// Hyperbolic Rogue -- Arnold's cat map // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file asonov.cpp * \brief Arnold's cat map */ #include "hyper.h" //#include //#include namespace hr { EX namespace asonov { EX bool in() { return geometry == gArnoldCat; } EX hyperpoint tx, ty, tz; EX transmatrix straighten; EX int period_xy = 8; EX int period_z = 8; struct coord: public array { coord() {} coord(int x, int y, int z) : array(make_array(zgmod(x, period_xy), zgmod(y, period_xy), zgmod(z, period_z))) {} coord shift(int x, int y, int z=0) { return coord(self[0]+x, self[1]+y, self[2]+z); } coord up() { return coord(self[0]*2-self[1], self[1]-self[0], self[2]+1); } coord down() { return coord(self[0]+self[1], self[0]+self[1]*2, self[2]-1); } coord addmove(int d) { switch(d) { case 0: return up().shift(0, 0); case 1: return up().shift(1, -1); case 2: return up().shift(-1, 0); case 3: return up().shift(0, -1); case 4: return shift(1, 0); case 5: return shift(0, 1); case 6: return down().shift(0, 0); case 7: return down().shift(0, 1); case 8: return down().shift(1, 1); case 9: return down().shift(1, 2); case 10: return shift(-1, 0); case 11: return shift(0, -1); default: throw "error"; } } }; EX void prepare() { using namespace hr; transmatrix A = Id; A[0][0] = 1; A[0][1] = 1; A[1][0] = 1; A[1][1] = 2; // if(true) { double det = hr::det(A); if(det != 1) { printf("wrong det\n"); return; } // (a00-x)(a11-x) - a01*a10 = 0 // x^2 - (a00+a11) x + 1 = 0 double b = (A[0][0] + A[1][1]) / 2; // x^2 - 2b x + b^2 = b^2-1 // if(b*b <= 1) { printf("imaginary eigenvalues\n"); return 0; } // x = b + sqrt(b^2-1) hyperpoint lambda; lambda[0] = b + sqrt(b*b-1); lambda[1] = b - sqrt(b*b-1); DEBB(DF_GEOM, ("b = ", b, " lambda = ", lambda)); transmatrix eigen = Id; for(int i: {0,1}) { eigen[0][i] = 1; eigen[1][i] = (lambda[i] - A[0][0]) / A[0][1]; } transmatrix ieigen = inverse(eigen); tx = point3(ieigen[0][0], ieigen[1][0], 0); ty = point3(ieigen[0][1], ieigen[1][1], 0); tz = -point3(0, 0, log(lambda[0])); DEBB(DF_GEOM, ("tx = ", tx, " ty = ", ty, " tz = ", tz)); straighten = inverse(build_matrix(asonov::tx/2, asonov::ty/2, asonov::tz/2, C0)); } EX transmatrix adjmatrix(int i) { dynamicval pxy(period_xy, 64); dynamicval pz(period_z, 64); coord c = coord(0,0,0).addmove(i); if(c[0] > period_xy/2) c[0] -= period_xy; if(c[1] > period_xy/2) c[1] -= period_xy; if(c[2] > period_z/2) c[2] -= period_z; transmatrix T = eupush(tz * c[2]) * eupush(tx * c[0] + ty * c[1]);; if(i < 4) return T * eupush(ty/2); if(i >= 6 && i < 10) return eupush(-ty/2) * T; return T; } struct hrmap_asonov : hrmap { unordered_map at; unordered_map coords; heptagon *getOrigin() override { return get_at(coord(0,0,0)); } hrmap_asonov() { prepare(); } ~hrmap_asonov() { for(auto& p: at) clear_heptagon(p.second); } heptagon *get_at(coord c) { auto& h = at[c]; if(h) return h; h = tailored_alloc (S7); h->c7 = newCell(S7, h); coords[h] = c; h->dm4 = 0; h->distance = c[2]; h->zebraval = c[0]; h->emeraldval = c[1]; h->cdata = NULL; h->alt = NULL; return h; } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto q = p.addmove(d); auto child = get_at(q); parent->c.connect(d, child, (d + 6) % 12, false); return child; } virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { for(int a=0; amove(a)) return adjmatrix(a); return Id; } void draw() override { dq::visited_by_matrix.clear(); dq::enqueue_by_matrix(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V); if(wallopt && isWall3(c) && isize(dq::drawqueue) > 1000) continue; for(int i=0; icmove(i), V * adjmatrix(i)); } } }; EX hrmap *new_map() { return new hrmap_asonov; } EX int period_xy_edit, period_z_edit; EX void set_flags() { auto& flag = ginf[gArnoldCat].flags; set_flag(flag, qANYQ, period_xy || period_z); set_flag(flag, qBOUNDED, period_xy && period_z); set_flag(flag, qSMALL, period_xy && period_z && (period_xy * period_xy * period_z <= 4096)); } EX void prepare_config() { period_xy_edit = period_xy; period_z_edit = period_z; } EX void show_config() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(1); dialog::init(XLAT("Solv quotient spaces")); dialog::addSelItem(XLAT("%1 period", "X/Y"), its(period_xy_edit), 'x'); dialog::add_action([=] { dialog::editNumber(period_xy_edit, 0, 64, 1, 0, XLAT("%1 period", "X/Y"), XLAT("Note: the value 0 functions effectively as the size of int (2^32).") ); dialog::bound_low(0); }); dialog::addSelItem(XLAT("%1 period", "Z"), its(period_z_edit), 'z'); dialog::add_action([=] { dialog::editNumber(period_z_edit, 0, 64, 1, 0, XLAT("%1 period", "Z"), XLAT("Set to 0 to make it non-periodic.") ); dialog::bound_low(0); }); dialog::addBreak(50); dialog::addItem(XLAT("activate"), 'a'); dialog::add_action([] { stop_game(); period_xy = period_xy_edit; period_z = period_z_edit; set_flags(); geometry = gArnoldCat; start_game(); }); dialog::addBreak(50); dialog::addBack(); dialog::display(); } } }