSemaphore(mSemaphore, 1, NULL); while(mNumWaiters > targetWaiters) { auto ret = WaitForSingleObject(mWakeEvent, 1000); if (ret == WAIT_FAILED || ret == WAIT_ABANDONED) std::terminate(); } assert(mNumWaiters == targetWaiters); } template <class M, class Rep, class Period> cv_status wait_for(M& lock, const std::chrono::duration<Rep, Period>& rel_time) { using namespace std::chrono; auto timeout = duration_cast<milliseconds>(rel_time).count(); DWORD waittime = (timeout < INFINITE) ? ((timeout < 0) ? 0 : static_cast<DWORD>(timeout)) : (INFINITE - 1); bool ret = wait_impl(lock, waittime) || (timeout >= INFINITE); return ret?cv_status::no_timeout:cv_status::timeout; } template <class M, class Rep, class Period, class Predicate> bool wait_for(M& lock, const std::chrono::duration<Rep, Period>& rel_time, Predicate pred) { return wait_until(lock, std::chrono::steady_clock::now()+rel_time, pred); } template <class M, class Clock, class Duration> cv_status wait_until (M& lock, const std::chrono::time_point<Clock,Duration>& abs_time) { return wait_for(lock, abs_time - Clock::now()); } template <class M, class Clock, class Duration, class Predicate> bool wait_until (M& lock, const std::chrono::time_point<Clock, Duration>& abs_time, Predicate pred) { while (!pred()) { if (wait_until(lock, abs_time) == cv_status::timeout) { return pred(); } } return true; } }; class condition_variable: condition_variable_any { using base = condition_variable_any; public: using base::native_handle_type; using base::native_handle; using base::base; using base::notify_all; using base::notify_one; void wait(unique_lock<mutex> &lock) { base::wait(lock); } template <class Predicate> void wait(unique_lock<mutex>& lock, Predicate pred) { base::wait(lock, pred); } template <class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const std::chrono::duration<Rep, Period>& rel_time) { return base::wait_for(lock, rel_time); } template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const std::chrono::duration<Rep, Period>& rel_time, Predicate pred) { return base::wait_for(lock, rel_time, pred); } template <class Clock, class Duration> cv_status wait_until (unique_lock<mutex>& lock, const std::chrono::time_point<Clock,Duration>& abs_time) { return base::wait_until(lock, abs_time); } template <class Clock, class Duration, class Predicate> bool wait_until (unique_lock<mutex>& lock, const std::chrono::time_point<Clock, Duration>& abs_time, Predicate pred) { return base::wait_until(lock, abs_time, pred); } }; #endif // Compiling for XP } // Namespace mingw_stdthread::xp #if (WINVER >= _WIN32_WINNT_VISTA) namespace vista { // If compiling for Vista or higher, use the native condition variable. class condition_variable { static constexpr DWORD kInfinite = 0xffffffffl; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant" CONDITION_VARIABLE cvariable_ = CONDITION_VARIABLE_INIT; #pragma GCC diagnostic pop friend class condition_variable_any; #if STDMUTEX_RECURSION_CHECKS template<typename MTX> inline static void before_wait (MTX * pmutex) { pmutex->mOwnerThread.checkSetOwnerBeforeUnlock(); } template<typename MTX> inline static void after_wait (MTX * pmutex) { pmutex->mOwnerThread.setOwnerAfterLock(GetCurrentThreadId()); } #else inline static void before_wait (void *) { } inline static void after_wait (void *) { } #endif bool wait_impl (unique_lock<xp::mutex> & lock, DWORD time) { using mutex_handle_type = typename xp::mutex::native_handle_type; static_assert(std::is_same<mutex_handle_type, PCRITICAL_SECTION>::value, "Native Win32 condition variable requires std::mutex to \ use native Win32 critical section objects."); xp::mutex * pmutex = lock.release(); before_wait(pmutex); BOOL success = SleepConditionVariableCS(&cvariable_, pmutex->native_handle(), time); after_wait(pmutex); lock = unique_lock<xp::mutex>(*pmutex, adopt_lock); return success; } bool wait_unique (windows7::mutex * pmutex, DWORD time) { before_wait(pmutex); BOOL success = SleepConditionVariableSRW( native_handle(), pmutex->native_handle(), time, // CONDITION_VARIABLE_LOCKMODE_SHARED has a value not specified by // Microsoft's Dev Center, but is known to be (convertible to) a ULONG. To // ensure that the value passed to this function is not equal to Microsoft's // constant, we can either use a static_assert, or simply generate an // appropriate value. !CONDITION_VARIABLE_LOCKMODE_SHARED); after_wait(pmutex); return success; } bool wait_impl (unique_lock<windows7::mutex> & lock, DWORD time) { windows7::mutex * pmutex = lock.release(); bool success = wait_unique(pmutex, time); lock = unique_lock<windows7::mutex>(*pmutex, adopt_lock); return success; } public: using native_handle_type = PCONDITION_VARIABLE; native_handle_type native_handle (void) { return &cvariable_; } condition_variable (void) = default; ~condition_variable (void) = default; condition_variable (const condition_variable &) = delete; condition_variable & operator= (const condition_variable &) = delete; void notify_one (void) noexcept { WakeConditionVariable(&cvariable_); } void notify_all (void) noexcept { WakeAllConditionVariable(&cvariable_); } void wait (unique_lock<mutex> & lock) { wait_impl(lock, kInfinite); } template<class Predicate> void wait (unique_lock<mutex> & lock, Predicate pred) { while (!pred()) wait(lock); } template <class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const std::chrono::duration<Rep, Period>& rel_time) { using namespace std::chrono; auto timeout = duration_cast<milliseconds>(rel_time).count(); DWORD waittime = (timeout < kInfinite) ? ((timeout < 0) ? 0 : static_cast<DWORD>(timeout)) : (kInfinite - 1); bool result = wait_impl(lock, waittime) || (timeout >= kInfinite); return result ? cv_status::no_timeout : cv_status::timeout; } template <class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const std::chrono::duration<Rep, Period>& rel_time, Predicate pred) { return wait_until(lock, std::chrono::steady_clock::now() + rel_time, std::move(pred)); } template <class Clock, class Duration> cv_status wait_until (unique_lock<mutex>& lock, const std::chrono::time_point<Clock,Duration>& abs_time) { return wait_for(lock, abs_time - Clock::now()); } template <class Clock, class Duration, class Predicate> bool wait_until (unique_lock<mutex>& lock, const std::chrono::time_point<Clock, Duration>& abs_time, Predicate pred) { while (!pred()) { if (wait_until(lock, abs_time) == cv_status::timeout) { return pred(); } } return true; } }; class condition_variable_any { static constexpr DWORD kInfinite = 0xffffffffl; using native_shared_mutex = windows7::shared_mutex; condition_variable internal_cv_ {}; // When available, the SRW-based mutexes should be faster than the // CriticalSection-based mutexes. Only try_lock will be unavailable in Vista, // and try_lock is not used by condition_variable_any. windows7::mutex internal_mutex_ {}; template<class L> bool wait_impl (L & lock, DWORD time) { unique_lock<decltype(internal_mutex_)> internal_lock(internal_mutex_); lock.unlock(); bool success = internal_cv_.wait_impl(internal_lock, time); lock.lock(); return success; } // If the lock happens to be called on a native Windows mutex, skip any extra // contention. inline bool wait_impl (unique_lock<mutex> & lock, DWORD time) { return internal_cv_.wait_impl(lock, time); } // Some shared_mutex functionality is available even in Vista, but it's not // until Windows 7 that a full implementation is natively possible. The class // itself is defined, with missing features, at the Vista feature level. bool wait_impl (unique_lock<native_shared_mutex> & lock, DWORD time) { native_shared_mutex * pmutex = lock.release(); bool success = internal_cv_.wait_unique(pmutex, time); lock = unique_lock<native_shared_mutex>(*pmutex, adopt_lock); return success; } bool wait_impl (shared_lock<native_shared_mutex> & lock, DWORD time) { native_shared_mutex * pmutex = lock.release(); BOOL success = SleepConditionVariableSRW(native_handle(), pmutex->native_handle(), time, CONDITION_VARIABLE_LOCKMODE_SHARED); lock = shared_lock<native_shared_mutex>(*pmutex, adopt_lock); return success; } public: using native_handle_type = typename condition_variable::native_handle_type; native_handle_type native_handle (void) { return internal_cv_.native_handle(); } void notify_one (void) noexcept { internal_cv_.notify_one(); } void notify_all (void) noexcept { internal_cv_.notify_all(); } condition_variable_any (void) = default; ~condition_variable_any (void) = default; template<class L> void wait (L & lock) { wait_impl(lock, kInfinite); } template<class L, class Predicate> void wait (L & lock, Predicate pred) { while (!pred()) wait(lock); } template <class L, class Rep, class Period> cv_status wait_for(L& lock, const std::chrono::duration<Rep,Period>& period) { using namespace std::chrono; auto timeout = duration_cast<milliseconds>(period).count(); DWORD waittime = (timeout < kInfinite) ? ((timeout < 0) ? 0 : static_cast<DWORD>(timeout)) : (kInfinite - 1); bool result = wait_impl(lock, waittime) || (timeout >= kInfinite); return result ? cv_status::no_timeout : cv_status::timeout; } template <class L, class Rep, class Period, class Predicate> bool wait_for(L& lock, const std::chrono::duration<Rep, Period>& period, Predicate pred) { return wait_until(lock, std::chrono::steady_clock::now() + period, std::move(pred)); } template <class L, class Clock, class Duration> cv_status wait_until (L& lock, const std::chrono::time_point<Clock,Duration>& abs_time) { return wait_for(lock, abs_time - Clock::now()); } template <class L, class Clock, class Duration, class Predicate> bool wait_until (L& lock, const std::chrono::time_point<Clock, Duration>& abs_time, Predicate pred) { while (!pred()) { if (wait_until(lock, abs_time) == cv_status::timeout) { return pred(); } } return true; } }; } // Namespace vista #endif #if WINVER < 0x0600 using xp::condition_variable; using xp::condition_variable_any; #else using vista::condition_variable; using vista::condition_variable_any; #endif } // Namespace mingw_stdthread // Push objects into std, but only if they are not already there. namespace std { // Because of quirks of the compiler, the common "using namespace std;" // directive would flatten the namespaces and introduce ambiguity where there // was none. Direct specification (std::), however, would be unaffected. // Take the safe option, and include only in the presence of MinGW's win32 // implementation. #if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS) using mingw_stdthread::cv_status; using mingw_stdthread::condition_variable; using mingw_stdthread::condition_variable_any; #elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition #define MINGW_STDTHREAD_REDUNDANCY_WARNING #pragma message "This version of MinGW seems to include a win32 port of\ pthreads, and probably already has C++11 std threading classes implemented,\ based on pthreads. These classes, found in namespace std, are not overridden\ by the mingw-std-thread library. If you would still like to use this\ implementation (as it is more lightweight), use the classes provided in\ namespace mingw_stdthread." #endif } #endif // MINGW_CONDITIONAL_VARIABLE_H