#include "rogueviz.h" // Impossible Triangle visualization // used in: https://www.youtube.com/watch?v=YmFDd49WsrY // settings: // ./mymake -O3 rogueviz/triangle // ./hyper -geo Nil -canvas x -tstep 8 -nilperiod 3 3 3 // also used in: https://youtu.be/RPL4-Ydviug // ./hyper -geo Nil -nilwidth .9 -canvas x -tstep 1 -nilperiod 1 10 1 -triset 32 31 992 // network of triangles: // ./hyper -geo Nil -canvas x -tri-net namespace rogueviz { namespace itri { bool on = false; bool net = false; hyperpoint operator+(hyperpoint x) { return x; } // do not change this int shape = 1; // how many cubes to subdivide edges to int how = 8; // how many cubes to draw (should be smaller than how because they are not really cubes and thus they get into each other) int how1 = how - 1; // precision: number of substeps to simulate (best if divisible by how and how1) int isteps = 4 * 1024; /* the generators correspond to: */ nilv::mvec a(1,0,0); nilv::mvec b(0,1,0); nilv::mvec c = (a * b).inverse(); vector<nilv::mvec> gens = { a, b, c, a.inverse(), b.inverse(), c.inverse() }; struct triangledata { hyperpoint at; bool computed; int tcolor; int id; // each color group (i.e., each face direction) is a different hpcshape triangledata(hyperpoint h) : at(h), computed(false) { tcolor = 0; id = 0; } }; struct trianglemaker { geometry_information *icgi; map<cell*, vector<triangledata> > tds; array<hpcshape, 6> ptriangle; array<hpcshape, 6> pcube; hyperpoint ds[4], uds[4], dmoves[6]; ld scale; void init() { icgi = &cgi; ld rest = sqrt(8/9.); ld rex = sqrt(1 - 1/9. - pow(rest/2., 2)); ds[0] = point3(rex, -rest/2, -1/3.); ds[1] = point3(0, rest, -1/3.); ds[2] = point3(-rex, -rest/2, -1/3.); ds[3] = point3(0, 0, +1); hyperpoint start = point31(0, 0, 0); double ca; // compute how to scale this in Nil so that everything fits ld amin = 0, amax = 1; for(int it=0; it<100; it++) { ld a = (amin + amax) / 2; ca = a; hyperpoint at = start; for(int d=0; d<3; d++) { for(int i=0; i<isteps; i++) { at = nisot::translate(at) * (start + ds[d] * a); } } println(hlog, "at = ", at, " for a = ", a, " sq = ", at[2] / a / a); if(at[2] > 0) { amax = a; } else { amin = a; } } // compute the shift between the cubes for(int d=0; d<3; d++) { hyperpoint at = start; for(int i=0; i<isteps/how; i++) { at = nisot::translate(at) * (start + ds[d] * ca); } uds[d] = (at - start) / 2.; } // println(hlog, "uds = ", uds); for(int a=0; a<3; a++) println(hlog, sqhypot_d(3, inverse_exp(shiftless(start + ds[a] * ca)))); for(int a=0; a<3; a++) println(hlog, sqhypot_d(3, inverse_exp(shiftless(uds[a])))); // compute cube vertices hyperpoint verts[8]; for(int a=0; a<8; a++) { verts[a] = start; for(int k=0; k<3; k++) verts[a] += (a&(1<<k)) ? uds[k] : -uds[k]; } // since Nil does not really have cubes, we need to move the vertices a bit so that it looks nicer // ugliness of the current vertices auto errf = [&] { ld res = 0; for(int s=0; s<8; s++) for(int t=0; t<3; t++) { if((s & (1<<t)) == 0) { int s1 = s | (1<<t); ld dix = sqhypot_d(3, inverse(nisot::translate(nisot::translate(start + 2*uds[t]) * verts[s])) * verts[s1]); // println(hlog, tie(s, t), "di = ", dix); res += dix * dix; } } return res; }; // minimize the ugliness ld curerr = errf(); println(hlog, "curerr = ", curerr); int att = 0; if(1) while(true) { int id = rand() % 8; int j = rand() % 3; ld eps = (rand() % 100 - rand() % 100) / 100000.; verts[id][j] += eps; ld nerr = errf(); if(nerr < curerr) { curerr = nerr; println(hlog, "curerr = ", curerr, " # ", att); att = 0; } else { verts[id][j] -= eps; } att++; if(att > 50000) break; } for(int s=0; s<8; s++) for(int t=0; t<3; t++) { if((s & (1<<t)) == 0) { int s1 = s | (1<<t); ld dix = sqhypot_d(3, inverse(nisot::translate(nisot::translate(start + 2*uds[t]) * verts[s])) * verts[s1]); println(hlog, tie(s, t), "di = ", dix); } } scale = 1; for(int si=0; si<6; si++) { auto textured_square = [&] (auto f) { texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 + iy/2, .5 + ix/2 - iy/2); }); texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 - iy/2, .5 - ix/2 + iy/2); }); texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 - iy/2, .5 - ix/2 - iy/2); }); texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 + iy/2, .5 + ix/2 + iy/2); }); }; auto cube_at = [&] (hyperpoint online) { auto sidesquare1 = [&] (hyperpoint a00, hyperpoint a01, hyperpoint a10, hyperpoint a11) { textured_square( [&] (ld ix, ld iy) { hyperpoint shf = lerp(lerp(a00, a01, ix), lerp(a10, a11, ix), iy); if(scale) shf = shf * scale - start * (scale-1); cgi.hpcpush(nisot::translate(online) * (shf)); }); }; if(si == 0) sidesquare1(verts[0], verts[2], verts[4], verts[6]); if(si == 1) sidesquare1(verts[1], verts[3], verts[5], verts[7]); if(si == 2) sidesquare1(verts[0], verts[1], verts[4], verts[5]); if(si == 3) sidesquare1(verts[2], verts[3], verts[6], verts[7]); if(si == 4) sidesquare1(verts[0], verts[1], verts[2], verts[3]); if(si == 5) sidesquare1(verts[4], verts[5], verts[6], verts[7]); }; scale = 2; cgi.bshape(pcube[si], PPR::WALL); cube_at(start); cgi.last->flags |= POLY_TRIANGLES; cgi.last->tinf = &floor_texture_vertices[0]; cgi.last->texture_offset = 0; scale = 1; cgi.bshape(ptriangle[si], PPR::WALL); hyperpoint at = start; vector<hyperpoint> atx = {start}; cube_at(start); for(int dx: {0, 1, 2}) { int d = dx; if(net) at = start; else cube_at(at); int d1 = (d+1) % 3; int d2 = (d+2) % 3; vector<hyperpoint> path(isteps+1); for(int i=0; i<isteps; i++) { path[i] = at; at = nisot::translate(at) * (start + ds[d] * ca * (dx >= 3 ? -1 : 1)); } path[isteps] = at; auto &u = uds[d]; auto &v = uds[d1]; auto &w = uds[d2]; auto sidewall = [&] (hyperpoint wide, hyperpoint shift) { textured_square( [&] (ld ix, ld iy) { hyperpoint online = path[int(ix * isteps + .1)]; hyperpoint shf = lerp(u, -u, ix) + lerp(-wide, wide, iy) + shift; shf *= scale; cgi.hpcpush(nisot::translate(online) * (start + shf)); }); }; auto sidesquare = [&] (hyperpoint wx, hyperpoint wy, hyperpoint shift, ld p) { textured_square( [&] (ld ix, ld iy) { hyperpoint online = path[int(p * isteps + .1)]; hyperpoint shf = lerp(wx, -wx, ix) + lerp(wy, -wy, iy) + shift; shf *= scale; cgi.hpcpush(nisot::translate(online) * (start + shf)); }); }; if(shape == 0) { if(si == d2*2) sidewall(v, w); if(si == d1*2) sidewall(w, v); if(si == d2*2+1) sidewall(v, -w); if(si == d1*2+1) sidewall(w, -v); if(si == d2*2) sidesquare(u, v, w, 0); if(si == d1*2) sidesquare(w, u, v, 0); if(si == d1*2+1) sidesquare(u, w, -v, 0); if(si == d*2+1) sidesquare(w, v, -u, 0); } if(shape == 1) for(int a=1; a<how1; a++) { ld c = a * 1. / how1; cube_at(path[int(c * isteps + .1)]); } dmoves[d] = at; } cgi.last->flags |= POLY_TRIANGLES; cgi.last->tinf = &floor_texture_vertices[0]; cgi.last->texture_offset = 0; cgi.finishshape(); cgi.extra_vertices(); } tds[cwt.at].emplace_back(start); dmoves[3] = inverse(nisot::translate(dmoves[0])) * C0; dmoves[4] = inverse(nisot::translate(dmoves[1])) * C0; dmoves[5] = inverse(nisot::translate(dmoves[2])) * C0; } void compute(triangledata &td, cell *c) { if(td.computed) return; td.computed = true; if(!net) return; hyperpoint at; for(int d=0; d<6; d++) { hyperpoint at = nisot::translate(td.at) * dmoves[d]; cell *c0 = c; virtualRebase(c0, at); bool newat = true; for(auto& td: tds[c0]) { ld d = sqhypot_d(3, at - td.at); if(d < .01) { if(d>1e-5) println(hlog, "d = ", d); newat = false; } } if(newat) { triangledata ntd = at; ntd.id = td.id + 1; tds[c0].push_back(ntd); tds[c0].back().tcolor = (td.tcolor + (d < 3 ? 1 : 2)) % 3; } } } }; trianglemaker *mkr; void reset() { if(mkr) delete mkr; mkr = nullptr; } // Magic Cube (aka Rubik Cube) colors color_t magiccolors[6] = { 0xFFFF00FF, 0xFFFFFFFF, 0x0000FFFF, 0x00FF00FF, 0xFF0000FF, 0xFF8000FF}; #define CTO (isize(cnts)) vector<int> cnts; vector<ld> coef; int valid_from; int tested_to; int coefficients_known; bool verify(int id) { if(id < isize(coef)) return false; ld res = 0; for(int t=0; t<isize(coef); t++) res += coef[t] * cnts[id-t-1]; return abs(res - cnts[id]) < .5; } int valid(int v, int step) { if(step < 0) return 0; if(step+v+v+5 >= CTO) return 0; ld matrix[100][128]; for(int i=0; i<v; i++) for(int j=0; j<v+1; j++) matrix[i][j] = cnts[step+i+j]; for(int k=0; k<v; k++) { int nextrow = k; while(nextrow < v && std::abs(matrix[nextrow][k]) < 1e-6) nextrow++; if(nextrow == v) return 1; if(nextrow != k) { // printf("swap %d %d\n", k, nextrow); for(int l=0; l<=v; l++) swap(matrix[k][l], matrix[nextrow][l]); // display(); } ld divv = 1. / matrix[k][k]; for(int k1=k; k1<=v; k1++) matrix[k][k1] *= divv; // printf("divide %d\n", k); // display(); for(int k1=k+1; k1<v; k1++) if(matrix[k1][k] != 0) { ld coef = -matrix[k1][k]; for(int k2=k; k2<=v; k2++) matrix[k1][k2] += matrix[k][k2] * coef; } // printf("zeros below %d\n", k); // display(); } for(int k=v-1; k>=0; k--) for(int l=k-1; l>=0; l--) if(matrix[l][k]) matrix[l][v] -= matrix[l][k] * matrix[k][v]; coef.resize(v); for(int i=0; i<v; i++) coef[i] = matrix[v-1-i][v]; println(hlog, "coef = ", coef); for(int t=step+v; t<step+v+v+5; t++) { println(hlog, "verify(", t, ") = ", verify(t)); if(!verify(t)) return 2; } println(hlog, "got here"); tested_to = step+v+v+5; while(tested_to < CTO) { if(!verify(tested_to)) return 2; tested_to++; } valid_from = step+v; return 3; } void find_coefficients() { if(coefficients_known) return; for(int v=1; v<25; v++) for(int step=0; step<1000; step++) { int val = valid(v, step); if(val == 0) break; println(hlog, "v=", v, "step=", step, " val=", val); if(val == 3) { coefficients_known = 2; return; } } coefficients_known = 1; } void growthrate() { cnts.resize(20); for(int a=0; a<CTO; a++) { int cnt = 0; map<cell*, int> howmany; for(auto& p: mkr->tds) cnt += (howmany[p.first] = isize(p.second)); for(auto& p: howmany) for(int i=0; i<p.second; i++) { // println(hlog, p.first, mkr->tds[p.first][i].at, mkr->tds[p.first][i].computed); mkr->compute(mkr->tds[p.first][i], p.first); } println(hlog, "cnt = ", cnt, " / ", cnt / pow(1+a, 4)); cnts[a] = cnt; if(a >= 4) println(hlog, "D4 = ", cnts[a-4] - 4 * cnts[a-3] + 6 * cnts[a-2] - 4 * cnts[a-1] + cnts[a]); println(hlog, "cnts = ", cnts); } auto cnt2 = cnts; for(int i=isize(cnt2)-1; i>=1; i--) cnt2[i] -= cnt2[i-1]; println(hlog, "cnts dif = ", cnt2); // this was computed on integers, not using the program above cnts = {1,6,24,80,186,368,644,1046,1574,2260,3128,4198,5482,7006,8788,10860,13228,15918,18948,22350,26130,30314,34926,39986,45506,51518,58034,65086,72680,80842,89596,98968,108964,119610,130930,142950,155676,169140,183354,198350,214140,230744,248186,266492,285668,305746,326744,348688,371584,395464,420346,446256,473206,501216,530310,560520,591846,624320,657960,692792,728828,766094,804608,844396,885470,927856,971572,1016650,1063090,1110924,1160176,1210866,1263006,1316622,1371732,1428368,1486536,1546262,1607564,1670474,1734998,1801162,1868990,1938502,2009710,2082646,2157322,2233770,2311996,2392026,2473884,2557596,2643168,2730626,2819994,2911298,3004544,3099764,3196970,3296194,3397448,3500752,3606130,3713608,3823192}; println(hlog, "coefficients_known = ", coefficients_known); if(coefficients_known == 2) { string fmt = "a(d+" + its(isize(coef)) + ") = "; bool first = true; for(int i=0; i<isize(coef); i++) if(kz(coef[i])) { if(first && !kz(coef[i]-1)) ; else if(first) fmt += fts(coef[i]); else if(!kz(coef[i]-1)) fmt += " + "; else if(!kz(coef[i]+1)) fmt += " - "; else if(coef[i] > 0) fmt += " + " + fts(coef[i]); else if(coef[i] < 0) fmt += " - " + fts(-coef[i]); fmt += "a(d"; if(i != isize(coef) - 1) fmt += "+" + its(isize(coef) - 1 - i); fmt += ")"; first = false; } fmt += " (d>" + its(valid_from-1) + ")"; println(hlog, fmt); } } color_t tcolors[3] = { 0xFF0000FF, 0x00FF00FF, 0x0000FFFF }; bool draw_ptriangle(cell *c, const shiftmatrix& V) { if(!on) return false; if(mkr && mkr->icgi != &cgi) reset(); if(!mkr) { mkr = new trianglemaker; mkr->init(); // growthrate(); } for(auto& td: mkr->tds[c]) { mkr->compute(td, c); for(int side=0; side<6; side++) { auto &s = queuepoly(V * nisot::translate(td.at), mkr->ptriangle[side], magiccolors[side]); ensure_vertex_number(*s.tinf, s.cnt); /* auto& s1 = queuepoly(V * nisot::translate(td.at), mkr->pcube[side], gradient(tcolors[td.tcolor], magiccolors[side], 0, .2, 1)); ensure_vertex_number(*s1.tinf, s1.cnt); */ } } return false; } void slide_itri(tour::presmode mode, int id) { using namespace tour; setCanvas(mode, '0'); if(mode == pmStart) { stop_game(); set_geometry(gNil); tour::slide_backup(mapeditor::drawplayer, false); tour::slide_backup(on, true); tour::slide_backup(net, id == 2 ? true : false); tour::slide_backup(smooth_scrolling, true); tour::on_restore(nilv::set_flags); if(id == 0) tour::slide_backup(nilv::nilperiod, make_array(3, 3, 3)); if(id == 1) { tour::slide_backup(nilv::nilperiod, make_array(1, 10, 1)); tour::slide_backup(nilv::nilwidth, .9); tour::slide_backup(how, 32); tour::slide_backup(how1, 31); tour::slide_backup(isteps, 992); } nilv::set_flags(); /* do nothing for id == 2 */ start_game(); playermoved = false; tour::on_restore(reset); } } string cap = "Impossible architecture in Nil/"; auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle) + addHook(hooks_args, 100, [] { using namespace arg; if(0) ; else if(argis("-triset")) { shift(); how = argi(); shift(); how1 = argi(); shift(); isteps = argi(); } else if(argis("-tri-net")) { on = true; net = true; } else if(argis("-tri-one")) { on = true; net = false; } else return 1; return 0; }) + addHook(pres::hooks_build_rvtour, 166, [] (string s, vector<tour::slide>& v) { using namespace tour; if(s != "noniso") return; v.push_back( tour::slide{cap+"impossible triangle", 18, LEGAL::NONE | QUICKGEO, "This form of impossible triangle was first created by Oscar Reutersvärd. " "It was later independently discovered by Lionel Penrose and Roger Penrose, and popularized by M. C. Escher.\n\n" "Move with mouse/arrows/PgUpDn. Press '5' to enable animation, 'o' to change ring size.", [] (presmode mode) { slide_itri(mode, 0); }}); v.push_back( tour::slide{cap+"impossible triangle chainmail", 18, LEGAL::NONE | QUICKGEO, "Here we try to link the impossible triangles into a construction reminiscent of a chainmail.", [] (presmode mode) { slide_itri(mode, 1); }}); v.push_back( tour::slide{cap+"impossible triangle network", 18, LEGAL::NONE | QUICKGEO, "It is not possible to reconstruct Escher's Waterfall in Nil geometry, because one of the three triangles there " "has opposite orientation. For this reason, that one triangle would not connect correctly. Penrose triangles " "in Nil would not create a planar structure, but rather a three-dimensional one. This slide shows the picture. " "Note that, while the structure is three-dimensional, the number of nodes connected in d steps grows as the " "fourth power of d.", [] (presmode mode) { slide_itri(mode, 2); }}); }); } }